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Tools from the armoury of soft computing have been in focus of researches recently, since soft computing 
techniques are used for fault detection (classification techniques), forecasting of time-series data, inference, 
hypothesis testing, and modelling of causal relationships (regression techniques) in process engineering. These 
techniques solve two cardinal problems: learning from experimental data by neural networks and support vector 
based techniques and embedding existing structured human knowledge into fuzzy models. Support vector based 
models are one of the most commonly used soft computing techniques. Support vector based models are strong in 
feature selection and to achieve robust models and fuzzy logic helps to improve the interpretability of models. This 
paper deals with combining these existing soft computing techniques to get interpretable but accurate models for 
industrial purposes. The paper describes that trained support vector based models can be used for the construction 
of fuzzy rule-based classifier or regression models. However, the transformed support vector model does not 
automatically result in an interpretable fuzzy model because the support vector model results in a complex rule-
base, where the number of rules is approximately 40-60% of the number of the training data. Hence, reduction of 
the support model-initialized fuzzy model is an essential task. For this purpose, a three-step reduction algorithm is 
used on the combination of previously published model reduction techniques. In the first step, the identification of 
the SV model is followed by the application of the Reduced Set method to decrease the number of kernel functions. 
The reduced SV model is then transformed into a fuzzy rule-based model. The interpretability of a fuzzy model 
highly depends on the distribution of the membership functions. Hence, the second reduction step is achieved by 
merging similar fuzzy sets based on a similarity measure. Finally, in the third step, an orthogonal least-squares 
method is used to reduce the number of rules and re-estimate the consequent parameters of the fuzzy rule-based 
model. The proposed approach is applied for classification problems and applied for Hammerstein system 
identification to illustrate the effectiveness of the technique. 
 

Introduction 

Tools from the armoury of soft computing have been in 
focus of researches recently, since soft computing 
techniques are used for fault detection (classification 
techniques), forecasting of time-series data, inference, 
hypothesis testing, and modelling of causal relationships 
(regression techniques) in process engineering. As 
mankind use, store and maintain enormous size of 
information in databases (the amount of data used 
doubles almost every year) modelling techniques getting 
more and more important. This phenomenon implies the 
need of new generation computational techniques to 
support knowledge extraction from data sources. 

Historically the notion of finding useful patterns in 
data has been given a variety of names including data 
mining, knowledge extraction, information discovery, 
and data pattern processing. The term data mining has 
been mostly used by statisticians, data analysts, and the 
management information systems (MIS) communities. [1] 

The term knowledge discovery in databases (KDD) 
refers to the overall process of discovering knowledge 
from data, while data mining refers to a particular step 
of this process. Data mining is the application of 
specific algorithms for extracting patterns from data. 
The additional steps in the KDD process, such as data 
selection, data cleaning, incorporating appropriate prior 
knowledge, and proper interpretation of the results are 
essential to ensure that useful knowledge is derived 
form the data [2]. Soft computing techniques are one of 
the cornerstones of the KDD process. This paper gives a 
method how the techniques of soft computing can be 
combined to get interpretable and robust models for the 
KDD process. 

The meaning of soft computing was originally 
tailored in the early 1990s by Dr. Zadeh [3]. Soft 
computing refers to a collection of computational 
techniques in computer science, artificial intelligence, 
machine learning and some engineering disciplines, to 
solve two cardinal problems:  

● Learning from experimental data (examples, 
samples, measurements, records, patterns) by 
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neural networks and support vector based 
techniques 

● Embedding existing structured human knowledge 
(experience, expertise, heuristic) into fuzzy 
models [2] 

 
These approaches attempt to study, model, and 

analyze very complex phenomena: those for which 
more conventional methods have not yielded low cost, 
analytic, and complete solutions. Earlier computational 
approaches (hard computing) could model and precisely 
analyze only relatively simple systems.  

As more complex systems arising in biology, 
medicine, the humanities, management sciences, and 
similar fields often remained intractable to conventional 
mathematical and analytical methods. Where the hard 
computing schemes, which strive for exactness and full 
truth, fail to render the problem, soft computing 
techniques exploit the given tolerance of imprecision, 
partial truth, and uncertainty is inherent in human 
thinking and in real life problems, to deliver robust, 
efficient and optimal solutions and to further explore 
and capture the available design knowledge. 

Generally speaking, soft computing techniques 
resemble biological processes more closely than 
traditional techniques, which are largely based on formal 
logical systems, such as sentential logic and predicate 
logic, or rely heavily on computer-aided numerical 
analysis. 

Support vector based models and neural networks 
are one of the most commonly used soft computing 
techniques. However it should be pointed out that 
simplicity and complexity of these systems is a 
challenging task to perform. Neural networks, support 
vector machines are universal approximators of any 
multivariate function; they are widely-used to model 
highly nonlinear, unknown or partially known complex 
systems plants or processes. The identification of the 
proper structure of nonlinear neural networks (NNs) and 
Support Vector Based techniques (SVM, SVR) is a 
challenging task, since these black-box models are too 
complex and not interpretable. Complexity and 
interpretability issues are connected with each other: 
achieve the less complex more interpretable model with 
the best accuracy. 

Other problem is how a priori knowledge can be 
utilized and integrated into the black box modelling 
approach, and how a human expert can validate the 
identified black box model or more favourably, follow 
the identification process to interfere in it if it is needed 
(e.g. to avoid over parameterization) 

Neural Networks and Support Vector Machines are 
strong in feature selection and to achieve robust models 
and fuzzy logic helps to improve the interpretability of 
models. With the combination of these techniques 
accurate, but interpretable models can be achieved. 

This paper describes a three-step technique how to 
use reduction techniques on trained SVM and SVR 
models to acquire transparent, but accurate fuzzy rule 
based classifier and fuzzy regression models. The steps 
are the following: 
 

Step 1. - Reduced Set method 
The identification of the SVM/SVR model is followed 
by the application of the Reduced Set (RS) method to 
decrease the number of kernel functions. Originally, this 
method has been introduced by [4] to reduce the 
computational complexity of SV models.  
 
Step 2. - Similarity-based fuzzy set merging 
The Gaussian membership functions of the fuzzy rule-
based models are derived from the Gaussian kernel 
functions of the SV models. The interpretability of a 
fuzzy model highly depends on the distribution of the 
membership functions. Hence, the next reduction step is 
achieved by merging fuzzy sets based on a similarity 
measure. [5] 
 
Step3. - Rule-base simplification by orthogonal 
transformations 
Finally, an orthogonal least-squares method is used to 
reduce the number of rules and re-estimate the 
consequent parameters of the classifier. The application 
of orthogonal transforms for reducing the number of 
rules has received much attention in the recent literature 
[6, 7]. These methods evaluate the output contribution 
of the rules to obtain the order of importance. The less 
important rules are then removed according this ranking 
to further reduce the complexity and increase the 
transparency. 

This article organized as follows. Firstly basic notations 
of support vector machines and the connection between 
the fuzzy rule-based classifiers is described, later on the 
connection between support vector regression and fuzzy 
regression is introduced. After detailed description of 
the three-step reduction algorithm examples indicate the 
power and the usage of the described techniques either 
on classification and regression problems. 

Support vector machines for classification 

Formulation of the fuzzy rule-based classifier as a 
kernel machine 

SVM has been recently introduced for solving pattern 
recognition and function estimation problems. SVM is a 
nonlinear generalization of the Generalized Portrait 
algorithm developed in Russia in the 1960s. In its 
present form, the SVM was developed at AT&T Bell 
Laboratories by Vapnik and co-workers.[8] Due to this 
industrial context, SVM research has up to date had a 
sound orientation towards real-world applications. SVM 
learning has now evolved into an active area of 
research. Moreover, it is in the process of entering the 
standard methods toolbox of machine learning. The 
basic idea behind SVM is that with a kernel function 
k(xi, xj) which for all data pairs {x1, ... xNd} ⊂ χ × RNi  
give rise to positive matrices Kij := k(xi, xj). [9] Using K 
instead of a dot product in RNi corresponds to mapping 
the data into a possibly high dimensional space F, by a 
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usually nonlinear map φ : RNi → F and takes the dot 
product there  

k(zi, x) = (φ(zi), φ (x)) (1) 

The structure of the fuzzy rule-based classifier 

One widely used approach to solve non-fuzzy Nc-class 
pattern recognition problems is to consider the general 
problem as a collection of binary classification problems. 
Accordingly, Nc classifiers can be constructed, i.e. one 
for each class. The c-th classifier, c = 1 ... Nc, separates 
class c from the Nc other classes. This one-against-all 
method results in a hierarchical classifier structure that 
allows for a sequential model construction and evaluation 
procedure. Based on this the classifier consist of Nc 
fuzzy subsystems with a set of Takagi-Sugeno-type 
fuzzy rules [10] that describe the c-th class in the given 
data set as: 

Ri
c if x1 is c

iA1  and ... xn is c
inA  then c

i
c
iy δ=  (2) 

where Ri
c is the i-th rule in the c-th fuzzy rule-based 

classifier and NR
c denotes the number of rules. c

N
c
i i

AA K,1  
denote the antecedent fuzzy sets that define the operating 
region of rule in the Ni dimensional input space. The 
rule consequent δi

c is a crisp number. The connective is 
modelled by the product operator. Hence the degree of 
activation of the i-th rule is calculated as 
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The output of the classifier determined by the 
following decision function 
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where bc is a constant threshold. If yc = –1, then it is not 
an item in class c.  

The main principle of kernel-based support vector 
classifiers is the identification of a linear decision 
boundary in this high-dimensional feature-space. The 
link to the fuzzy model structure is the following: The 
fuzzy sets are represented in this paper by Gaussian 
membership functions 
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The degree of fulfilment βi(x) can be written in a more 
compact form by using the Gaussian kernels. This kernel 
interpretation of fuzzy systems shows that fuzzy models 

are effective in solving nonlinear problems because they 
map the original input space into a nonlinear feature 
space by using membership functions similar to the 
SVM that utilizes kernel functions for this purpose. 

Support vector machines for regression 

SVMs can also be applied to regression problems as 
described in the following paragraphs. 

Suppose we have the training data  
{(x1, y1) ... (xNd, yNd)} ⊂ χ × RNi, where χ denotes the 
space of input patterns. Our goal is to find function f(x) 
that has at most ε deviation from the actually obtained 
targets yi for all the training data. In other words we do 
not care about errors as long as they are less than ε, but 
will not accept any deviation larger than this [9]. The 
linear case is the following: 
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Sometimes however we want to allow some errors. 
This could be done by the introduction of an alternative 
loss function. The loss function must be modified to 
include a distance measure.  

 

 
Figure 1: Loss functions 

 
The loss function in Fig. 1(a) corresponds to the 

conventional least squares error criterion. The loss 
function in Fig. 1(b) is a Laplacian loss function that is 
less sensitive to outliers than the quadratic loss function. 
Huber proposed the loss function in Fig. 1(c) as a robust 
loss function that has optimal properties when the 
underlying distribution of the data is unknown. These 
three loss functions will produce no sparseness in the 
support vectors. To address this issue Vapnik proposed 
the loss function, also called ε-insensitive loss function 
in Fig. 1(d) as an approximation to Huber’s loss 
function that enables a sparse set of support vectors to 
be obtained [11]. The nonlinear SVR problems with the 
ε-insensitive loss function (Fig. 1(d)) is given by: 

a b 

c d 
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where α is the Lagrange multiplier (α* is the dual 
variable); the kernel function k; C > 0 represents the 
trade-off between the flatness of f and the deviation 
tolerance. We can rewrite the equation above to 
formulate the so called Support Vector expansion: 
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Formulation of the fuzzy regression model based on 
support vector regression 

The link between support vector based techniques and 
fuzzy models is established in the earlier sections through 
equations 1-6. To get a fuzzy-rule based regression 
model from the support vector regression model the 
following interpretation is needed: 
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where βi is the firing strength and δi is the rule consequent. 

Reduction of the number of fuzzy sets 

In the previous section, it has been shown how kernel-
based models with a given number of kernel functions 
NR, can be obtained. Because the number of the rules in 
the transformed fuzzy system is identical to the number 
of kernels, it is extremely important to get a moderate 
number of kernels in order to obtain a compact fuzzy 
rule-based model. From (6) it can be seen that the 
number of fuzzy sets in the identified model is Ns = NR · 
Ni. The interpretability of a fuzzy model highly depends 
on the distribution of these membership functions. With 
the simple use of (6), some of the membership functions 
may appear almost undistinguishable. Merging similar 
fuzzy sets reduces the number of linguistic terms used 
in the model and thereby increases the transparency of 
the model. This reduction is achieved by a rule-base 
simplification method [12, 13], based on a similarity 
measure S(Aij, Akj), i, k, = 1, ..., n; and i≠j. If S(Aij, Akj) = 1, 
then the two membership functions Aij and Akj are equal. 
S(Aij, Akj) becomes 0 when the membership functions 
are non-overlapping. During the rule-base simplification 

procedure similar fuzzy sets are merged when their 
similarity exceeds a user-defined threshold θ ∈ [0, 1]. 
The set-similarity measure can be based on the set-
theoretic operations of intersection and union [12]: 
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where |·| denotes the cardinality of a set, and the ∩ and ∪ 
operators represent the intersection and union, respectively, 
or it can be based on the distance of the two fuzzy sets. 
Here, the following expression was used to approximate 
the similarity between two Gaussian fuzzy sets [13]: 
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Reduction of the number of rules by orthogonal 
transforms 

By using the previously presented SV model identification 
and reduction techniques, the following fuzzy rule-based 
models have been identified. For classification: 
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For regression: 

( )
b

zx
y i

N

i

N

j

ijjR i

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
= ∑∏

= =

δ
σ1 1

2

2

2
exp  (14) 

Because the application of the RS method and the 
fuzzy set merging procedure the obtained membership 
functions only approximate the original feature  
space identified by the SV based model. Hence, the  
δ = [δ1, δ2, ..., δNR]T consequent parameters of the rules 
have to be re-identified to minimize the difference 
between the decision function of the support vector 
machine and the fuzzy model (13, 14): 
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where the matrix Rd NN ×∈= Rb,,bB

RN1 ][ K  containing 
the firing strength of all NR rules for all the input xi, 
where bj = [βj(x1), ..., βj(xNd)]

T. As the fuzzy rule-based 
model (13, 14) is linear in the parameters δ, (15) can be 
solved by a least-squares method 

δ = B+ ys (16) 

where B+ denotes the Moore-Penrose pseudo inverse of B. 
The application of orthogonal transforms for the 

above mentioned regression problem (15) for reducing 
the number of rules has received much attention in 
recent literature [14]. These methods evaluate the output 
contribution of the rules to obtain an importance ordering. 
For modelling purposes, the Orthogonal Least Squares 
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(OLS) is the most appropriate tool [7]. The OLS method 
transforms the columns of B into a set of orthogonal basis 
vectors in order to inspect the individual contribution of 
each rule. To do this, Gram-Schmidt orthogonalization 
of B = WA is used, where W is an orthogonal matrix 
WT W = I and A is an upper triangular matrix with unity 
diagonal elements. If wi denotes the i-th column of W 
and gi is the corresponding element of the OLS solution 
vector g = Aδ, the output variance ys

T y/Nd can be 

explained by the regressors d

N

i
i Ng

r

/
1

i
T
i ww∑

=

. Thus, the 

error reduction ratio, ρ, due to an individual rule i can be 
expressed as 

s
T
s

i
T
iu

i yy
wwg 2

=ρ  (17) 

This ratio offers a simple mean for ordering the 
rules, and can be easily used to select a subset of rules 
in a forward-regression manner. Evaluating only the 
approximation capabilities of the rules, the OLS method 
often assigns high importance to a set of redundant or 
correlated rules. To avoid this, in [7] some extension for 
the OLS method were proposed. 

In the previous sections it has been shown how an 
SV based model, that is structurally equivalent to a 
fuzzy model, can be identified. Unfortunately, this 
identification method cannot be used directly for the 
identification of interpretable fuzzy systems because the 
number of the support vectors is usually very large. 
Typical values are 40-60% of the number of training 
data which is in our approach equal to the number of 
rules in the fuzzy system. 

Therefore, there is a need for an interpretable 
approximation of the support vector expansion. For this 
purpose the three-step algorithm described will be used 
in the Examples section 

Examples 

Example for classification 

To show the power of the described technique is applied 
to the Wisconsin Breast Cancer data, which is a 
benchmark problem in the classification and pattern 
recognition literature. The data is divided into training 
and an evaluation subset that have similar size and class 
distributions (We used 342 cases for training and 341 
cases for testing the classifier). 

First, the advanced version of C4.5 was applied to 
obtain an estimate for the useful features. This method 
gave 36 misclassification for the problem (5,25 %). The 
constructed decision-tree model had 25 nodes and used 
mainly three inputs; x1, x2 and x6. 

Based on this pre-study, only the previous three 
inputs were applied to identify the SVM classifier with 
Nx = 71 support vectors. The application of this model 
resulted in 3 and 15 misclassifications on the training 
and testing data, respectively. 

This model has been reduced by the RS method, by 
which we tried to reduce the model by a factor of 10,  
NR = 8. By this step, the classification performance slightly 
decreased on the training set to 12 misclassifications, 
but the validation data showed a slightly better result 
with 14 misclassifications. Next, the reduced kernel-
classifier was transformed into a fuzzy system.  

Fig. 2 shows the membership functions that were 
obtained. The obtained model with eight rules is still not 
really well interpretable; however, some of the 
membership functions appear very similar and can 
probably be merged easily without loss in accuracy.  

 

 
Figure 2: Non-distinguishable membership functions 

obtained after the application of the RS method 
 

 
Figure 3: Interpretable membership functions of the 

reduced fuzzy model 
 

Table 1: Classification rates and model complexity for 
the constructed classifiers 

Method # Miss.
Train 

#Miss 
Test 

# Rules # Conditions

SVM 3 15 71 213 
RS method 12 14 8 24 
Merging 11 13 8 10 
OLS 14 16 2 4 
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The performance of the classifier slightly increased 
after this merging step (Table 1). Subsequently, using 
the OLS method, the rules were ordered according to 
there importance. Then, we reduced the number of rules 
one-by-one according the OLS ranking, till a major drop 
in the performance was observed. To our surprise, only 
two rules and four membership functions were necessary 
to have a good classification performance on this 
problem: 14 and 16 misclassification on the learning 
and validation data, respectively (Table 1, Fig. 3). 

The obtained rules are: 
R1. If x1 is Small and x2 is Small and x6 is Small then 

Class is Benign; 
R2. If x1 is High then Class is Malignant; 

where x1 is the clump thickness, x2 the uniformity of cell 
size, and x6 a measure for bare nuclei. 

Example for regression 

To demonstrate the potential of Support Vector Regression 
techniques two examples are introduced. Firstly a simple 
regression problem called Regress is solved. Regress is 
a simple dataset containing 51 samples (Fig. 4).  
 

 
Figure 4: The Regress dataset with model output, 

support vectors and the insensitive region. 
 

The SVR technique obtained Nx = 14. This model 
has been also reduced by the RS method, by which we 
tried to reduce the model to NR = 10. After doing the 
modelling steps described in the classification example 
we achieved the following results (described in Table 2) 
 

Table 2. SVR results on Regress data 

Method RMSE # Rules 
SVM  0,0840 14 
RS  0,0919 10 
OLS 0,2261 9 
Merging 0,2415 6 

 
The OLS reduction indicated, that reducing with one 

rule results the increase of modelling error at this 
example, for an interesting point we mention that using 
extreme reduction steps in this example (NR = 4, after 
OLS ranking NR = 2) gives also reasonable results 
(RMSE = 1.241). 

Identification of a Hammerstein system 

In this example, the support vector regression is used to 
approximate a Hammerstein system that consists of a 
series connection of a memory less nonlinearity, f, and 
linear dynamics, G, as shown in Fig. 5 where v 
represents the transformed input variable. 
 

 
Figure 5: Hammerstein system 

 
For transparent presentation, the Hammerstein system 

to be identified consists of a first-order linear part, 
y(k+1) = 0,9·y(k) + 0,1·v(k), and a static nonlinearity 
represented by a polynomial, v(k) = u(k)2. The 
identification data consists of 500 input-output data.  
A support vector regression model was identified with 
the efficiency summarized in Table 3. 
 
Table 3: SVR results on Hammerstein system 
identification 

Method RMSE # Rules 
SVM  0,0533 22 
RS 0,0604 15 
Applying OLS 0.0650 13 
Merging 0.0792 12 
 

 
Figure 5: Identified Hammerstein system support 

vectors and model output after reduction. 
 

As Fig. 5 and Table 3 conclude, support vector 
regression is able to give accurate model for Hammerstein 
system with, however the results are not interpretable. 
Hereby the three-step reduction algorithm is used to 
acquire interpretable fuzzy regression model.  

After applying the RS method we were able to reduce 
the number of support vectors to 15 without the loss of 
the modelling error, but the obtained results are still not 
interpretable as it can be seen on Fig. 6. Using further 
reduction with the second and third step of the algorithm 
OLS and fuzzy membership function merging finally 
results interpretable (Fig. 7) and accurate (Table 3) fuzzy 
model. 
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Figure 6: Non-distinguishable membership functions 

obtained after the application of the RS method 
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Figure 7: Interpretable membership functions of the 

reduced fuzzy model 

Conclusion 

It has been shown in a mathematical way that support 
vector based techniques and fuzzy rule-based models 
work in a similar manner as both models maps the input 
space of the problem into a feature space with the use of 
either nonlinear kernel or membership functions. The 
main difference between support vector based and fuzzy 
rule-based systems is that fuzzy systems have to fulfil 
two objectives simultaneously, i.e., they must provide a 
good modelling performance and must also be 
linguistically interpretable, which is not an issue for 
support vector systems. However, as the structure 
identification of fuzzy systems is a challenging task, the 
application of kernel-based methods for model 
initialization could be advantageous because of the high 
performance and the good generalization properties of 
these type of models. 

Accordingly, support vector-based initialization of 
fuzzy rule-based model is used in this paper. First, the 
initial fuzzy model is derived by means of the support 
vector learning algorithm. Then the support vector 
model is transformed into an initial fuzzy model that is 
subsequently reduced by means of the reduced set 
method, similarity-based fuzzy set merging, and 
orthogonal transform-based rule-reduction. Because 
these rule-base simplification steps do not utilize any 
nonlinear optimization tools, it is computationally cheap 
and easy to implement. 

The application of the proposed approach is shown 
for the Wisconsin Breast Cancer as a classification 
problem and Regress data and Hammerstein system 

identification as a regression problem. The obtained 
models are very compact but their accuracy is still 
adequate. Besides, it might be clear that still real progress 
can be made in the development of novel methods for 
feature selection. 

We intend this paper also as a case study for further 
developments in the direction of a combination-of-tools 
methodology for modelling and identification, aiming at 
models that perform well on multiple criteria, considering 
here different soft-computing tools, namely support 
vector machines and fuzzy techniques are combined to 
achieve a predefined trade-off between performance and 
transparency. 
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