
HUNGARIAN JOURNAL 
OF INDUSTRIAL CHEMISTRY 

VESZPRÉM 
Vol. 37(2) pp. 139-143 (2009) 

DIFFERENCES BETWEEN OPTIMUM FLOW SHEET SOLUTIONS OBTAINED 
BY DIFFERENT ECONOMIC OBJECTIVE FUNCTIONS 

M. KASAŠ, Z. KRAVANJA, Z. NOVAK PINTARIČ  

University of Maribor, Faculty of Chemistry and Chemical Engineering 
Smetanova 17, SI 2000 Maribor, Slovenia 

E-mail: zorka.novak@uni-mb.si  
 

This paper discusses the shapes of cash flow functions obtained by modelling chemical processes at different levels of 
complexity, and the influence of these shapes on optimal solutions obtained by different economic objective functions. 
Cash flow functions can be unimodal (with maximum) or monotonically increasing (concave) with respect to capital 
investment. This depends on the quality of major trade-offs established in the model. Unimodal shape is common for 
modelling with simple and aggregated models, where increasing the investment above certain level causes loss to a 
project, which indicates improper or insufficient trade-offs in the model. Monotonically increasing concave cash flow 
functions are usually obtained by using more detailed models. This implies better trade-offs in the model as increasing 
the investment always brings some benefit (higher or lower). Example of methanol process synthesis presented in the 
paper indicate that models with monotonic cash flow functions produce significantly different optimal solutions when 
optimizing different economic criteria, e. g. the net present value, the profit and the internal rate of return. On the other 
side, the optimal solutions of models with unimodal functions are similar. These results suggest that models should be 
formulated at the level of complexity which produces monotonically increasing cash flow functions. 
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Introduction 

The engineering community uses different measures for 
assessing the economic attractiveness of investment 
projects. The most common are the total annual cost, 
annual profit before taxes, the payback time, the net 
present value and the internal rate of return. Buskies [1] 
established that optimal values of process parameters 
obtained during the optimization of chemical processes 
depend on the objective function used in the optimization. 
Novak Pintarič and Kravanja [2] discussed the 
differences between optimal process designs obtained 
by means of qualitative, quantitative and compromise 
economic criteria. Faria and Bagajewicz [3] performed 
MINLP design of water utilization systems by 
maximizing the net present value and internal rate of 
return and also observed different optimal solutions. 
The origin and characteristics of these differences have 
not been explained sufficiently in the open literature.  

The main intention of this paper is to discuss the 
characteristics of optimal process flow sheets obtained 
by synthesis and optimization with different economic 
criteria. It was observed that in some cases, significantly 
different optimal designs are obtained, while in other 
cases, differences are negligible. It will be shown in this 
paper that differences between optimal solutions depend 

on the slope of the cash flow derivative function, while 
its slope depends on the shape of the cash flow function 
with respect to capital investment. Unimodal shapes (with 
maximum) are obtained by using simple, aggregated 
models. More detailed models produce monotonically 
increasing concave functions of cash flow. The example 
in our paper shows that different economic criteria lead 
to optimal solutions that are significantly different in the 
term of conversion, level of heat integration, investment, 
cash flow, and even in the term of topology. 

The important simplification in this paper is that 
investment costs are represented as simple continuous 
nonlinear functions of process size. In general, complex 
cost functions are discontinuous in terms of size and 
other factors, e.g. pressure and temperature, and require 
special modelling techniques in order to be included in 
optimization models, as shown by Turkay and 
Grossmann [4]. 

Optimality conditions 

Optimality conditions for different economic criteria are 
well known. Maximum net present value (NPV) is 
obtained at the investment level where the marginal 
(incremental) NPV is equal to zero and marginal internal 
rate of return (IRR) equals to discount rate used for 



 140

NPV maximization. In practice this means that process 
units should be enlarged only as long as the incremental 
increase has positive marginal NPV and the incremental 
IRR is greater than the minimum acceptable rate of 
return (MARR). Maximum profit before taxes (PB) and 
IRR are obtained at the investment levels where the 
marginal profit and IRR, respectively, equalize to 0. It 
could therefore be expected that applying different 
criteria in the objective function by designing, optimizing 
and synthesizing process flow sheets would not lead to 
the same optimal results.  

In our previous work [2] it was shown, that 
optimization of qualitative criteria, such as payback 
time and internal rate of return, stimulate smaller 
process designs and fast (re)investment of capital which 
results in high profitable solutions. Quantitative criteria, 
such as profit or total costs, produce large processes and 
higher cash flows, but also require higher capital 
investments, and achieve lower profitabilities. Criteria, 
such as the net present value and equivalent annual cost, 
result in intermediate size of the process. These are 
compromise criteria as they establish a compromise 
between the investment costs, profitability of invested 
money, and dynamics of investing [5]. 

 

Cash flow functions 

Cash flow, FC, is defined by the following equation: 
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where rt represents the tax rate, R the revenues or 
incomes, E the expenditures, I the investment and tD the 
depreciation period. The term (R – E) in the right-hand 
side of Eq. (1) is the surplus of the revenues over the 
expenses and actually represents a benefit resulting 
from invested money. The second part is a tax credit of 
depreciation originating directly from investment.  

Two shapes of cash flow function with respect to the 
level of capital investment are mostly obtained when 
optimizing process flow sheet models: unimodal function 
with maximum, and monotonically increasing concave 
function (Fig. 1). Convex functions of cash flow vs. 
investment are very rare in the flow sheet optimization. 
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Figure 1: Cash flow functions, a) unimodal, b) concave 

Unimodal cash flow functions 

Unimodal cash flow function is common for flow sheet 
modeling with simple and aggregated models at early 
stages of process development, e.g. by stoichiometric 
reactor with fixed conversion per pass or simple 
component splitter. In such models, the trade-offs 
between the revenues, operating costs and investment 
are often established only through the recycle flow rate.  

In the case of unimodal cash flow function a mode 
(maximum) exists and derivative thus changes the sign 
(Fig. 2a). Stationary point for maximum cash flow is 
obtained at: 
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From the upper equation it follows, that maximum 
cash flow of unimodal function occurs at the level 
where increasing the investment would reduce benefit to 
a project, as the right hand side of Eq. (3) is a constant 
negative value. This result leads to the assumption that 
flow sheet optimization model with unimodal cash flow 
function indicates improper or insufficient trade-offs. In 
practice, increased investment should result in increased 
benefit. The benefit growth rate is lower and lower as 
investment grows, but should not change to a loss, as in 
the case of unimodal cash flow function, though there 
are some exceptions in engineering applications. E.g. 
adding insulation (increasing investment) to circular 
tubes whose outside radius is smaller than the critical 
radius increases heat losses up to the value of critical 
thickness [6]. Note that the shape of the benefit function 
(R – E) vs. investment I would be very similar to the shape 
of the unimodal cash flow function shown in Fig. 1a. 
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Figure 2: Derivative of unimodal (a) and  

concave (b) cash flow function 
 

Concave monotonic cash flow functions 

Monotonic concave cash flow functions are obtained by 
more detailed modeling, where more precise tradeoffs 
are present, e.g. by kinetic reactor or distillation column. 
These trade-offs reflect as direct benefit resulting from 
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invested money, e.g. longer catalyst bed in the reactor 
enables higher conversion of reactants per pass, larger 
exchanger area enables more heat transferred between 
process streams and thus lower utility costs etc. 

In the case of concave monotonic cash flow functions, 
the slope of the cash flow curve is always positive and 
decreases monotonically (Fig. 2b). The term (R – E) in 
Eq. (1) becomes constant at high investment values and 
its derivative approaches to zero. The shape of the (R – E) 
function vs. investment I would be similar to that shown 
in Fig. 1b, with the exception that (R – E) curve would 
remain constant at higher values of investment while 
cash flow curve increases linearly due to depreciation 
term in Eq. (1). 

Cash flow derivative thus approaches asymptotically 
to a constant nonnegative value as investment approaches 
infinity:  
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From the above equation, it can be seen that 
asymptotic constant value depends only on the tax rate, 
and depreciation period. Cash flow at high investment 
values increases linearly only because of depreciation 
term in Eq. (1). Further increase of investment does not 
increase benefit, but at least does not cause any loss.  

Differences in optimal solutions 

It could be shown by deriving stationary conditions for 
optimum economic criteria that the investment levels of 
optimal solutions increase in the direction from IRR 
over NPV to PB criterion [7]. The magnitude of these 
differences depends on the steepness of cash flow 
derivative function. The steeper this function is, more 
similar are the optimal solutions.  

The derivative function of monotonic cash flow is 
more flat because it approaches asymptotically to a 
constant positive value (Fig. 2b). Optimum NPV and PB 
solutions are thus more apart. Besides, models with 
monotonic cash flow functions comprise more precise 
trade-offs that enable to find the solutions with higher 

profitabilities. This forces investment level of optimum 
IRR solution below investment levels of the other two 
optimum solutions. Models with unimodal functions 
comprise only rough trade-offs which do not allow high 
profitable solutions. Optimization of such models often 
results in similar optimal solutions. 

Methanol process synthesis 

MINLP synthesis of methanol process flow sheet from 
synthesis gas is considered in this section. The example 
was taken from the literature [8] and the prices were 
updated. Superstructure of the process involves four 
topological selections: 1) two feed streams from which 
the first one (FEED-1) is cheaper as it contains less 
hydrogen, 2) one-stage or two-stage compression of the 
feed stream, 3) two reactors from which the second one 
(RCT-2) is more expensive and allows higher conversion, 
and 4) one-stage or two-stage compression of the recycle 
stream. Kinetic model is used for both reactors. Flow 
sheet comprises 4 hot streams and 2 cold streams. 
MINLP model for heat integration [9] with 4 stages is 
added to the mathematical model of superstructure for 
simultaneous heat integration and heat exchanger 
network (HEN) synthesis. Design variables for 
assessment of capital investment are the reactor’s 
volume, compressors power, and heat exchangers area. 
The composed MINLP model comprises about 600 
constraints and 600 variables from which 46 are binary 
(8 for process topology and 38 for heat matches). 

The MINLP synthesis is performed by means of 
automated MINLP Process Synthesizer MIPSYN [10]. 
Three economic objective functions are optimized: IRR, 
NPV and PB. The second feed stream is selected in all 
optimal solutions together with the two-stage compression 
of feed stream, and one-stage compression of recycle 
stream (Fig. 3). The cheaper reactor (RCT-1) with lower 
conversion is selected by maximizing IRR and NPV, 
while more expensive reactor (RCT-2) with higher 
conversion is obtained by maximizing PB (dotted line 
on Fig. 3). Optimal heat integration scheme is equal in 
all three cases. 

 

 
Figure 3: Optimal structures of methanol synthesis 
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The solution with highest capital investment and cash 
flow is obtained in the case of PB maximization (Table 1), 
while the lowest values are observed in the case of 
maximum IRR solution.  
 
Table 1: Optimal solutions of methanol synthesis 

 max rIRR max WNP max PB 
I (MEUR) 82.63 85.24 89.12 
FC (MEUR/yr) 34.63 35.13 35.50 
FC/I 0.419 0.412 0.398 
R (MEUR/yr) 83.98 83.80 83.69 
crm (MEUR/yr) 28.59 28.17 27.90 
cut (MEUR/yr) 11.04 10.68 10.43 
WNP (MEUR) 180.80 181.98 180.92 
PB (MEUR/yr) 38.83 39.26 39.41 
rIRR (%) 41.69 40.97 39.57 
XRCT (%) 16.20 18.19 19.56 
X O (%) 79.93 80.31 80.54 
AHEN (m2) 2769 3285 3783 
VRCT (m3) 24.60* 31.70* 29.37** 
Pcomp (MW) 40.30 38.78 37.87 
I (AHEN) (MEUR) 10.77 12.71 14.57 
I (VRCT) (MEUR) 16.72 19.38 22.60 
I (Pcomp) (MEUR) 55.14 53.15 51.95 

* RCT-1, ** RCT-2 
 

Although some economic figures do not differentiate 
substantially, the optimal designs are significantly 
different. The cheaper reactor (RCT-1) is selected by 
IRR and NPV criteria and, as expected, the reactor is 
significantly larger in the case of max NPV. The reactor 
of PB solution is medium-sized because more expensive 
option (RCT-2) with higher conversion and capital 
investment is selected. The total area of heat exchanger 
network (AHEN) is significantly different in all three cases. 
The investment levels of reactor and HEN increase from 
IRR to PB, while on the contrary, the total power of 
compressors (Pcomp) decreases and is the smallest in the 
case of PB solution. This is because the highest 
conversion is obtained by PB criterion, and consequently, 
the amounts of feed and recycle streams are the 
smallest. The largest revenue is achieved in the case of 
optimum IRR solution, however, the consumptions of 
raw materials and utilities are also the highest. High 
profitability is achieved on the account of higher input 
of reactants and utilities, but not with increased level of 
heat integration and conversion of reactants. The latter 
increases from IRR over NPV to PB optimum solution. 

Fig. 4 represents the concave shape of cash flow 
functions of both optimal process structures obtained by 
IRR and NPV criteria, as well as by PB criterion. 
Increased investment is used for increasing the reactor 
volume and the conversion, as well as for increasing heat 
exchangers area and thus heat transfer between process 
streams. Fig. 5 represents the derivative functions of 
both optimal structures. 

34.2

34.4

34.6

34.8

35

35.2

35.4

35.6

35.8

82 84 86 88 90 92

max IRR and NPV

max PB

 (MEUR)I

C (MEUR)F

 
Figure 4: Cash flow functions of optimal  

methanol structures 
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Figure 5: Cash flow derivative functions of optimal 

methanol processes 

Conclusion 

The differences between optimal solutions obtained by 
using different economic criteria depend on the slope of 
cash flow derivative function. The derivative curve of 
concave cash flow function often has a gentle slope as it 
asymptotically approaches positive constant value. For 
this reason, different economic criteria lead to optimal 
solutions that are significantly different in the term of 
design variables, and/or economic figures or even in the 
term of topology if process synthesis is performed. On 
the other side, the derivative of unimodal cash flow 
function is very steep leading to similar optimal designs. 

It was shown that optimum IRR solution is obtained 
at the lowest investment level, optimum NPV solution 
at intermediate level, and optimum PB solution at the 
highest investment level. Conversion of reactants 
increases from IRR to PB, while raw material and utility 
consumptions decrease. Qualitative criteria, like IRR 
and payback time, produce highly profitable optimal 
solutions with low capital investment. Quick return on 
investment is of top priority, while the effective resource 
utilization is less important. Quantitative criteria, like 
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PB and total annual cost, foster the generation of more 
efficient solutions with lower operating costs which are 
achieved by e.g. higher conversion, better separation 
and/or higher level of heat integration. These solutions 
are, despite of higher investment level, oriented towards 
long-term, more sustainable flow sheets. The return to 
investors is slower, however, this is compensated with 
higher cash flows. Compromise criteria, like NPV and 
equivalent annual cost, establish a balance between quick 
return on investment and long-term steady generation of 
benefit. 

It could be concluded that flow sheet models should 
be formulated at the level of complexity which produces 
monotonically increasing cash flow functions. 

 

REFERENCES 

1. BUSKIES U.: Economic process optimization 
strategies. Chemical Engineering & Technology 
(1997) 20, 63–70 

2. NOVAK PINTARIČ Z., KRAVANJA Z.: Selection of the 
economic objective function for the optimization of 
process flow sheets. Industrial & Engineering 
Chemistry Research (2006) 45, 4222–4232 

3. FARIA D. C., BAGAJEWICZ M. J.: Profit-based 
grassroots design, retrofit of water networks in 
process plants. Computers & Chemical Engineering 
(2009) 33, 436–453 

4. TURKAY M., GROSSMANN I. E.: Structural flowsheet 
optimization with complex investment cost functions. 
Computers & Chemical Engineering (1998) 22, 
673–686 

5. NOVAK PINTARIČ Z., KRAVANJA Z.: Multiperiod 
investment models for the gradual reconstruction of 
chemical processes. Chemical Engineering & 
Technology (2007) 30, 1622–1632 

6. ECKERT E. R. G., DRAKE R. M. J.: Analysis of Heat 
and Mass Transfer. 1972, New York: McGraw-Hill. 

7. KASAŠ M., KRAVANJA Z. in Novak Pintarič Z.: 
Cash flow functions and optimal solutions of flow 
sheet models at different levels of complexity. 
CAPE Forum (2009) Limerick. 

8. KRAVANJA Z., GROSSMANN I. E.: Prosyn - an 
MINLP process synthesizer. Computers & Chemical 
Engineering (1990) 14, 1363–1378 

9. YEE T. F., GROSSMANN I. E.: Simultaneous 
optimization models for heat integration-II. Heat 
exchanger network synthesis. Computers & 
Chemical Engineering (1990) 14, 1165–1184 

10. KRAVANJA Z., GROSSMANN I. E.: New developments 
and capabilities in Prosyn-an automated topology 
and parameter process synthesizer. Computers & 
Chemical Engineering (1994) 18, 1097–1114 

 
 




