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A new energy-based chaining criterion was introduced in dipolar systems based on an earlier article by the author,
in which the probability of chaining for adjacent particles in a new formula of magnetic susceptibility was used. The
probability of chaining and the magnitude of the energy criterion can be calculated from the Monte Carlo (MC) simulation
values of magnetic susceptibility. The energy criterion also depends on the dipole moment and the density. At high
densities, the energy criterion is well below 70−75%. In addition, it was confirmed by simulation results that the chain
length distribution follows a geometric distribution. How the probability of chaining depends on the energy criterion was
given empirically and two parameters were fitted to it.
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1. Introduction

According to the literature, the criterion of chaining in
dipolar systems is unclear. Usually, an energy criterion is
used to decide whether two adjacent particles form part
of a chain. The energy criterion defines the limit at a cer-
tain level of interaction energy between them, which is
usually 70 − 75% of the minimum pair interaction en-
ergy [1–4]. According to another definition, if the pair
interaction energy is negative and the two particles are
closer together than 1.3 in diameter unit, then chaining
occurs [5, 6]. The problem with this is that the minimum
pair interaction energy depends on the magnitude of the
dipole moment, so an identical amount of pair interaction
energy between two adjacent particles indicates chaining
in one case but not in the other. In another article, the
author examined [7] the probability density function of
pair interaction energies in a dipolar hard sphere (DHS)
system and found that no unit jump-like change in the
frequency of the pair interaction energy would justify the
introduction of a general criterion based on the pair in-
teraction energy. Furthermore, such a general definition
does not take into account the effect of density, while it
can be assumed that chaining occurs at different densities
and different energy levels of the same dipole moments.
Therefore, this study seeks to determine the magnitude
of the energy criterion from another source, that is, a real,
measurable, physical parameter. The physical parameter
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in this case is magnetic susceptibility.
In a previous article [8], the author stated that the

chain length distribution in dipolar fluids follows a ge-
ometric distribution. If the probability that two adjacent
particles form a chain is denoted by p, it can be deduced
that the chain length distribution is

gk = (1− p) pk−1, (1)

where k stands for the chain length. The particle size dis-
tribution, which yields the proportion of particles in ex-
actly k-long chains is

hk = (1− p)2kpk−1. (2)

The average chain length is derived from the properties
of the geometric distribution: 1/(1− p). Assuming that a
chain of length k behaves as if its dipole moment is km,
its initial magnetic susceptibility can be deduced (in c.g.s.
units) as

χ0 =
1 + p

1− p
χL

(
1 +

4π

3
χL

)
, (3)

where χL denotes Langevin susceptibility [9],

χL =
ρm2

3kBT
, (4)

ρ stands for the density, T represents the temperature, and
kB refers to the Boltzmann constant. In Eq. 3, the expres-
sion

χP = χL

(
1 +

4π

3
χL

)
(5)
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calculates the initial magnetic susceptibility from
Pshenichnikov’s theory [10]. Eq. 3 can be used to deter-
mine the value of p at a given density and dipole moment,
since χ0 can be determined from simulations and χP can
be calculated exactly from

p =
χ0 − χP

χ0 + χP
. (6)

If the occurrence of chaining is linked to an energy crite-
rion, it is clear that the value of p depends on the magni-
tude of the energy criterion. Thus, if the correct value of p
is known from Eq. 6, the magnitude of the correct energy
criterion can be obtained from the relationship p − Ulim.
The structure of the results is as follows: firstly, through
several examples, it is shown that for any energy crite-
rion, the number of chains follows a geometric distribu-
tion; secondly, the p values calculated from the magnetic
susceptibility values are given; thirdly, from simulations,
the Ulim values are determined that provide the desired
p value at a given density and dipole moment; finally, by
fitting, an empirical formula is derived to describe the re-
lationship p− Ulim.

2. Simulations and results

Monte Carlo simulations of DHS fluids were performed
using a canonical NVT ensemble. Boltzmann sampling
[11], periodic boundary conditions and the minimum-
image convention were applied. In order to take into ac-
count the long-range character of the dipolar interaction,
the reaction field method under periodic boundary con-
ditions of conduction was used. After 100, 000 equili-
bration periods, 1, 000, 000 production cycles were con-
ducted involving N = 1, 000 particles. The reduced den-
sity was calculated by ρ∗ = ρσ3 and the reduced dipole
moment by m∗ = m/

√
σ3kBT , where σ denotes the di-

ameter of the particles. The pair interaction energy be-
tween two particles in a DHS system is determined only
by the dipolar energy:

Udd
ij = −m

2

r3ij
[3 (m̂i · r̂ij) (m̂j · r̂ij)− (m̂i · m̂j)] ,

(7)
where the particles have dipole moments of strength m
of an orientation given by unit vector m̂, moreover, the
distance between the centers of the particles is denoted
by rij and r̂ij = rij/rij . The dots symbolize the scalar
product. The lowest and most favorable energy value was
determined by Udd

min = −2m2/σ3. The magnitude of the
energy criterion (u) was given in the usual way in propor-
tion to this: u = Udd/Udd

min.
To determine the chain length distribution (gk), the

number of chains of a given length was counted in each
cycle. This required a predefined energy criterion. Rear-
ranging Eq. 1 leads to the chain length distribution:

lg (gk) = lg (1− p) + (k − 1) lg (p) . (8)

Figure 1: The logarithm of the chain length distribution as
a function of chain length at six different dipole moments,
densities and energy criteria. According to Eq. 8, the value
of p (probability of chaining) is also derived from the gra-
dient of the fitted lines as well as the intercept of the ver-
tical axis.

From this, it can be seen that if the logarithm of the chain
length distribution is plotted as a function of k − 1, the
gradient of the fitted straight line yields the logarithm p,
while the logarithm of the vertical intercept gives 1 − p.
Since in each case the resulting lines are linear, it fol-
lows that the chain length distribution does indeed fol-
low a geometric distribution. Fig. 1 shows the simulation
results for the chain length distribution obtained for six
different combinations of dipole moments, densities and
energy criteria. It can be seen that the fitted lines are lin-
ear on the logarithmic scale in all cases. It is clear from
the inset graphs that the larger its gradient, the closer its
intercept is to zero. The p values shown in Fig. 1 were
derived from the gradient of the fitted lines.

Further results are summarized in Table 1. In the third
column of Table 1, using the terms mentioned in the In-
troduction (Section 1), the values of p are given. The val-
ues of χP can be precisely calculated from Eq. 5. The
values of χ0 are derived from the simulations. (For the
simulation results of χ0, reference [12] was used. The
missing χ0 data were supplemented with our own sim-
ulation results.)

This was followed by the determination of ulim, also
from our own simulations. According to Eq. 2, the num-
ber of particles that do not form a chain or, in other words,
which form single-element chains is h1 = (1− p)2.
Thus, in each step of the simulation, it was only nec-

Hungarian Journal of Industry and Chemistry



NEW CHAINING CRITERIA IN DIPOLAR FLUIDS BASED ON MONTE CARLO SIMULATIONS 57

Table 1: The probabilities of chaining (3rd column), the
values of the energy criterion (4th column) according to
the simulations and the values of the fitted curves (5th and
6th columns) according to Eq. 9

(m∗)2 ρ∗ p ulim A B

2 0.1 0.0135 0.74 0.203 2.902
2 0.2 0.0209 0.76 0.358 2.864
2 0.3 0.0316 0.75 0.492 2.863
2 0.4 0.0231 0.80 0.623 2.881
2 0.5 0.0254 0.80 0.751 2.893
2 0.6 0.0387 0.78 0.885 2.901
2 0.7 0.0523 0.77 1.022 2.895
2 0.8 0.1674 0.66 1.167 2.874
2 0.9 0.2641 0.62 1.307 2.821
3 0.1 0.0802 0.68 0.426 2.284
3 0.2 0.0951 0.71 0.607 2.291
3 0.3 0.0772 0.75 0.732 2.333
3 0.4 0.0721 0.77 0.839 2.388
3 0.5 0.0762 0.77 0.943 2.442
3 0.6 0.0840 0.76 1.048 2.498
3 0.7 0.1889 0.67 1.154 2.535
3 0.8 0.3788 0.57 1.270 2.560
3 0.9 0.6745 0.45 1.383 2.547
4 0.1 0.2183 0.67 0.761 1.801
4 0.2 0.1777 0.73 0.900 1.842
4 0.3 0.1278 0.77 0.975 1.900
4 0.4 0.1174 0.78 1.044 1.989
4 0.5 0.1169 0.78 1.107 2.069
4 0.6 0.1818 0.72 1.180 2.159
4 0.7 0.4016 0.59 1.258 2.237
4 0.8 0.6814 0.46 1.341 2.295

essary to count how many particles have the minimum
pair interaction energy (counted individually for the other
particles) greater than the examined energy criterion.
This greatly simplified the complexity of the simulations.
Therefore, the value of p belonging to the given energy
criterion was determined, and for each dipole moment
and density, a function was generated to create a relation-
ship between p and ulim. Of these, four are shown in Fig.
2. The dashed lines indicate the ulim values of the already
defined p values of these functions.

The fourth column of Table 1 shows the ulim values
for each dipole moment, density and value of p which
are also plotted in Fig. 3. (The uncertainty of the func-
tions shown in Fig. 3 stems from the uncertainty of the
magnetic susceptibilities. For dipole moments less than
(m∗)2 = 2, this new energy criterion cannot be examined
precisely because the uncertainty in the magnetic suscep-
tibility is too great.) It can be seen that the frequently
mentioned 70 − 75% criterion is more or less valid, al-
though it differs significantly from it at high densities.
Interestingly, the energy criterion is higher at medium
densities than at low densities. This may be because the

Figure 2: The probability of chaining as a function of the
value of the energy criterion at four different dipole mo-
ments and densities. The dashed lines show the true values
of p and thus ulim as well.

chains are so close to each other at medium densities that
they have an effect on each other, but do not at low den-
sities. It is true that at high densities this effect is even
stronger, but at the same time, the strength of the forces
acting on the chain also increases.

In the following, the relationships between the p −
ulim functions are specified by fitting. Four of these are
shown in Fig. 2. In Fig. 4, for each of the three dipole
moments examined, these functions are plotted at two
densities. Since the functions are close to zero around
ulim = 1, the cosine function seems to be a good choice
for describing the curves as follows:

p = AcosB
(π
2
ulim

)
(9)

Figure 3: The values of ulim as a function of the reduced
density at three different dipole moments.
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Figure 4: The probability of chaining as a function of the
energy criterion at three different dipole moments. Dashed
lines refer to low densities (ρ∗ = 0.1), solid lines refer
to high densities (ρ∗ = 0.8). The lines of intermediate
densities are between these two lines.

where A and B are constants and their magnitudes are
given in the fifth and sixth columns of Table 1. Fits were
made within the range ulim = 0.5−1. The absolute error
in the values of p is not greater than 0.01285 in all the
cases examined.

3. Conclusion

The main result of this article is shown in Fig. 3. A
well-explained energy-based chaining criterion resulting
from magnetic susceptibility was defined. From the sim-
ulated values of magnetic susceptibility, the probability
of chaining was calculated. From this, the magnitude of
the chaining criterion was derived using simulations as
well. Therefore, a well-explained theory was developed
to define the chaining energy criterion, which produced
different results for different values of density and dipole
moment in DHS systems. The criterion value of 70−75%
commonly given in the literature is only approximately
true at low densities (ρ∗ ≤ 0.3). At medium densities
(0.3 < ρ∗ < 0.6), the values are generally higher, while
at high densities (ρ∗ ≥ 0.6), they are much lower.
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