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Abstract—In this paper, we propose a method of transforming a 

real-valued matrix to a ternary matrix with controllable sparsity. 
The sparsity of quantized weight matrices can be controlled by 

adjusting the threshold during the training and quantizing 

process. A 3-layer ternary neural network was trained with the 

MNIST dataset using the proposed adjustable dynamic threshold. 

The sparsity of the quantized weight matrices varied from 0.1 to 

0.6 and the obtained recognition rate reduced from 91% to 88%. 

The sparse weight matrices were compressed by the compressed 

sparse row format to speed up the ternary neural network, which 

can be deployed on low-power embedded systems, such as the 

Raspberry Pi 3 board. The ternary neural network with the 

sparsity of quantized weight matrices of 0.1 is 4.24 times faster 

than the ternary neural network without compressing weight 

matrices. The ternary neural network is faster as the sparsity of 
quantized weight matrices increases. When the sparsity of the 

quantized weight matrices is as high as 0.6, the recognition rate 

degrades by 3%, however, the speed is 9.35 times the ternary 

neural network's without compressing quantized weight matrices. 

Ternary neural network work with compressed sparse matrices 
is feasible for low-cost, low-power embedded systems. 

Keywords—ternary neural network; deep learning; image 

recognition; quantized neural network.   

I. INTRODUCTION  

Deep Neural Networks (DNNs) have achieved impressive 
success in the field of computer vision [1-4]. Modelling the 
human brain using DNNs requires a massive number of 
computation tasks including addition and multiplication. 
Therefore, it is often challenging to implement DNNs on low-
power edge devices such as mobile embedded systems [5]. 
Edge computing has been attracted much attention recently 
because it has a lot of advantages in terms of cost and security. 
To run DNNs on low-power edge devices, many optimized 
DNN architectures have been proposed. To increase the 
accuracy, DNNs can be trained on a GPU and then the trained 
models are loaded to low-cost embedded systems, such as the 
Raspberry Pi board [6-8]. Another method is to add the 
external accelerating Neural Computer Stick (NCS) to the 
Raspberry Pi when deploying the DNNs on it [9]. These 

deployments of DNNs on the low-cost Raspberry Pi board are 
based on the full-precision weight, which dramatically 
consumes power and processing time. The memory usage and 
inference speed of such models have not been considered. An 
alternative technique to enhance the performance of DNNs 
deployed on low-cost computers is to quantize the parameters 
to speed up the DNNs' run-time and reduce memory 
consumption [10-17]. Traditionally, 32-bit floating-point is 
used for numerical formats in DNNs, which has a big impact 
on speed and memory usage. Reducing the number of bits 
representing DNN parameters is considered for low-power 
edge devices. In particular, using numerical formats with lower 
precision than 32-bit floating point yields numerous benefits. 
16-bit floating-point and 8-bit floating-point are commonly 
used for lightweight DNNs without sacrificing accuracy [5]. 
Substantial research efforts to use lower precision such as 
ternary and binary representation of parameters (synaptic 
weights) have been invested to make possible the implement of 
DNNs on low-power edge devices [10-17]. 

A binary neural network constrains synaptic weights to the 
binary space of {-1,1}. In a binary neural network, the 
conventional 32-bit floating-point multipliers are replaced by 
the logical XNOR operations to speed up running time and 
reduce memory consumption. However, the accuracy of binary 
neural networks is lower than full-precision neural networks 
because only one bit is used to represent the synaptic weight 
and the activation function. To increase the accuracy, ternary 
neural networks that constraint the synaptic weights to the 
ternary space {-1, 0, 1} have been proposed [14-16]. When 
training a ternary neural network, the weights are updated using 
real-valued variables and are then constrained to -1, 0, or +1 
using the ternarization function [14-16]. The ternazization with 
dynamic threshold yields faster convergence in the training 
phase and higher accuracy in the inference phase [18]. 
However, the dynamic threshold, which is based on the mean 
and standard deviation of real-valued variables, produces an 
unpredicted number of -1, 0, and +1 bits in the synaptic weight 
matrices. In this work, we adjust the threshold during the 
quantization process to obtain sparse weight matrices with 
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different sparsity (number of zero values), and measure the 
accuracy of the ternary neural network with different sparsity 
of quantized weight matrices. It turned out that we can increase 
the sparsity quantized weight matrices with small loss in 
accuracy. The sparse weight matrices are then compressed to 
reduce the size and speed up the matrix multiplication, which 
consumes most time in the forward pass of DNNs. 

II. TERNARY NEURAL NETWORK WITH COMPRESSED 

WEIGHT MATRICES FOR LOW-POWER EMBEDDED SYSTEMS  

Figure 1 shows the concept of a ternary neural network in 
which the weights are constrained to -1, 0, and 1 [18, 19].  
x1 - xn are binary inputs and h1 - hm are the neuron outputs of 
the hidden layer, which are also quantized to binary. y1 - yk are 
the neuron outputs for k classes. In Figure 1, Wh is the input-
to-hidden layer weight matrix and Wo is the hidden-to-output 
layer weight matrix. Here, the weight matrices are composed of 
-1, 0, and 1 representing the inhibitory, contactless, and 
excitatory synapses.  

 

 
Fig. 1.  The conceptual diagram of a ternary neural network, where the 

synaptic weights are -1, 0, or +1 representing inhibitory, contactless, and 
excitatory synapses.  

Ternary neural network represents weights using fewer bits 
than a full-precision neural network. The ternary weights can 
be represented by lower bit signed integer values or 
complementary binary arrays [19]. The amount of required 
memory for the model’s parameters of ternary neural networks 
is substantially less than that of the full-precision neural 
networks. The ternary neural network is trained using the 
traditional gradient descent method that updates the weights in 
the direction of the maximum decrease of the loss function. 
The weights are updated with real values and transformed to 
the binary values using the following quantization function 
[18]: 

r threshold

t threshold r threshold

r threshold

-1, if w <=-w

w = 0,  if -w <w <w

+1,  if w >=w







    (1) 

where wthreshold is the threshold weight, wr is the real-valued 
weight, and wt is the ternary weight of -1, 0, or +1. By using 
(1), the ternary weights are obtained by comparing the real-
valued weights with a positive threshold value. It can be 
observed that for every training iteration, the distributions of 
synaptic weights are different. Therefore, a dynamic threshold 
is selected using the Gaussian distribution proposed in our 
previous work [18]. The proposed method attempts to equalize 
the number of negative weights, zero weights, and positive 
weights. The quantization function with dynamic threshold is 
presented in (2) [18]: 

r

t r

r

-1,  if w <=µ-0.44σ

w = 0,  if µ-0.44σ<w <µ+0.44σ

+1,  if w >=µ+0.44σ







    (2) 

where µ and σ are respectively the mean and standard deviation 
of real valued synaptic weights. According to the Gaussian 
distribution, if the threshold is selected to be µ-0.44σ and 
µ+0.44σ, we obtain 33%, 34%, and 33% as the number of 
negative synaptic weights, zero-value synaptic weights, and 
positive synaptic weights respectively [18]. The percentages of 
negative, zero, and positive synaptic weights are maintained 
constantly every epoch of the training process because the 
threshold is adapted to the distribution of synaptic weights.  

Increasing the number of zero values in quantized weight 
matrices leads to higher sparsity. The sparse matrix can be 
compressed to reduce the memory consumption and the matrix 
multiplication time. In this work, we control the percentage of 
zeros by modifying the quantization function as follows: 

r

t r

r

-1,  if w <=µ-λσ

w = 0,  if µ-λσ<w <µ+λσ

+1,  if w >=µ+λσ







    (3) 

where λ is a variable that controls the threshold. In (3), if we 
increase λ, the number of zeros will increase. The higher the 
value of λ, the higher the sparseness of the quantized weight 
matrices. The sparse weight matrices can be compressed to 
reduce the memory usage and speed up the forward pass. The 
sparse weight matrices are compressed using the Compressed 
Sparse Row (CSR) format, which potentially leads to a 
substantial decrease in computational time and speeds-up the 
neural networks [20-23].  

 

 
Fig. 2.  An example of CSR. (a) Sparse matrix with high sparsity and (b) 

CSR representation of the sparse matrix 
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Figure 2 shows an example of the CSR format when 
representing a sparse matrix. Figure 2(a) shows a sparse matrix 
and its CSR representation is shown in Figure 2(b). CSR is a 
popular and general-purpose sparse matrix representation. The 
matrix is stored using three arrays, which are the row pointer 
array, the column indices array, and the data values array [23]. 
The pointer array stores the pointers to the beginning of every 
row, the column indices stores the corresponding column 
indices, and the data value array stores the nonzero values, as 
illustrated in Figure 2. The row pointer array begins with the 
value of 0, for the first row, the first, the 2nd, and the 3rd column 
of the sparse matrix have the values of respectively 1, 1, and -1, 
presented in the column indices array and data values in Figure 
2(b). The second row of the sparse matrix is represented by the 
second element in the row pointer array, which has the value of 
3. The value of -1 in the second row is represented by the 
column indices of 1 and the data value of -1, as shown in 
Figure 2(b). The sparse matrix in Figure 2(a) can be 
compressed by using the arrays in Figure 2(b). By doing this, 
the memory and time consumption for matrix multiplication 
are significantly reduced.     

During the forward-pass propagation, the neuron’s output is 
calculated by using matrix multiplication. Assume that  
x = [x1, x2, ..., xn] is the 1×n input vector, Wh is the m×n input-
to-hidden layer weight matrix, h = [h1, h2, ..., hm] is the output 
vector of the hidden layer, the forward-pass propagation 
performs the below computational task: 

h = σ(xW�
�)    (4) 

Equation (4) consumes more power and time as we increase 
the size of the input vector and the weight matrix. If the weight 
matrix is sparse and represented by CSR, we can replace the 
matrix multiplication in (4) with the Sparse matrix-vector 
multiplication, which is faster than traditional matrix 
multiplication [20]. In this work, we represent weight matrices 
using sparse matrices and compress them with CSR. The sparse 
matrix multiplication is performed by using the Scientific 
Python (Scipy) library to save computational time [24].  

III. EXPERIMENTAL RESULTS 

A three-layer ternary neural network was deployed on a low-
power Raspberry Pi board for the application of image 
recognition. The network was trained and tested on the MNIST 
dataset for recognizing images of handwritten digits [25]. The 
input layer has 784 units corresponding to 784 image pixels. 
The inputs are binary. The hidden layer has 512 neurons and 
the output layer has 10 neurons for recognizing 10 digits. The 
network is trained using Stochastic Gradient Descent with the 
Momentum method. The real-valued weights are transformed 
to binary weights using the proposed adjustable dynamic 
threshold. By adjusting the variable in (3), we achieved the 
recognition rate with varied sparsity of quantized weight 
matrices, as presented in Figure 3. In Figure 3, the sparsity of 
the quantized weight matrix is varied from 0.1 to 0.6 by 
adjusting λ, as explained above. The recognition rate slightly 
degraded as the sparsity of the quantized weight matrix 
increased. When the sparsity of the quantized weight matrices 
was as small as 0.1, the ternary neural network produced a 
recognition rate of 91%. When the sparsity of the quantized 

weight matrix increased to 0.6, the recognition rate was 
reduced by 3%. The results indicated that increasing the 
sparsity of the quantized weight matrix led to a small decrease 
in accuracy. In this work, the training is performed on edge 
device, Raspberry Pi board, and the network is simply 
constituted of an input layer, a hidden layer, and an output 
layer with the weights quantized to -1, 0, and +1. The ternary 
weights are obtained by the proposed dynamic threshold 
quantization with controllable output sparsity. The accuracy of 
the ternary neural network is slightly lower than the full-
precision neural network, however it has the advantages of less 
memory usage and faster inference time. More importantly, the 
proposed ternary neural network is promising for low-cost edge 
devices. Sparse quantized weight matrices were represented 
using the CSR format, which significantly enhances the 
inference processing. With a fixed-size sparse quantized weight 
matrix, the higher sparsity results in the smaller size CSR 
representation and faster CSR matrix multiplication.  

 

 
Fig. 3.  Recognition rate with varied sparsity of quantized weight matrices. 

 
Fig. 4.  Inference time with varied sparsity of quantized weight matrices. 

Figure 4 shows the inference time of the 3-layer ternary 
neural network deployed on a low-power embedded system, 
Raspberry Pi 3, for an input image with varied sparsity of 
quantized weight matrices. The inference time is the forward-
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pass propagation time required to propagate one image from 
the input layer to the output layer, which is also the time for 
predicting one image. For the uncompressed quantized weight 
matrices, the forward pass propagation takes 87.28ms, and such 
inference time does not depend on the sparsity of quantized 
weight matrices. Figure 4 shows the inference time with varied 
sparsity of quantized weight matrices when the quantized 
weight matrices were compressed with CSR. The matrix 
multiplication is performed using the Scientific Python library 
for the input vector and CSR arrays. For a sparsity of 0.1, the 
forward-pass propagation takes 20.606ms, which 4.24 times 
faster than the ternary neural network with uncompressed 
quantized weight matrices. More interestingly, when the 
sparsity increases, the array size of CSR representation for 
sparse matrices is more reduced, resulting in faster 
multiplication. For a sparsity of 0.6, the inference time of the 
compressed-weight-matrix ternary neural network is 9.335ms, 
which is 9.35 times faster than the original ternary neural 
network. 

Quantizing the weight matrix is one of the techniques that 
are suitable for deploying DNNs on low-cost computers. 
Quantized neural networks can save the required memory for 
storing the model’s parameters and internal parameters, and 
implementing faster than full-precision neural networks for 
speech and image recognition, as presented in [19]. In this 
work, we propose a method to control the sparsity of quantized 
weight matrices during the training process and compress the 
weight matrices using CSR representation. The high sparsity of 
quantized weight matrices sacrifices little accuracy, but speeds 
up the ternary neural network by a factor that reaches 9.35. The 
proposed idea is deployed on a simple 3-layer neural network 
for hand-written character recognition. Utilizing high sparsity 
quantized weight matrices and CSR makes the ternary neural 
network possible to implement on low-cost, low-power 
embedded systems such as general-purpose Raspberry Pi 3 
board.  

IV. CONCLUSION 

In this paper, we proposed a quantization function that can 
control the sparsity of quantized weight matrices for ternary 
neural networks. The sparsity of quantized weight matrices of 
the ternary network varied from 0.1 to 0.6 when the ternary 
neural network was trained with the MNIST dataset. The 
obtained recognition rate varied from 91% to 88%. The sparse 
weight matrices were compressed using the CSR format. The 
ternary neural network with compressed weight matrices was 
4.24 times and 9.35 times faster than the original ternary neural 
network, when the sparsity of the quantized weight matrices 
was 0.1 and 0.6 respectively. Ternary neural networks with 
compressed quantized weight matrices are suitable for 
implementation on low-power embedded systems for the 
application of image recognition. 
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