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ABSTRACT 

This paper deals with a continuous beam resting on elastic support with elastic modulus derived from a 

random process. Governing equations of the stochastic higher-order finite element method of the free 

vibration of the continuous beam were derived from Hamilton's principle. The random process of elastic 

modulus was discretized by averaging random variables in each element. A solution for the stochastic 

eigenvalue problem for the free vibration of the continuous beam was obtained by using the perturbation 

technique, in conjunction with the finite element method. Spectral representation was used to generate a 

random process and employ the Monte Carlo simulation. A good agreement was obtained between the 

results of the first-order perturbation technique and the Monte Carlo simulation. 

Keywords-SFEM; free vibration; continuous beam; random field 

I. INTRODUCTION  

Beams and frames are used in many engineering 
applications, such as civil engineering [1-3], bridge 
engineering, and aerospace engineering. The importance of 
dynamic problems has been the subject of many research 
studies [4-9]. In civil engineering, the structures resting on 
foundations are very important [10-15]. Considering 
continuous beams resting on elastic foundations, elastic support 

is a common problem. Many practical problems are idealized 
to continuous beams resting on elastic foundations, elastic 
support such as rails in the railway, and strip foundations on the 
soil. The nonlinear dynamic of plates on a viscoelastic Winkler 
foundation under harmonic moving load is solved using the 
multiple time scales method [16]. Subway dynamic problem 
under loads from the ground and underground transport is 
modeled using finite element software in [17]. The dynamic of 
sandwich beams with a viscoelastic core subjected to a moving 
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load is investigated using the finite element method in [18]. 
The natural frequencies of non-uniform axially functionally 
graded beams were investigated using the Chebyshev 
collocation method in [19].  

For stochastic problems, material properties, loads, and 
geometrical dimensions are assumed to be stochastic. 
Stochastic dynamics problems have been the subject of many 
studies [20-24]. There are several types of Stochastic Finite 
Element Methods (SFEM), e.g. the probabilistic finite element 
method [25, 26], the Spectral SFEMs (SSFEMs) using 
Karhunen–Loève expansion series [27], the homogeneous 
chaos expansion method [28] for the representation of random 
fields, and the SFEMs that use weighed integration techniques 
[29, 30]. The effect of randomness in elastic modulus on the 
stochastic free vibration of non-uniform beams is investigated 
by using an SFEM in [31]. Authors in [32] dealt with the 
stochastic dynamics of an infinite double beam resting on a 
random elastic foundation subjected to a moving load. Authors 
in [33] investigated a beam on a random foundation using the 
SFEM. The stochastic buckling of non-uniform columns was 
analyzed using stochastic finite elements in [34].  

In the present work, the SFEM is used in the study of the 
free vibration of a continuous beam resting on an elastic 
support. The results are compared with the ones of the Monte 
Carlo simulation.   

II. STOCHASTIC FINITE ELEMENT FORMULATION 

FOR CONTINUOUS BEAM RESTING ON ELASTIC 

SUPPORT 

Consider a continuous beam resting on elastic support with 
length L as shown in Figure 1. 

 

 
Fig. 1.  Continuous beam resting on elastic support. 

The displacement fields using Reddy's beam theory [35] 
present as formulation are: 
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The strain formulation is calculated from (1) as follows: 

2

23 3

2

2

0

2

2

2

0

2

4 4

3 3

4 4
1 1

x

xz

w

x x

w

h x

z z
z

h h

z z

h




 

 
  

 

   
   




 

  


 






  (2) 

The displacement fields are approximated by an 
interpolation functions as follows: 
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The interpolation functions are defined as follows: 
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The displacement vector of finite element is: 
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The strain energy of beam element is given as:  
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The potential energy of elastic support is defined as: 
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One dimensional homogeneous random field of elastic 
modulus is assumed: 

   0 1 EE x E r x        (8) 

where  Er x  is one dimensional homogeneous random field 

with zero mean. The autocorrelation function of the random 
field is: 
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where σ, d, are the coefficient of variation and the correlation 
distance for the random field of an elastic modulus, and the 

relative distance vector ξ is defined as j i  x x . 

The randomness in the elastic modulus of the beam element 
is illustrated in Figure 2. 
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The random field of elastic modulus in the element is 
approximated by averaging random variables ri at n points in 
the element: 
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Fig. 2.  Beam element with randomness in elastic modulus. 

The stochastic stiffness matrix of the element is: 
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The stiffness matrix of the structures consists of the 
stiffness matrix of the beam element and the stiffness of the 
elastic foundation: 
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The free vibration equation is: 
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The eigenvalue of the free vibration is 2  . The 

stiffness matrix, the eigenvector, and the eigenvalue are 
expanded to Taylor series as: 
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and by substituting the series expressions in (6) into (5): 
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Equation (16) is solved by comparing the terms of the 
random variables to obtain the solution: 
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The first-order approximation of the variance of the 
eigenvalues is: 
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The variability of response COV of the eigenvalue is 
defined as: 

 
 

Var
COV

E




     (20) 

III. NUMERICAL EXAMPLES   

In this section, a continuous beam on 5 elastic supports, as 
shown in Figure 1, is investigated. The geometrical and 
material parameters of the beam are: length L=10m, height 
h=0.6m, mean of Young’s modulus E=30×10

5
MPa, coefficient 

of variation of a random field of elastic modulus σ=0.1, and 
mass density ρ=2400kg/m

3
. To valid the proposed approach, it 

is compared with Monte Carlo simulation. The random field of 
stiffness of the elastic modulus is generated using the spectral 
representation method [36, 37]: 
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where u denotes the upper cut-off frequency beyond with the 

power spectral density function ( )ff nS  of the random field of 

the stiffness of the elastic modulus.  

The sample value of random field  Er x  is substituted to 

(11) and the stiffness matrix in (12) is deterministic. The free 
vibration equation (14) is repeatedly solved 10000 times to get 
the eigenvalue. Figure 3 shows the first and second mode 
shapes with samples of 3 cases of stiffness of elastic support 

6 7 810 ,  10 ,  10 N/msK  . It clearly shows that the first mode 

represents a symmetric mode shape and the second mode 
represents an antisymmetric mode shape. The mode shapes on 
Figure 3 clearly show the effect of the stiffness of support on 
mode shapes.  

The effect of the correlation distance d of the random field 
on the variability of the eigenvalue is shown in Figure 4, where 
the results of the proposed formulation were compared with 
those of the Monte Carlo simulation using 10,000 samples with 
two cases of stiffness of elastic support, i.e. 10

7
 and 10

8
N/m. 

As seen in Figure 4, the COV varies depending on the 
correlation distance and the coefficient of stiffness of the elastic 
support. In all other cases, the obtained COV has a small value 
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of the assumed standard deviation of the random field of elastic 
modulus. Also, the result on Figure 4 shows the good 
agreement between the proposed approach and Monte Carlo 
simulation. 

 

(a) 

 

(b) 

 

Fig. 3.  Mode shapes. (a) First mode, (b) second mode. 

(a) 

 

(b) 

 

Fig. 4.  Coefficient of variation of the eigenvalue. (a) First mode, (b) 

second mode. 

Figure 5 illustrates the statistical probabilistic distribution 
of the eigenvalues of the first 2 modes obtained from Monte 
Carlo simulation corresponding with the stiffness of elastic 
support Ks =10

7
N/m and two cases of correlation distance 

d=0.01 and d=0.1. On Figure 5, it is shown clearly that with 
smaller correlation distance, the histogram is quite scattered, 
whereas when the correlation distance is larger, the histogram 
is close to the normal distribution. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 5.  Probabilistic distribution of the eigenvalue. (a) first mode with 

d=0.01, (b) first mode with d=0.1, (c) second mode with d=0.01, (d) second 

mode with d=0.1. 

IV. CONCLUSIONS 

In this paper, the stochastic finite element method was 
employed to investigate the response variability of the 
eigenvalue of the free vibration of a continuous beam on elastic 
support. The free vibration equation used higher order beam 
theory to establish finite element formulas. The first-order 
perturbation solution exhibits a good agreement with Monte 
Carlo simulation. The response variability of eigenvalues, 
given in terms of the coefficient of variation, is smaller of the 
input standard deviation of the random process of the elastic 
modulus of the beam.   
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