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The idea "parameter sensitivity” is defined for
various operational units and the models enabling
their calculation have been described. The Piston Flow
Model (P.F. Model), suitable for the description of
two-phase countercurrent operational wunits has two
dimensionless parameters, whereas the Axial Dispersed
Plug Flow Model (A.D.P.F. Model) has four. In the case
of both models, the number of physical quantities and
figures characteristic of the working state included
in these dimensionless parameters is very large.

This paper deals with the analytical solution
used for the calculation of the sensitivities.

The theoretical connections are supplemented by
a number of numerical examples, -calculated by both
analog and digital computers, presenting an illustra-
tion of the practical application of parameter sensi-
tivity.

In the first paper [1] of this series, the mathematical mo-
delling of a packed absorption column was described. An experi-
mental method was presented for the determination of the absorbed
component in both of the phases, along the packed column. The
experimental results were processed on the basis of the P.F. Model
and the A.D.P.F. Model. The mathematical models describe the mc-
delled reality only with a limited accuracy. The inaccuracy of the



380 P. Arva and F. Szeifert Vol. 1.

models is brought about by two causes. Firstly, they‘can give only
a phenomenological description of reality. The complicated connec-
tions and phenomena of a real system are attributed by the model
to the collective influence of only two or three factors. For
example, in a packed absorption column, the individual elements
of the streaming liquid phase may move in any direction of space
with a different and variable velocity. 1In the P.F. Model, this
complicated flow pattern is ignored and the process is characteri-
zed by mean values. The A.D.P.F. Model characterizes the flow
occurring in the real system by two parameters: the mean flow rate
and the mixing coefficient. Accordingly, in both cases a schematic
pattern is forced upon the reality.

The second reason for the inaccuracy of the parameters is
the method of determination. The parameters of the models, such as
rate, mixing coefficient, and transfer coefficient, etc., cannot
be calculated, but the results of experiments carried out with a
real apparatus are processed on the basis of the chosen model. The
source of errors is, on the one hand, experimental errors, and, on

the other, the errors of the calculation method.

It is our aim in the mathematical description of the opera-
tional units to present a description which is,for a given purpose
of adequate accuracy, and as simple as possible. Generally much
experimental and calculation work is necessary to produce models
which approximate the reality. It is not justified to carry this
out if a simpler description alsc offers satisfactory accuracy. In
the solution of such tasks, the knowledge of the parameter sensi-
tivity of the model comes very useful.

The mathematical description of two-phase operational units
is often possible by models of the same type, the only difference
being the values of the parameters. This paper deals with the ge~-
nerally used P.F. and A.D.P.F. Models.

Studies on the sensitivity of operational units against
changes in the parameters proved to be very useful in reactor
technique. However, in the field of diffusion operations in che-
mical engineering there are practically no papers that deal with
this problem.
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Both for the researcher and the practical worker in the
field, the knowledge of how far a change in some property of the
apparatus or in the technological parameters may change, the opera-
tion of the apparatus 1is of real practical importance. Such and
similar questions may be answered if the parameter sensitivity is

known.

The problem of parameter sensitivity is also encountered in
the solution of models describing the operational wunits. This
knowledge may also be helpful in choosing the means and methods of

calculation.

In the case of all models used in connection with the calcu-
lation of operational units, the dependent variables are in all
phases the concentration and temperature of the component, and the
independent variable is, when a stationary state is examined, the
place co-ordinate. In addition to these, a number of parameters,
such as e.g. the rate of the phases, trdnsfer coefficients, reten-
tion, mixing coefficients, and the concentration of the components
along the edges, etc., are applied in the models. This connection
is expressed for the variable x5 by the function X5 (z, Pys DPys
p;--- pn). In the case of a given set of parameter values (pl, P,
. pn) the sensitivity with respect to the parameter p, can be
defined by the following equation:

axj(z, Pys Pp --- pn)

ey.i (25 pys Pp -ov By) = 8p; )

where xj is one of the dependent variables and P; is the parameter
with respect to which the sensitivity is examined. Often it is
preferable to express this sensitivity in a dimensionless form:
P
E = 1 e . (2)

- J’i XJ(ZaPI:PZ,---Pn) J.1

This paper describes the calculation methods serving the de-
termination of parameter sensitivity on the basis of the most

frequently used models.
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1. The Sensitivity of the P.F. Model

Two-phase operational units are very frequently described by
the following model (cf. Equations (4) and (5) in [131, if A = 1):

dx Bw?Z .
izt e (y-x)=o0 (3)
L
ay , BuZH =
izt oy (y - x) =0 (k)
G
where
x = °L v g
= b . =
Heg in G,in

The boundary conditions pertaining to the model are: the following:

1 (5)
x. (6)

in

y(o)

x(1)

The model has two dimensionless parameters:

_ Bw?Z -
StL = and StG =5

[
«

The sensitivity of the model with respect to these two parameters

will now be examined.

The following designations for the sensitivity are introduced:

e, = R0X . o o & o . dx . _ _ 3y
11 BStL’ 21 BStL’ 12 aStG’ 22 aStG

The functions x(z) and y(z) are obtained at given parameter
values, by the solution of Equations (3) and (4) as well as con-
dition Equations (5) and (6).

Let Equations (3), (u4), (5) and (6) be differentiated with
respect to StL. In this case, the set of equations expressing the
sensitivity with respect to StL is obtained:
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82 3
X gy (2L Xy (y o x) =0 (1)
aStLaz aStL astL

82 dy ax 85tg
— L 4 st ( - ) + (y - x) =0 (8)
aStLaz BStL aStL aStL

The boundary conditions for this set of differential equa-
tions can be derived from Equations (5) and (6). The values y(0)
and x(1), i.e. the concentration at which the phases enter the ap-
paratus, are independent of the Stanton figures, and consequently

the boundary condition can also be written in the following form:

8y = 0 (9)
BStL 2=0
_gi_ = 0 (lO)
aStL 2=1

With application of the signs introduced for the designation

of the sensitivity, we may write:

aell
+ StL(e21 - ell) + (y - x) =0 (11)
dz
e oSt
2L 4 Stg(e,, - egy) *+ — (¥ - x) =0 (12)
oz a5t
L
= 13
e, (0) 0 (13)
= 1k)
e (1) 0 (
- In a similar manner, the following set of differential

equations is obtained for the sensitivity with respect to StG:

de . BStL
iz, st ey, - 812) + (y - x) =0 (15)
dz BStG
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depp .

. + Stoley, - e10) + (y - x) =0 (16)
e22(0) = 0 (17)
elz(l) = 0 . (18)

The values of the functions x(z), y(z), ell(z), ele(z), ezl(z)
and e22(z) are obtained from the solution of the set of Differen-
tial Equations (3) ... (18), at a given set of parameter values.

Functions x(z) and y(z) can be produced without solving the
sensitivity equations. The sensitivities can be obtained without
any difficulty if the functions x(z) and y(z) are known in an ana-
lytical way by solving the sets of differential equations or by
derivating x(z) and y(z). For example, the following equation was
obtained for the sensitivity of the concentration y with respect

to StL:
st 1 1 ast
ey = [1 - x(2)M{11 - ot + g;— - ;:— - lexp(st; - 8t.) x
L L G L
ast,
(1 - 3§¥Z) z exp[(StL - Stg)z] stg
x[exp[(StL - Stglzl- 11 + St )§¥; (19)

g;; - exp(StL - StG)

It is apparent from the above equation that the sensitivity
is a function of the place co-ordinate z and different sensitivity
values are obtained at different sets of parameter values.

It has been supposed in the foregoing [cf. Equations (3) and
(4#)1 that the component equilibrium among the phases can be de-
scribed by a straight line starting from the origo. Equilibrium
conditions different from this pattern are often encountered in
practice, and consequently the analytical solution of the above
sets of differential equations is difficult. Furthermore, the
claim for rapid calculations makes it preferable to carry out such
a mass of calculations by a computer. In the following, an analog
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computer programme is shown for the calculation of the sensitivity
The analog computer enables the calculations to be carried out
even in the case of nonlinear sets of equations. The linear case

will be discussed here.

The analog computer pro-
gram for the solution of diffe-
rential Equations (3) and (4) is
shown in Fig. 1. The conditional
equations are such that only the
initial value y{(0) = 1 is known,
but x(0) is unknown, an iterati-
ve solution has to be chosen. In
the course of this, the initial
value fed to the integrator

calculating the function 1is

varied until the condition x(1)=

= O prescribed for the place z=1

Sts | is fulfilled.This procedure can,
with some practice, be carried

&) ;

\\ad out rapidly. It should be noted

here that there exists a method
Fig.l. Programme for the solution for the automation of the itera-
of Differential Equations
(3) and (4) tion.
Having determined the functions x and y, the sensitivity va-
lues can - after a similar iteration procedure - be determined

with the help of the programme shown in Fig. 2.

Figs. 3 and % show the results of the calculations. The
values of the functions x, y, €11 €515 ©1p> and e,, are shown in
both Figures. As it is apparent from Equations (11), (12), (15)
amd (16), the differential quotient of the St numberc with respect
to each other also appears. ‘

When calculating this differential quotient, different re-
sults will be obtained, depending on whether the change in the St
number is due to the vransfer coefficient (Bw) or to the rate of

the phase (vL or vG).
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~(y—x)

&

@ I ~8gq l{>+e22 .

Fig. 2. Programme for the solution of Equations (11), (12), (15)

and (16)
Since
BwZ
ast 3 (=)
L _ L (20)
aStG B(B:ZH)
G
if Bw changes, but vy, and Vg are constant:
aSt v
355 T TR (21)
G L
if Bw is constant, we have
ast
L
=0 (22)
BStG
The sensitivity curves for a given system (StL = 3.48; St =

= 2.32) and for a case when the parameters St_ and St. change on

L
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Fig.3. Sensitivity of the vari~ PFig.h. Sensitivity of the vari-

ables x and y with res- ables x and y with res-
pect to StL and Stg, if pect to St. and StG, if
the value of Bw is varied v. or v, is varied

(st; = 3.48, st, = 2.32) (étL = S.us, St = 2.32)

account of a change in the transfer coefficient, are shown in Fig.
3. TFig. 4 shows - curves that are the result of changes in vy and
Vg. It is apparent from the Figures that the sensitivity curves
possess an extreme value. The position of the latter depends on
the ratio StL/StG. If the ratio StL/StG > 1, the extreme value at
a high z value, whereas it is found at a low z value if StL/StG <
< 1.

2. Sensitivity of the A.D.P.F. Model

This model is frequently applied for the description of co-

-current or counter-current two-phase operational units. The ana-
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lytical method of the determination of the parameter sensitivity
will be presented here. The model will be described in general for
a system in which the equilibrium function is a linear one, but

the straight line does not, necessarily start from the origo.

The diffusion model may be described in the general form with
dimensionless quantities by the following Equation [1]:

2
a &z, Qi + az(agy + ag - x) = 0 (23)
dz? dz
2
a3 &y | &y ay{agy + ag - x) = 0 (24)
dz? dz
Boundary conditions:
= ay -
z = 0, a3 -~y +1=0 (25)
dz
0 (26)
dz
dx
z =1, aj =— + x - a7 = 0 (27)
dz
& -9 (28)
dz

Parameters a; ... ay are present in the differential equation
and the boundary conditions. Parameters ag and ag mean the initial
values of the functions x and y and are interesting from the point

of view of the calculation.

The set of differential equations pertaining to the sensiti-

Lovity and the conditional equations may be obtained by the deriva-
tion of Equations (24) ... (29). Accordingly, the expression of
the sensitivity with respect to parameter a; (i =1, 2 ... 9) is

the following:

dZe; . de; a%x
8y —=2= - —= 4+ aj(age, ; - e; ;) + by — + b7y - bzx + bg = O
dz? dz ’ 4 dz? (29)
dze2 i de2 i d2y
I i aq(ase2 i - e i) + bj -~ bgy + byx - byg= 0
az? dz i ’ az?

(30)
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The boundary econdition of the set of differential equations
is whe following:

Condition A (i =1, 2 ... 7):

if z = O, we have a —=al e L+ b,

n
2t
H
o
.

and 1.1 _ (31)

. _ i dx o
if z = 1, we have . ‘~§?— + €1, + b,y iz - fo = 0

and — 2,1 _ (32)

Condition B (i = 8, 9):

if 2z = 0, we have e, . =1y
(33)

and

L\)
=
]
]
=

where< e [ =3 H ez’i 3a

The meaning of the quantities a;, b; and fiis apparent from

Table 1.

Equations (23) ... (33) together represent the A.D.P.F.
Model of the ﬁarameter sensitivity with the initial and boundary
conditions. The part pertaining to x and y can be separated within

the model and the solution can be written in the following form:

I
= N
X iElci exp(liz) (34)
Y A, a a
=L ___1___12 A _._6_
y 2, iEl(l 5, 5, Ai)ci exp ( iz) r

where Ai represents the four solutions of the equation
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ajagr® + (a3 - aj)rd - (aja,ag + a,a; + 1)i2 + (a, - a,ag)r = 0
(35)
of the fourth degree,and ¢; represents the solutions of the linear

x

set of equations with four unknowns

811 a12 813 2y ¢y b
821 &22 @23 apy c2 b}
= (36)
agy &3 233 ajy c3 by
ay] &y ay3 ayy cy b}
“he elements of the matrices are the following:
a,; = (1 + alxi) exp Ai
a8
= 1 1,2
821 7 (1 = agd )1 - =y - a, i (37)
a‘3i = A1
a
- i 1,2
2y 7 Ai(l - a, i - e Ai)exp Ay
and
bl =a, by =1, bl=0, b! =o0.

When x(z) and y(z) are known, the sensitivity model is an
inhomogenous differential equation of the fourth degree with
constant coefficients. The coefficients of the argumentum of the
exponential terms causing the inhomogenous part are identical to
the roots of the characteristic equation of the homogenous

equation, and consequently the functions e

1,i(Z) and eg,i(Z) take

the following form:

L
e, ;(z) = L (Ki +Q;z) exp(kiZ) (38)
’ i=1
1 ¥ 1 21,
eZ,i(Z) = =— i)El(l Yy A - ;; Ai)(Ki - L; + Qiz)exp(xiz) -
a
6
bg - b, E;
- (39)




1973 Mathematical Modelling of Absorption Columns II. 393

Expressions Ki, Li and Qi of the equations can be obtained
in the following way:

2 b7 1 81 2
[bl)‘l + 2 (1 - E—z- Ai - ;; Xi) - bz]ci + (1 + 2 alki)Qi
L. =
1 2
a, - Ai - alAi
i=1, 2, 3,14
b a
2 2, b7 1 1,2
(a,ag = 8hf + 0o ) + oo (1= 0y = g 25) - Byl
Qi =cy L +

3 2
3 a5, + 2(a, - al)ki - (a,a; + ajs,8g + l)A:.L

b b 8
3 2 9 1 1,2
a'23'5[(35 Ay - as)(l - a, A - a, Ai) + bh]
+ 3 > 1, i=1,2, 3
3 ajagh; + 2(ay - al)xi -(a,a; + aja,ag+ 1)A:.L

[a,(b,-byas) + a,(b,as-bg)le, + a,(agbg-agb,) + a,(agbatasb,,)

Q, =
8, - 8,85

The values of Ki are given by a set of equations similar to
Equation (36), in which the elements of the matrices are the fol-

lowing:
Condition A:

a,. is the same as in Equation (37)

Ji
I

1T =

by o= f - igl{tl + al(l + Ai)]Qi + blAici}exp A
asbg-agb, L 1 8,

1 = v . -

b = ———— + & {(1- PO Ry Ai)[Li(l a3xi) + byhie, 4 aaqi]}
8,8, i=1 2 2

“ n
b = - T Q

3 i=1 *

1 ! 2 .

1 - - — - . . A,

b= L (1 o M : Xi)[AiLi (a; + l)Ql] exp A,

i=1 2 2
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Condition B:

g1 =1
a
1 1,
a . = (1 =~ =— X, = == A
2i a, i az
53i = }‘1
a
1
a), = (1 - 2 - — A2) .,
i a, 1 a2, i 1
'V o=
b £
asba - aeb-, L 1 a
bl o= e f,+ + D L.(1 - =— A, = — 1a2)
8.28.5 i=1 1 52 1 82
)
b! = - ¥ Q.
2
- i=1 %
L a
1 1 .2
1 = — — - —— -
By = oesty L L1 - 5=y - o AY) ALy - agq;]
i=1 2 2

The solutions of the shape of (3u4), (38) and (39) can be used

only if a, # a8 and a, # 0 and aq £ 0.

1

Table 1 contains the values of bi and fi for a few given
parameters. The meaning of the parameters a; is given in the Table.
The first row contains only such physical quantities with respect
to which the sensitivity was studied. The second row shows the a;
parameters which contain these physical quantities. The values of
the quantities bi and fi vary with respect to which parameter the

sensitivity is examined. These values are found in the Table.

In many cases the operational units are such that the coef-
ficients of the differential equations are not constant. For
example, the rate of one of the phases varies or the equilibrium
connection 1is a non-linear one. Accordingly, digital computer
programmes were prepared in which the set of differential equa-

tions was solved with the Runge-Kutta method.

The sort of differential equations pertaining tc the sensi-
tivities was solved, for the parameters given in Table 2, with the
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above-mentioned method. The Table contains the sensitivity data

with respect to a few more important parameters as a function of z.

3. The Application of Parameter Sensitivity

The knowledge of parameter sensitivity enables a deeper
insight to be gained into the properties of the model and the ope-
rational wunit described by it. From the point of view of unit
operations, it provides assistance in the choice among the models
describing the operational wunit and in judging the merit of a
given model. 1In practical work, it helps to estimate the accuracy

of the calculations.

A few numerical examples, illustrating the application of

the concept of sensitivity, are presented in the following.

In design work, the values of the parameters are taken from
the literature. The sensitivity offers a possibility for the esti-
mation of the degree of accuracy that can be claimed of the data

taken from the literature.

In the wvicinity of a P set of values of the parameters we

may write

x(z:ps)
x{(z,p) = x(z,p ) + El’i(z,ps) ———— Ap,

p; i

and after rearrangement we obtain

x(z,p) - x(z,ps) Ap
= E(ps,Z)1 i
x(z,p_) ’ P

i

i

This equation enables the calculation of the error of the variable
x if the relative error of the parameter (Api/pi) is known. A
similar procedure may also be applied in the case of the variable
v.
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Let us estimate the error made with the application of the
data given in Table 2, if the expression, taken from the litera-
ture, for the calculation of (Bw) is of an accuracy of * 10 %. The
calculation should be carried out for the place z = 1. In this
place, the sensitivity is (cf. Table 2) E = 0.487 and E =

1,8uw 2,Bw
= ~0.139. Accordingly

x(z,p) - x(z,p,)

= 0.1 -+ 0.487 = 0.049
x(z,ps)

y{z,p} - y{z,p])

= -0.1 * 0.139 == ~0.01k
y(z,p.)

that is, an error of 10 % in the value of (Bw) results in an error
of 4.9 % and 1.4 %, resp. in the calculation of the x and y values
in the case of the given system. Similar calculations can also be

carried out for the other parameters.

From the point of view of the operator it is interesting to
know the effect, for example, of fluctuations in the rate of the

phases (v. and v on the composition of the phases leaving the

)

L G
operational unit. Let us consider a deviation of + 10 % from the
predetermined value.In the case of the set of parameters presented
in Table 2, this causes the following deviations in the x(o) and

y(1) values:

x{o,p) - x{o,p)
= -0.1 - 0.297 s= -0.030

x(o0,p)

v(i,p) - y(l,ps)

-0.1 - 0.507T = -0.050

y(1,p.)
As can be seen, this results in a deviation of 3 % and 5 %, res-
pectively. A change of 10 % in the Va value results, after a simi-

lar calculation, in deviations of 2 $ and 6 %, respectively.

In research work the aim is frequently to determine the

values of the parameters from the experimental data.If for example
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we want to determine the D; mixing coefficient from measured
values of x(t), and the latter can be determined only with an
accuracy of 10 %, the érror made in the calculation of the param-

eter is the following:

Ax
AD =
L = E_x_— = 0.1 " 0.1k
DL l,DL(l)- 0.7

Accordingly, it can be calculated with an error of 1 % from the
data referring to the place z = 1. The same parameter, when calcu-
lated from the measured values of ¥, could be determined only with
an error of 25 %. The sensitivity with respect to EG is such that
its value could be determined with an error even greater than the

previous one.

In modelling operational units, a boundary value problem is
usually encountered. If we want to use a digital or analog compu-
ter in the calculations, the values of the functions taken at the
initial points (z = o) have to be given and the solution which
satisfies the boundary conditions has to be found by the iteration
method. Table 2 also contains the sensitivities with respect to
x{o).The absolute value of these is so high that a small deviation
from the actual value in the determination of x{o) and y(o) causes
a large error in the values of x{z) and y(z). This is the explana-
tion of the fact that two-phase countercurrent operational units
cannot be modelled with an analog computer. With the latter, the
setting of the x(o) and y(o) values is possible only to a limited
accuracy (1-2 %) and even such a small deviation from the actual
value causes x(z) and y(z) values to be obtained that are techni-
cally unreal. This difficulty is considerably decreased by the use
of digital computers, due to the high degree of accuracy that can

be realized.

The above examples clearly illustrate the importance and
wide range of applicability of the knowledge of the sensitivity.
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SYMBOLS USED

parameters (cf. Table 1)

axial mixing coefficient (m2/sec)

D
€5, sensitivity of the jth dependent variable to alter the
>

value of the ith parameter

EJ ; dimensionless sensitivity of the jth dependent variable

kd

according to -the ith parameter

H Henry-constant (dimensionless)

Pe Peclet-number (dimensionless)

5t Stanton-number {(dimensionless)

v linear flow rate of the phase (m/sec)

Z length of the column (m)

4 space co-ordinate along the length of th¢ column
(dimensionless)

x concentration of the absorbed component in the liguid phase
(dimensionless)

Y concentration of the absorbed component in the gaseous phase
(dimensionless)

x axis section of equilibrium line (dimensionless)

Bw component transfer coefficient, as referred to unit volume

. (sec™)

Indices

b} refers to the dependent variable (the concentration in the

liquid phase is j = 1, that in the gaseous phase is j = 2)
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i refers to the parameter
L liquid phase

G gaseous phase

REFERENCE
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P E3RIME

ABTOpaMW onpeaenseTCA NowATHe HYBCTBUTENLHOCTH MapaMeTpa 4/n
AUBDYIHOHHBIX 3NEMEHTOSR Mpouecca, v paccMaTpuBawTCA MOgenw ANR ero
Bu4HMCeHHA. Mogens WABANLHOrO BHTESCHEHWR ANA AByX$asHoXx NpoTHBO-
TOYHEX 3NeMeHTOB Nnpoyecca COoAepwuT gBa, a Auddy3MoHHAR Mogens,
MMEWAA B BMAY W OCeRoe cMewWBaHMe, HeTHpe OeapasmMepHuXx MapameTpa.

B oboux mogenax HCMNONL3YRTCA MHOMO QUIMYBCHHX B8/NMYUH a8 Takwe se-

NHYHH, XapaKTepu3ylwux 3aBO4CHHE YC/0BMA B BupameHUAX (e3pa3MEpHbIX

napameTpoa.
B pa6oTe onucwsaertca u GHANUTHYECHOE PEWEHME AR BHYMCACHWUE
HyBCTBUTEALHOCTEH,
TeopeTudieckue supamenus AONCAHAKTCA YWCAOBEMM NpHUMEpaMu, pe-
WaeMuMK HA aHANOroBEX WM UMOPOBLIX BHYNCAHMTENLHEX MaWHKax, M TaHuM

06pa3om, NOKa3IbBaeTCA W NPAHTHHECHOE NPUMEHEHME YYyBCTBWHTEABHOCTH
napameTpa.
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