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Among bioelectrochemical systems, those referred to as microbial fuel cells (MFCs) are widely implemented for wastew-
ater management and simultaneous recovery of electrical energy. MFCs are fundamentally assisted by bacterial popu-
lations, mostly mixed cultures to be more exact that, after oxidizing the substrate, are capable of facilitating the passage
of electrons to an electron acceptor, usually the anode. However, certain undesired bacterial strains often colonize not
only the electrode but the membrane separator over time and cause severe biofouling. The membrane is an architectural
element of many MFCs and determines the efficiency of the system. In this paper, this issue is overviewed briefly and
some considerations concerning how to approach the problem are presented.
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1. Introduction

Bioelectrochemical systems, including Microbial Fuel
Cells (MFCs), are often installed with a physical sepa-
rator such as a membrane as illustrated in Fig. 1 [1].

The membrane, which separates the anode from the
cathode, should enable the adequate migration of ions
(in this case, cations such as protons) between the elec-
trodes to ensure the MFC continues to produce electricity
[2]. Furthermore, the membrane should function as a bar-
rier against the crossover effect of substances to avoid the
loss of the substrate (which normally is injected into the
anode chamber in order to feed the species of electroac-
tive bacteria shown in Table 1 living on a biofilm on the
electrically-conductive anode surface) and penetration of
dissolved oxygen from the aerated cathode chamber to
the anaerobic anode chamber [3].

In addition to these requirements which are associ-
ated with the physical and chemical properties of the
material, the membranes should be relatively affordable.
Another point that needs to be addressed is the stability
of the membrane, which can be influenced by the com-
plex chemical environment of the bulk phases (anolyte in
the anode chamber, catholyte in the cathode chamber) in
an MFC and microbiological phenomena [5]. Altogether,
these effects may cause fouling of the membrane during
its operation, moreover, when the underlying mechanism
is associated with the metabolism and/or growth of mi-
croorganisms, the term “biofouling” is more appropriate
[6]. In summary, various membranes can be evaluated
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Figure 1: Scheme of an MFC

and ranked based on the characteristics of the membrane
materials (typically but not exclusively fabricated from
polymers) and their observed behavior during MFC op-
eration which can be monitored by various electrochemi-
cal measurements, e.g., recording the cell voltage, as pre-
sented in Fig. 2.

2. Membranes and biofouling in MFCs -
The potential role of oxygen mass trans-
fer

In accordance with the previous section, the membrane
separator divides the anaerobic anode chamber from the
aerobic cathode chamber [7]. Therefore, it is reasonable
to assume that the actual microbial communities develop-
ing on the anode and the membrane have completely dif-
ferent structures and relationships with gaseous oxygen.
From the literature, it can be concluded with a good de-
gree of certainty that the electrochemically active bacteria
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Table 1: Electroactive species of bacteria and their oxygen tolerance [4]

Species Oxygen tolerance

E. coli

Shewanella oneidensis

facultatively anaerobic

facultatively anaerobic https://bacdive.dsmz.de/strain/4907

https://img. jgi.doe.gov/cgi-bin/m/main.cgi?section=
TaxonDetailé&page=taxonDetail&taxon_o0id=637000258

Geobacter sulfurreducens
Geobacter metallireducens
Desulfobulbus propionicus
Geothrix fermentans
Paracoccus pantotrophus

Rhodopseudomonas palustris DX-1

strict anaerobe https://bacdive.dsmz.de/strain/5792
strict anaerobe https://bacdive.dsmz.de/strain/5791
strict anaerobe https://bacdive.dsmz.de/strain/4004
strict anaerobe https://bacdive.dsmz.de/strain/17672
facultatively anaerobic https://bacdive.dsmz.de/strain/13703

strict anaerobe https://bacdive.dsmz.de/strain/1819

on the anode are either strict or facultative anaerobes as
shown in Table 1 [4]. However, a considerable knowledge
gap seems to exist concerning the populations attached to
the surface of the membrane and the occurrence of bio-
fouling. In contrast, it is reasonable to suppose that these
membrane-bound colonies and biofilms are more toler-
ant of dissolved oxygen due to the technically direct and
long-lasting contact with this substance. In general, the
oxygen flux across a membrane in MFCs is described by
the oxygen transfer coefficient which can be calculated

by [8,9] VoG -0
— |
ko = Atln |: CO :|

where ko denotes the oxygen transfer coefficient
(cm3/cm?s), V stands for the volume of liquid (cm?),
A represents the surface area of the membrane (cm?),
Cy refers to the saturation oxygen concentration
(mol/dm?), C is the actual oxygen concentration mea-
sured (mol/dm?®) and ¢ denotes the time of the measure-
ment (s); and

6]

D
ko =7 @)

where Do stands for the oxygen diffusion coefficient
(cm?/s) and L represents the thickness of the membrane
(cm).
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Figure 2: Schematic diagram of the MFC

Therefore, it is worth examining which strains col-
onize the membrane and how these mixed communi-
ties vary depending on ko. Even though some previ-
ous papers have demonstrated the use of various micro-
scopic imaging techniques based on visual observations
to study these biofouling layers on the surface of mem-
branes [10-12], qualitative and quantitative feedback to
highlight “what type of” and “how many” microbes can
coexist is scarce. As a result, experimental methodology
involving the apparatus of modern molecular biology, e.g.
DNA-based identification, should be encouraged and im-
plemented to answer such questions [13].

3. Conclusions

The capability of membranes to permeate dissolved oxy-
gen in microbial fuel cells is key. On the one hand, re-
duced oxygen transport membranes (OTMs) are likely to
maintain the typically less oxygen tolerant, electroactive
bacteria located on the surface of the anode in a good con-
dition. On the other hand, oxygen mass transfer through
the membrane is expected to affect the biofouling of the
separator and thus, how microbial communities respond
to changes in material properties, in particular ko, needs
to be understood. The assessment of membranes with
different values of ko should be carried out relative to
Nafion, which is by far the most broadly employed poly-
mer for benchmarking studies [14].
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