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One way of modelling certain kinds of time series is via the Yule-Walker equations. These are a set of (over-determined) 
linear equations for estimating the parameters in the models. The coefficients in these equations are estimates, obtained 
from the data, of the autocorrelations. In this paper two ways of solving the Yule-Walker equations are considered. The 
first is the well known method using the pseudo-inverse and the second uses the algebraic matrix Riccati equation. 
A number of numerical examples are used to illustrate and compare the two different approaches. 
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Introduction 

Determination of the autoregressive parameters 

ai,i = O,l,···,n, (1) 

in the stochastic process 

(2) 

where 

(3) 
i=o 

is investigated. 
In Eq.(2), y(t) denotes noisy data, w(t) is white 

noise and D(q-1
) is a polynomial containing the 

moving average parameters of the process. The 

expression q-1 in Eq.(2) is the unit delay operator 
defined by 

q -1 y(t) = y(t - 1). 

More extensive details and background material can 
be found in Ref. [1]. Here the Yule-Walker method is 
used to estimate the parameters ai by two different 

techniques. Firstly the direct method involving the 
inverse or pseudo-inverse of the autocorrelation matrix, 
depending on the invertability or otherwise of the latter, 
is used. 

Secondly an algorithm is used which is based on the 
result that a total least squares solution to the Yule­
Walker equations can be found by solving an 
appropriate matrix Riccati equation. 

A number of numerical examples from Ref. [1] 
serve to illustrate the two techniques and to compare the 
results with a more sophisticated stochastic analysis 
given in Ref. [1]. A simil'!r investigation has been 
carried out in Ref. [5] but the TSL solutions to the Yule~ 
Walker equation are obtained by singular value 
decomposition and simulated time series are used. 

The Yule-Walker Method 

For a pure (i.e., D(q-1 )= 1) AR process the Yule­

Walker equations are (Ref.[ 1 ], Ref. [2]), 
r rli Tn li ... rn-I a I 

'i To ···~z-2 a'2 rJ 

= (5) 

rm rm-1 ••• rm-(n-1) an r., 
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Table 1 Numerical results for Series C 

nxm lxl lxlO lx50 lxlOO TENT FINAL 
LS -.805 -.814 -.847 -.881 -.81 -.82 

TLS -.805 -.815 -.854 -.892 -.81 -.82 

Table 2 Numerical results for Series D 

nxm lxl lxlO lx50 lxlOO TENT FINAL 
LS -.861 -.860 -.908 -.908 -.86 -.87 

TLS -.861 -.860 -.916 -.912 -.86 -.87 

ck is an estimate of the relevant unknown 

autocovariance given by 

ck =_!_ ~(Yt-Y y Yt+k- y), k=O,l,2,··· 
N t=! A 

and N is the number of observations in the time series. 
In case m > n then the linear equations (Eq.(S)) are 
overdetermined and the pseudo-inverse has to be used. 

Numerical Investigation 

Four different autoregressive time series taken from 
Ref. [1] have been used as numerical illustrations. 

~ample I Series C 

This is a time series, with N = 226 observations, of 
temperatures in a chemical process taken at one minute 
intervals. A model with two possible sets of parameters, 
one tentative (tent) the other more finalized (final) is 
given in Ref. (1). These are the following: 

Tent: Vy(t)- 0.81Vy(t- I) = w(t) , 

Final: Vy(t)-0.82Vy(t-l)=w(t). 

The results of the numerical investigation are given in 
Table 1. 

The table entries are solutions (rounded to 3 decimal 
places) of n x m Yule~ Walker equations by the least 
squares method (LS) and by the total least squares 
method (TLS). The former is found using the pseudo­
inverse matrix and the latter using Algorithm l of [3]. 
(A convenient check on the LS solution is also obtained 
by using Al as explained in [4]). For this example a 
closer analysis shows that m = 22 is about the best 
number of equations to use and TLS is slightly better 
than LS. 

Example 2 Series D 

The tentative and final models for this example are: 

Tent: y(t)- 0.86y(t- l) = '"1t) 

Table 3 Numerical results for Series E. Model I 

nxm 2x2 2x10 2x50 2x99 TENT FINAL 
LS -1.318 -1.398 -1.475 -1.515 -1.32 -1.42 

.634 .704 .724 .770 .63 .73 

TLS -1.318 -1.432 -1.549 -1.586 -1.32 -1.42 
.634 .733 .790 .834 .63 .73 

Table 4 Numerical results for Series E. Model2 

nxm 3x3 3x10 3x50 3x99 TENT FINAL 
LS -1.369 -1.821 -2.104 -2.155 -1.37 -1.57 

0.740 1.378 1.775 1.849 0.74 1.02 
-0.0805 -0.367 -0.571 -0.599 -0.08 -0.21 

TLS -1.369 -1.975 -2.363 -2.412 -1.37 -1.57 
0.740 1.609 2.188 2.277 0.74 1.02 

-0.0805 -0.485 -0.783 -0.825 -0.08 -0.21 

Final: y(t)-0.87y(t-l)=w(t). 

There are N = 310 observations and the data is a set 
of chemical process viscosity readings taken at hourly 
intervals. The numerical results are shown in Table 2. 

For this example m = 19 appears to be the best 
number of equations to take with TLS getting nearer to -
0.87 than LS with the same number of equations. 

Example 3 Series E 

For this, much studied example, the data shows the 
number of sunspots that occurred in each year from 
1770 to 1869; so there are 100 observations. Two 
different sets of parameter values are given for each of 
two different suggested models: 

Modell 

Tent: y(t) -1.32y(t -1) + 0.63y(t- 2) = w(t) , 

Final: y(t) -1.42y(t -1) + 0.73y(t- 2) = w(t) , 

Model2 

y(t) -1.37y(t -1) + 
Tent: , 

+0.72y(t-2)-0.08y(t-3) = w(t) 

Final: y(t) -1.57 y(t -1) + . 
+ 1.02y(t-2)- 0.21Y(t- 3) = w(t) 

T abies 3 and 4 give the numerical results in this case. 
For the first model m = 9 or 10 give good 
approximations to the parameter values given in [ 1] and 
for the second model m = 7 or 8 seem to be reasonable 
values. 



Table 5 Numerical results for Series F 

nxm 2x2 2x10 2x50 2x69 TENT FINAL 
LS 0.32 0.319 0.331 0.365 0.32 0.34 

-0.18 -0.170 -0.178 -0.149 -0.18 -0.19 

TLS 0.32 0.323 0.385 0.451 0.32 0.34 
-0.18 -0.168 -0.157 -0.104 -0.18 -0.19 

Example 4 Series F 

Here the time series F consists of 70 readings of the 
yields from a batch chemical process and the suggested 
model is: 

Tent y(t) + 0.32y(t-1) -0.18y(t- 2) = w(t) 

Final: y(t) + 0.34y(t -1)- 0.19y(T- 2) = w(t) 

The results of the calculations are shown in Table 5. 
For this example the second parameter increases with m 
so the best m for this parameter is 2! For the first 
parameter, however, m = 25 gives a value of -0.338 
with 0.169 for the second parameter. 

"Portmanteau" lack-of-fit test 

A test for model adequacy, which depends on the first 
K auto-correlations of the residuals rk ( Q) , is proposed 

in [1]. The statistic 

K 

Q = n(n+2) L.rk2(t1)/(n-k) (6) 
k==l 

is computed and referred to a table of the chi-squared 
distribution. In Eq.(6) n = N -d where d is the degree 
of differencing required to approximate to stationarity in 
the time series being analysed. 

For series D, with K = 25 , there are 24 degrees of 
freedom and Eq.(6) becomes 

25 

Q =310x31iL,rk\t1)/(310-k) , 
k=I 

which is readily computed by MATHEMATICA, for 
example, as follows: 

Subtract the mean of series D (9.13258) from each 
of its elements and can the resulting series, augmented 
by a back-forecasted value as its initial value, s(D). 

Compute the series of residuals. 

s(D) =Table [Part [s(D),z1- $ Part[s(D),i-l],{i,2,310}] 

with $ the estimate of the model parameter. Compute 

Q as follows: 

s(D)=Table[Part[s(D),z1-0.0024394l,{i,l,310}] 

(0.00243941 is the mean of the previous s(D)). 

ro(a) = Sum[Part[s(D),i]* Part[s(D),i],{i,l,310}] 
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g = Table[Sum[Part[s(D),i] * 

* Part[s(D),i+ j],{i,l,310- j}],{j,l,l}]lr,,(a) 

(This produces a table of l auto-correlations of 
residuals) 

Q = 310*312Sum[Part[g,if2/(310-i),{i,l,25}]. 

Taking $ = -0.87 (the final value from [1]) gives 

Q=l1.5 
Now when m x n = 19xl the parameter <I> obtained 

by LS is 0.868034 and by TLS it is 0.868979. The 

corresponding values of Q are 11.44 and 1 1.47. 
Similarly when m x n =20xl the values for <I> are 
0.870544 and 0.87177 with corresponding values of 

11.51 and 11.55 for Q. 
Thus TLS gets closer to the value of Q given in [1] 

with fewer linear equations. 

Conclusion 

A numerical study has shown that the TLS method is 
slightly superior to the LS method for finding the 
unknown parameters in models of auto~regressive time 
series. 

The techniques used can be extended to estimation 
of moving average parameters [2]. Special purpose 
methods for solving the Yule-Walker equation are also 
discussed in [2]. 

Finally, when Algorithm 1 is used on its own, and 
not in comparison with other methods as it is here. the 
computations should be stopped as soon as some test of 
lack of fit (such as the portmanteau test from [1]) is 
adequately satisfied. 

ai 
A,D 
q·l 

y{t) 
w(t) 
n 
m 
y 

N 
d 

SYMBOLS 

autoregressive parameters 
polynomials in q-1 

unit delay operator 
noisy data 
white noise 
number of autoregressive parameters 
number of Yule-Walker equations 
mean ofy(t) 

number of observations in time series 
degree of differencing for stationarity 

Q statistic used in Portmanteau test 
i, j, k running incides 
l number of autocorrelations taken in Portmanteau 

test. 
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