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Abstract-Hand gesture recognition has attracted the attention of 

many scientists, because of its high applicability in fields such as 
sign language expression and human machine interaction. Many 

approaches have been deployed to detect and recognize hand 

gestures, like wearable devices, image information, and/or a 

combination of sensors and computer vision. However, the 

method of using wearable sensors brings much higher accuracy 

and is less affected by occlusion, lighting conditions, and complex 

background. Existing solutions separately utilize sensor 
information and/or only use sensor information processing and 

decision-making algorithms over conventional threshold 

comparison algorithms and do not analyze data or utilize 

machine learning algorithms. In this paper, a multi-modal 

solution is proposed that combines information for measuring the 

curvature of the fingers and sensors for measuring angular 

velocity and acceleration. The provided information from the 

sensors is normalized and analyzed and various fusion strategies 

are used. Then, the most suitable algorithm for these sensor-

based multiple modalities is proposed. The proposed system also 

analyzes the differences between gestures and actions that are 
almost similar but in fact, they are just normal moving gestures. 

Keywords-hand glove; acceleration sensor; hand gesture 

recognition; flex sensor; human-machine interaction 

I. INTRODUCTION  

Hand gestures are one of the most natural ways of 
interaction between people (e.g. sign language [1-6, 24]) or 
Human Computer Interaction–HCI [7-9]. Conveying messages 
in sign language through hand gestures has attracted the 
attention of many researchers and technology developers. As a 
consequence, many hand gesture recognition approaches have 
been proposed, such as using the change of radar waves when 
the user changes the state of the hand [10-11, 25], utilizing 
image information [12-14], or sensors physically attached to 
the hand [15-17]. The radar-based method [10] is easy and 
convenient for end-users because of independent equipment but 
it is dramatically affected by environmental noises and the 
number of antennas [27]. There are many moving objects in the 
normal environment that can also cause changes in feedback 
waves such as movement of other people, or other body parts. 
For the image-based approach [12], hand gesture recognition 
systems often face many challenges such as high time cost for 

hand detection and hand recognition, effects of illumination, 
occlusion, complex background conditions, etc. The hand 
mounted sensor-based method [15], although limited due to 
device dependence that has much higher accuracy compared to 
other methods and especially it face to many criteria when the 
actual control system requires high accuracy. Thus, this 
solution is preferred in many special cases. 

Hand-mounted sensors were applied to measure the change 
in the hand shapes and hand movements that were quite 
efficient because of their accuracy and real-time response. 
Many solutions have been proposed, such as the electronic 
gloves [17-18]. These gloves have integrated flex sensors, 
mounted on the fingers, to collect the hand’s curvature 
changing. However, this solution only measures the change in 
the flexure of the fingers, but it cannot obtain the movement of 
the hand. In [19-20], the authors proposed a method to attach 
the sensors on the hand for receiving velocity and angular 
acceleration. This method achieves the alternation of hand 
movement, but it is not possible to obtain the changes of hand 
shapes. In [21-23], the authors combined both curvature and 
velocity sensors, but the classification of hand gesture 
categories was performed by the conventional comparison 
structures with simple instruction sets of microcontrollers (e.g. 
ARV, 8051 with compare and check condition instructions), 
without evaluation or survey changing of parameters of sensors 
or machine learning algorithms. Quantitative evaluations were 
not implemented to compare the defined activities with normal 
human activities. 

In this paper, a new solution is proposed, one that combines 
both hand shape and hand movement sensors with various 
fusion strategies of features. The obtained results have success 
rates of up to 99.87% for the stable hand gesture dataset and 
97.59% when both mobile and immobile hand gesture datasets 
are considered. These results are higher than the 97.4% and 
86.3% for seen and unseen users of 12 gestures in [28] that fed 
the data of finger’s curvatures to a convolution neural network. 
There are no published hand gesture datasets based on mounted 
sensors and the published ones do not provide both hand’s 
curvatures and position at the same time. So, in this research, 
we collected two new hand gesture databases, one with 
stationary hand and one with moving hand. 
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Fig. 1.  Proposed framework for hand gesture recognition. 

The data flows will be fed into classifiers with various 
fusion strategies of machine learning techniques to find the 
most optimal and suitable classification solution. 

II. PROPOSED METHOD 

Our proposed framework for hand gesture recognition is 
illustrated in Figure 1. In this research, multiple modalities of 
hand �� ∈ �1, ��, � 	 3 corresponding to 	� ∈ ��, 
, ��� are 
captured by two streams:  

• Finger’s curvature: five flex sensors are used to present the 
curvature variation of fingers. 

• Hand’s motion tracking and angle: sensor MPU6050 is 
integrated by 3-axis MEMS of gyroscope and 3-axis 
MEMS of accelerometer.  

All features are processed and synchronized by an MCU 
(Microcontroller Unit) and are transferred to a PC. Finally, 
various classification strategies were used, either single or 
multi-modalities. The cascade steps in our proposed framework 
will be presented in detail at the following Sections. 

A. Hardware Design for Multiple features of the Hand Glove  

The detailed hardware design of the electronic glove is 
illustrated in Figure 2. Five flex sensors are permanently 
mounted along the fingers of the glove to collect the curvature 
based on the change of the corresponding resistance value. The 
resistors' data are preprocessed to convert into voltage value 
before conversion from analog to digital with a 10-bit ADC 
(Analog to Digital Converter) resolution, corresponding to a 
range of values from 0 to 1023. The values of flex sensors from 
the thumb to the little finger are denoted by ��  to �� 
����, ��, ��, ��, ���/��1,2,3,4,5�  corresponding to the 
curvature data of the five fingers. At the same time, the values 
of the 3-axis MEMS gyroscope and 3-axis MEMS 
accelerometer of the MPU6050 sensor were collected. The 
resolution of ADCs is 16 bits with a range from 0 to 65535, 
denoted by ��� , ��, ���/���, �, �� and (
�, 
� ,
�)/G��, �, ��. 
After the MCU collects the two data streams (flex sensors and 

MPU sensor) at the same time, all data are packaged and sent 
to the PC via the USB port according to the UART standard.  

 

 
Fig. 2.  Harware design of the hand glove. 

In addition, each time, the information of the hand gesture 
is transferred by a feature vector which is composed by eleven 
elements in total: A ��, �, �� , G ��, �, �� , and F(1,2,3,4,5), 
respectively. This feature is presented in detail in (1) and will 
be utilized in various strategies in detail in the next section: 

�� ! 	 ����, ���	, … , ��#�, �$ 	 11)  
	 ����,�, ��; 
��, �, ��; ��1,2,3,4,5��     (1) 
		 &��, �� , ��, 
�, 
� , 
�, �� , �� , ��, �� , ��'  

B. Hand Gesture Dataset 

In this paper, twelve hand postures are used, as illustrated in 
Figure 3. Each hand gesture is captured when the end-user is 
immobile or in movement. In practice, the system will 
recognize the hand gestures at any time and any place, i.e. hand 
morphologies during normal human activities that could have 
similar characteristics to the previously defined dataset. In 
addition, the feature of hand shape is only based on the 
curvature of the fingers that are collected by the five flex 
sensors. It is apparent that the accelerometer sensors and 
velocity sensors provide useful information about the 
movement and the direction of the hand’s movement.  
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Fig. 3.  The twelve hand postures of our dataset. 

Figure 4 illustrates hand tracking with three accelerator 
parameters A��, �, �� and three velocity features G��, �, �� of 
four hand gestures in two cases: (1) the end-user raises the 
hand in front of his/her body and performs a gesture (blue, 
white, violet and grey colors in Figure 4) and (2) the end-user 
implements the same hand shape but hand and body are 
moving (green, yellow, red and orange colors in Figure 4). It is 
clear that feature A(x,y,z) or feature G(x,y,z) of the same hand 
gesture represent the hand’s movement. It could effectively 
separate between immobile hand mobility hands while they do 
not have meaning for stable gestures. 

 

 
(a) 

 
(b) 

Fig. 4.  (a) A(x,y,z) and G(x,y,z) elements of the same hand gesture. 

In practice, the users are usually immobile when they want 
to control the device and often put their hands in front of their 
body. Meanwhile, the end-user’s hand shapes exist at both 
stable and moving situations. Therefore, we collected 12 
gestures as shown in Figure 3 when the hand is in front of the 
user's face, when the hand is immobile and during normal 

movement. Each category will be separately labeled by 
()*� 
(gesture of class k, hand is frontal of body and stable) and 
()*� 
(gesture of class k, hand is at any position and movement). We 
divided the data into two datasets named HandGlove1 and 

HandGlove2. HandGlove1 is composed by �
()*���+ ∈
�1, ,�, , 	 12�  and HandGlove2 by �
()*�; 
()*���+ ∈ �1, ,�, 
 , 	 12�. This means that HandGlove2 dataset has a duplicated 
number of categories up to K = 24 classes. Each gesture was 
collected three times and each time consists of about 200 

samples. A total of 15 adults �-)(./�0 ∈ �1, 1�, 1 	 15�� , 

including 7 females and 8 males were invited to collect our 
dataset at different days and at various times of the day. These 
databases were normalized and classifiers were used. 

C. Data Processing  

As described above, the data collected from the flex sensors 
are denoted by F(1,2,3,4,5) and have a value range of 0 to 
1023. The data from the MPU6050 sensors include A��, �, �� 
and G��, �, �� have a range of values from 0 to 65535. A 
sensor component has a different value range and 11 

components must be processed to obtain the same range. Each 

characteristic component �� !
2 		of the 12 gestures �
()*�� and/or 

�
()*�; 
()*���+ ∈ �1, ,�, , 	 12� of 15 collectors 
 �-)(./�0 ∈ �1, 1�, 1 	 15�� is normalized. Firstly, the maximum 
value �� !_45�

2 	 and the smallest value �� !_426
2 	 can be 

determined:  

�� !_45�
2 	 $7� 8�� !2 	9:	7��	;
()* ; -)(./<= �+ ∈ �1, ,��; �0 ∈ �1, 1��	    (2)	

�� !_426
2 	 $>? 8�� !2 	9:	7��	;
()* ; -)(./<= �+ ∈ �1, ,��; �0 ∈ �1, 1��	    (3) 

Each component ��_6@A2  will be recalculated as (4): 

�� !_6@A2 	 BCDEF GBCDE_HFI
F

BCDE_HJK
F GBCDE_HFI

F     (4) 

As a result, the feature vector could be presented by: 

�� ! 		��� !_6@A� , �� !_6@A� 	, … ,�� !_6@A�� � . Figure 6 illustrates 
the t-SNE (Distributed Stochastic Neighbor Embedding) for all 

the 12 gestures. Figure 6(a) uses [ �� !_6@AL ; … , �� !_6@A�� � 
elements, Figure 6(b) utilizes [ �� !_6@A� ; … , �� !_6@A�� � , and 
Figure 6(c) utilizes [�� !_6@A� ; … , �� !_6@A�� �. This Figure shows 
that, if only using the curvature feature from the flex sensors, 
the data distribution of the gestures is not segregated than using 
combinations of the motion features. The composition of 6 
motion features enables gesture types to be separated into more 
distinct spatial domains. This result is only qualitative but not 
quantitative. These normalized features will be put into 
classifiers with single patterns and combined features as 
described in Section III.D. 

D. Hand Gesture Classification 

Multi-modal data stream is presented above with F, A, and 
G which are combined using different fusion techniques. In this 
research, three fusion techniques are investigated: late fusion, 
early fusion, and Multiple Kernel Learning (MKL) [2]. In the 
following, we will briefly survey these methods that are 
utilized in the classification block of Figure 1. 

1) Early Fusion 

For early fusion, all normalized feature vectors of the 3 
modalities are concatenated into a final feature vector as 
presented in (5): 

�M 	 &��_6@A
� , ��_6@A

� 	, … ,��_6@A# 	'    (5) 
Then, the feature vector �M  is used as an input of a final 

multiple SVM classifier to predict the hand gesture label. 

2) Late Fusion 

For late fusion, each modality is used with multiple SVM 

classifiers NOP#
Q  with 	�	 ∈ �1, ���� 	 3� . The outputs of the 

classification step are the score vectors 	RQ 	 �)�Q , )�Q ,… , )SQ � . 
Next, the maximum operator for these score vectors RQ  is 
applied to obtain the final score vector as presented in (6): 

R 	 �)�, )� , … , )S � 	 OTUOVUOW
� 	[!T

TU!TVU!TW
� , !V

TU!VVU!WW
� , … , !X

TU!XVU!XW
� �	 (6) 

Then, the final decision is obtained as illustrated in (7): 

Y()Z[.(	�7\(� 	 7.Y]7�*∈��,S��)*�    (7) 



Engineering, Technology & Applied Science Research Vol. 12, No. 3, 2022, 8628-8633 8631 
 

www.etasr.com Doan & Nguyen: Fusion Machine Learning Strategies for Multi-modal Sensor-based Hand Gesture … 

 

3) Multiple Kernel Learning 

MKL is an algorithm that combines a set of base kernels 
that could represent different similarity measures of different 
sources of data. As a result, each feature vector from the 

�^_ 	��	 ∈ �1, ���	modality utilizes a kernel function to compute 
the corresponding kernel matrix as shown in (8):  

,(.?(�S` 	 )>]>�7.>Z��;�� !a ,�� !� <, ��� !a ,�� !B �, ;�� !B , �� !� <�    (8) 
where b ∈ �1,c�, �c 	 3�.		Then, kernel matrices ,(.?(�S`  are 
used to combine for ,(.?(�	factor as presented in (9): 

,(.?(� 	 :[?ef;g,(.?(�,b h`i�P |f<    (9) 
where :[?e  denotes the function form. The combination 
coefficient k sees that the values are bound to the predefined 
rules or are optimized by the learning process of MKL [1, 2]. In 
this research, EasyMKL [1] with a binary margin maximization 
MKL algorithm is chosen which uses the convex summation 
function. The coefficients µ are restricted to be non-negative 
and sum to 1. A final kernel machine classifier will decide the 
label based on the combined kernel matrix ,(.?(� by a SVM 
classifier. 

III. EXPRIMENTIAL RESULTS 

In this paper, two datasets (HandGlove1 and HandGlove2) 
were utilized. The "leave-one-subject-out cross-validation" 
protocol is followed [3]. This means that, we took samples 
from one subject for testing and samples from the remaining 
subjects for training. Then we compute the average accuracy of 
every experiment. 

A. Single Modality for Hand Gesture Recognition 

In this section, we used HandGlove1 dataset in separating 
the following data types: Five components are the finger 
curvature sensors F(1,2,3,4,5), 3 components measure the 
angle of the hand A(x,y,z), and 3 components show the angular 
velocity G(x,y,z). Each type is firstly normalized. It is then put 
into the SVM classifier. The classification results on each 
modality are presented in Table I. Table I shows that the 
finger’s curvatures of the hand gesture dataset (Figure 3) 
obtained the highest recognition result (92.15%) while A(x,y,z) 
cue has the lowest at only 36.48%. Although the result of the 
G(x,y,z) modality is higher than the cue modality, but it still is 
ineffective for the defined dataset with 42.76%. This result 
shows that each data type gives low results, not suitable to 
control in practice.  

TABLE I.  SINGLE MODALITY FOR HAND GESTURE RECOGNITION 

ACCURACY (%) WITH SVM CLASSIFIER 

Modality Accuracy (%) 

A(x,y,z) 36.48 

G(x,y,z) 42.76 

F(1,2,3,4,5) 92.15 

 

B. Hand Gesture Recognition on Various Fusion Strategies 

In this part, we will investigate different strategies (early 
fusion, late fusion, and MKL) on the three streams. Evaluations 
are conducted on HandGlove1 dataset. The results are shown in 
Figure 5.  

 
Fig. 5.  Hand gesture recognition on various fusion strategies. 

 
Fig. 6.  T-SNE of 12 gestrures with various modalities. 

Figure 5 shows that:  

• KML obtains the highest accuracy at 94.58%, 90.18%, 
97.31%, and 99.87% with combination of A and F, A and 
G, G and G, and A+G+F respectively. The late fusion 
method reached the lowest accuracies on all data 
combinations (around 75% and the smallest at 46.17% for 
A+G modality). We can see that early fusion is quite simple 
while its results are lower than KML's. The late fusion 
method requires many classifiers but its accuracy is far 
smaller than KML's. Therefore, the KML solution will be 
utilized in the rest of the testing.  

• Combinations of the 3 modalities are the highest on all 
classifiers and account for 97.69%, 86.02% and 99.87% for 
early fusion, late fusion, and KML respectively. These 
results can be explained through Figure 6 that shows the 
distribution of data using the t-SNE method [26]. When G 
is used, the hand gesture classes distribute in the overlap 
domains. When F and A are combined as shown in Figure 
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6(b) or F and G as illustrated in Figure 6(c) the distribution 
of the categories has improved but the separation is not 
clear enough. In Figure 6(d), A, G, and F are utilized and 
the data distribution domains of the 12 hand gestures are 
completely separated. 

• Association of the three modalities accounts for slightly 
higher results in HandGlove1 dataset because the gestures 
in this dataset have negligible displacement. The hand 
rotations are almost the same and the hand is raised in front 
of the body. However, the system is trained by HandGlove1 
dataset, and then this trained model is deployed in real 
application. As a result, the online system has many 
mistakes. To see the effectiveness of A and G modalities, 
we will be evaluated in the below Section IV.C. 

C. Distinction between Command Action and Normal 

Gestures 

In this section, the KML fusion strategy will be used for 
testing on the HandGlove2 dataset. All gestures belonging to 
the group 
()*

�  are labeled with labels from 13 to 24. The 
recognition accuracy is considered only with gestures with 
labels from 1 to 12. These gestures are defined and expected to 
be correctly recognized by the system. The user raises his/her 
hand in front of the face and the state of the hand is stationary. 
Only the hand shape changes according to the specified gesture 
means. In this test, a combination of different modalities will 
be used, such as: A and F, G and F, and A, G, and F. The 
evaluation results are shown in Figure 7. 

 

 

Fig. 7.  Efficient of modalities combination for hand gesture recognition 
accuracy (%) in a real environment. 

In HandGlove1 dataset, the recognition results of the ways 
of combining data have not a big gap from 92.15% to 99.87%. 
Hand gestures are distinguished with other hand postures. In 
addition, end-user’s hand and body are immobile so that the 
curvature of the fingers could provide enough cues of hand 
shapes in this dataset, so, the recognition results are quite good. 
However, in HandGlove2 database, the recognition accuracy is 
low when the 5 flex sensors are utilized. This is because of for 
the same changing shapes, i.e. the same five F elements, one of 
them moves like normal hand movement (different A and G 
elements). Gestures 1 to 12 have the same hand shape with 
corresponding gestures 13 to 24 (Figure 8). Therefore, using 
only the curvatures of the fingers does not give enough 
information to distinguish between a control operation and a 
normal operation as shown in Figure 8. For example, gesture 1 

(red color) and gesture 13 (slow brown color) in Figure 8 have 
the same hand shape but hand gesture 1 is immobile while 
gesture 13 is in movement. Distributions of these gestures 
overlap in Figure 8(a), but are reparative in Figure 8(b). Thus, 
there is a big gap between single modal (56.72% with F) and 
multi-modal (97.59% with A, G, and F) in the second row of 
Figure 7. 

In HandGlove2 dataset, combining F and A or F and G 
showed a significant improvement in accuracy, increasing up to 
33% and 36% respectively (Figure 7). Especially, the 
coherency of the 3 components (A, G, and F) obtained the 
highest recognition accuracy, which was increased up to 
97.59% in this dataset. The proposed framework could 
apparently distinguish between the 12 hand gestures in both 
immobile and mobile states. The efficiency of the system 
dramatically increased and practical applications can now be 
deployed. 

 

 
Fig. 8.  T-sne of 24 gestrures with various modalities. 

IV. CONCLUSION AND DISCUSSION 

This paper presents a comparative analysis of recent fusion 
strategies for static hand gesture recognition on three 
modalities of an electronics hand glove. Among the evaluated 
fusion strategies (late fusion, early fusion, and KML), KML 
performed better, achieving the highest recognition accuracy. 
The evaluation results on two datasets show great interest in 
combining multi-modalities (5 curvature fingers from flex 
sensors, 3-axis gyroscope and 3-axis accelerometer from 
MPU6050 sensor) to increase accuracy. In most cases, 
multimodal KML models can achieve an accuracy rate above 
97%. This performance is remarkable and promises a feasible 
solution for deploying gesture-based applications in practice. 
Finally, it was found that there is a notable gap in recognition 
accuracy between the same hand shapes but different normal 
hand movements. The last remark opens up new research 
directions that require further investigation on data 
combination with image information, using deep convolutional 
neural networks, and online learning. Once these bottlenecks 
are resolved, the development of a gesture-based interface in 
practical applications is straightforward. 
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