
Engineering, Technology and Applied Science Research Vol. 11, No. 3, 2021, 7088-7093 7088

www.etasr.com Vu et al.: Recurrent Neural Network-based Path Planning for an Excavator Arm under Varying …

Recurrent Neural Network-based Path Planning for an

Excavator Arm under Varying Environment

Nga Thi-Thuy Vu

School of Electrical Engineering
Hanoi University of Science and Technology

Hanoi, Vietnam

nga.vuthithuy@hust.edu.vn

Nam Phuong Tran

School of Electrical Engineering
Hanoi University of Science and Technology

Hanoi, Vietnam

tranphuongnam3098@gmail.com

Nam Hoai Nguyen

School of Electrical Engineering

Hanoi University of Science and Technology

Hanoi, Vietnam
nam.nguyenhoai@hust.edu.vn

Abstract-This paper proposes an algorithm to generate the

reference trajectory based on recurrent neural networks for an
excavator arm working in a dynamic environment. Firstly, the

dynamic of the plant which includes the tracking controller, the

arm, and the pile is appropriated by a recurrent neural network.

Next, the recurrent neural network combined with a Model

Reference Adaptive Controller (MRAC) is used to calculate the

reference trajectory for the system. In this paper, the generated

trajectory is changed depending on the variation of the pile to

maximize the dug weight. This algorithm is simple but effective

because it only needs information about the weight at each duty

cycle of the excavator. The efficiency of the overall system is

verified through simulations. The results show that the proposed

scheme gives a good performance, i.e. the dug weight always

remains at the desired value (nominal load) as the pile changes its
shape during working time.

Keywords-adaptive controller; excavator arm;neural network;

path planning; uncertainties

I. INTRODUCTION

The automatic control of an excavator system is a major
issue in the field of excavator research [1, 2]. By unmanned
operation, the excavator systems not only keep the workers safe
but also increase efficiency. However, in order to finish the
task without an operator, the trajectory should be designed
carefully. Thus, many researches on creating the trajectory for
the general manipulator and the excavator have been published.
In [3, 4], the 3D trajectory is built by using the information
from sensors, cameras, and scanners. The advantage of these
types of feedback signals is that they can track the change of
the working environment. However, if the working
environment lacks light or is dusty, the reliability of the
obtained imagines can be reduced. In [5], a laser scanner is
used to get the shape of the pile. From this information, the
model of the pile is built and divided into small layers. The
local path is designed according to these layers before creating

the global path. In [6], the integrated physics-based model is
presented for a mobile excavator. In this work, the current
position of the excavator arm is returned to the control system
to predict the trajectory for the next cycle. In [7, 8], a neural
network is used to calculate the optimal trajectory for the
excavator arm. However, these trajectories only work well in
static environments. In [9], excavation trajectories are
generated using the velocity and the acceleration of each
hydraulic cylinder. The generated trajectories are optimal and
stable but the velocity and the acceleration are difficult to
measure. In [10], with the purpose of optimizing the efficiency
for a semi-automated or fully automated excavator system, the
trajectory is classified into 4 categories based on the location
and the angle of the bucket. From these 4 trajectory types, the
operator or the automatic controller will make a suitable
decision as the environment changes. The problem of optimal
working time and torque motion of the excavator in
consideration with the boundary of the actuator’s ability is the
role of path planning [11]. In this scheme, the trajectory is
planned based on B-spline technique using information about
soil parameters and system dynamics.

Neural networks are known as a good way of dealing with
path planning problems. In [12-14], neural networks are used to
generate collision-free trajectories for robots. In [12], the robot
works in a dynamic environment with U-shaped and varying
obstacles. The reference trajectory of the robot is generated by
using a topologically organized neural network. In this
network, the dynamic of each neuron is characterized by a
shunting equation. The same neural network topology is used
in [13] for a multirobot system with moving obstacles. The
trajectory planning for the manipulator robot based on a neural
network model of the harmonic function is introduced in [14].
Trajectories are built based on neural networks to optimize the
jerk in [15] or the working time in [16]. Neural networks are
used in the field of path planning with many different purposes
[17-19].

Corresponding author: Nga Thi-Thuy Vu

Engineering, Technology and Applied Science Research Vol. 11, No. 3, 2021, 7088-7093 7089

www.etasr.com Vu et al.: Recurrent Neural Network-based Path Planning for an Excavator Arm under Varying …

In this paper, an algorithm based on neural networks is
proposed for an excavator arm working in a dynamic
environment. The dynamic model of the inner loop which
includes the tracking controller, the excavator arm, and the pile
is approximated by a neural network. A second, Recurrent
Neural Network (RNN) combined with the Model Reference
Adaptive Controller (MRAC) algorithm is used to calculate the
reference trajectory for the system. By this combination, the
calculated trajectory can be adjusted after each duty cycle to
adapt with the change of the pile and the dug weight remains
around the nominal value despite the reduction of the pile. The
effectiveness of the overall system is verified through
simulations. The contributions of the proposed algorithm are
concluded as:

• It can work in a dynamic environment, something that is
restricted in [8].

• The dug weight remains in an acceptable range during the
digging process although the material is reducing.

The proposed scheme uses only the feedback signal from
the weight sensor to generate the path. This is more reliable
than cameras or scanners [3-5] and it is easier to measure than
velocity and acceleration [9].

II. PROBLEM DESCRIPTION

In order to maximize the efficiency of the excavator, one of
the requirements is that during the digging process, the dug
mass at each time must be maintained in a given acceptable
range. However, the shape of the pile is changing while the
excavator is digging up the material. Therefore, if the trajectory
of the excavator remains the same and the dug stack declines
over each period of the process, the requirement will not be
guaranteed. Hence, the excavator driver has to observe the
excavated weight and trajectories in the previous digging to
choose an appropriate trajectory next time with an expectation
that the mass in the next period will be acceptable. A trajectory
generator based on this structure is proposed to replace the
excavator driver, which will completely automate the digging
process. Before going to solve the described problem, the
following assumptions are made:

• The pile lies above the ground and has a triangular shape as
shown in Figure 1.

• After a digging cycle, the material on the top of the pile will
lie down and fill in the space that was taken, so the pile will
maintain the triangular shape with a different slope.

• The dug weight in each period is limited by the volume of
the bucket.

• The trajectory in each period is represented by a set of
parameters.

The task of the trajectory generator is to observe the weight
and the trajectory’s parameters in the previous period in order
to adjust suitably the trajectory parameters in the next one. In
order to execute the algorithm, the excavator’s trajectory has a
parabolic shape, however, in fact, the excavator’s trajectory
often has a more complex shape due to many practical
conditions. The parabolic shape is described by:

()
2

4

x h
y K

p

−
− = (1)

where K, h and p are scalars. In this work, we have just change
the parameter h, which corresponds to the coordinate of the
vertex on the horizontal axis. Therefore, each trajectory will be
represented by a single value h.

Fig. 1. The shape of the hypothetical pile model.

The block diagram of the overall system is illustrated in
Figure 2. It can be seen that the desired trajectory which is
generated by the module is denoted as q*. The desired
trajectory is a reference for the excavator controller, and the
output of the excavator is q, which affects the dug weight. If
the tracking controller has a good performance, the equivalent
model of the controller and the excavator can be viewed as a
dynamic model which has a static gain of one. In this paper, the
equivalent model is considered as a first order system as
follows:

1
()

5 1
G s

s
=

+
 (2)

This means that the trajectory error reduces exponentially
over time.

Fig. 2. Block diagram of the overall system.

III. ALGORITHM FOR GENERATING THE REFERENCE

TRAJECTORY

In fact, one does not have complete information about the
dynamics of the pile. Therefore, a decision on the appropriate
trajectory can only be done in practice by observing the pile’s
response in accordance with the trajectories that the excavator
made. Hence, the pile can be considered as a black box, and
designing a controller for a black box leads to the idea of the
neural network-based MRAC. The control structure of the
neural-network based MRAC can be seen in Figure 3. In this
Figure, the trajectory generator block can be seen as a
controller of the outer loop. This controller is responsible for
keeping the dug weight within the specific range as the shape
of the pile changes.

Engineering, Technology and Applied Science Research Vol. 11, No. 3, 2021, 7088-7093 7090

www.etasr.com Vu et al.: Recurrent Neural Network-based Path Planning for an Excavator Arm under Varying …

Fig. 3. Control structure of neural network-based MRAC.

This is an offline process, the first step of the design is
identifying the plant with the usage of neural network, and the
next step is creating a neural network-based controller
according to the identified plant in the previous step. Note that,
the plant now contains the pile, the excavator, and the tracking
controller. The input of the plant is the desired trajectory q*,
whereas the practical trajectory created by the excavator is q
because of the control error which should affect the dug
weight. Then, the robot excavates the pile with the trajectory q
and obtains a weight m. In the identification problem, because
the user concerns only about the dug weight after each time the
excavator finishes, the object can be viewed as a discrete-time
system. A discrete-time system can be described as:

* *

1(,..., , ,...,)
u yk k k n k k nm f q q m m− − −= (3)

Discrete-time system identification can be carried out by
using a nonlinear autoregressive network with exogenous
inputs denoted as NARX. The NARX’s architecture is
illustrated in Figure 4, where the input and feedback output of
the network pass through the Tapped-Delay-Lines (TDLs)
which make up the dynamics of the network.

Fig. 4. Parallel and series-parallel architectures of the NARX network.

A feature that makes the NARX become regularly usable in
identification problems is that it has only a feedback from the
network’s output. Therefore, in the training process, one can
remove this feedback and consider the feedback output as a
second input to the network. The opened architecture, referred
as a series-parallel architecture (Figure 4), is used in one-step-
ahead prediction. The training process of the opened network is
much simpler than that of the closed network, because one can
utilize the traditional back-propagation algorithm for the

opened network training. After the opened-network training
process is completed, the network can predict one-step ahead,
however the objective is to identify the system, which means
that the network can make a multi-step-ahead prediction.
Therefore, the performance of the closed network is often not
good enough. Hence, one should continue training the closed
network based on the opened network. However, training a
closed network can still confront the problem of gradient
vanishing, which is a well-known problem in the training of
RNNs. Thus, the original training set is divided into subsets
which have a smaller size. The network is trained with these
subsets. When the training process with these subsets is over,
the size of each subset is increased by a small number, and the
training restarts with the new bigger subset. These steps are
repeated until the size of the subset becomes equal with the size
of the original training set. The algorithm is shown in Figure 5,
which begins with the size of each subset equal to the
maximum number of delays (MD) in the TDL of the network
plus one that is equivalent to the training opened network. In
Figure 5, MD is the Maximum number of Delays of both
input’s TDL and feedback output’s TDL. Q, c, n are the length
of the original batch, the length of the mini batch, and the
number of subsets’ respectively, x is the network’s parameters,
eik represents the error which corresponds with the k

th element
of the ith subset, li(x) is the squared error which corresponds to
the i

th
 subset, L(x) is the loss function which is the Mean

Square Error of the original batch.

Fig. 5. Training algorithm of the closed network.

Note that each adjacent subset has some similar elements,
with size equivalent to MD in the TDL. These elements are
used as the initial conditions for the network. To guarantee that
the objective function includes all elements in the original
training batch, a subset is created to overlap the adjacent one.
Once the closed network has finished training, we will create
the controller network based on the object network. To train the

Engineering, Technology and Applied Science Research Vol. 11, No. 3, 2021, 7088-7093 7091

www.etasr.com Vu et al.: Recurrent Neural Network-based Path Planning for an Excavator Arm under Varying …

controller network, the whole structure that contains the plant
network and the controller network must be considered as a
major network. Then, this network is used to approximate the
given reference model. However, during the training process,
only the controller network’s parameters are adjusted in order
to optimize the objective function, while the object network’s
parameters are kept unchanged. The well-known back-
propagation algorithm is used to train the major network, the
error between reference model’s output and this network’s
output back-propagates through layers of the network, and the
controller network’s parameters are updated.

IV. NETWORK TRAINING AND SIMULATION

A. Plant Network

Neural networks are known as a powerful technique to
model a system with a mathematical model unknown or
difficult to build [20, 21]. In this section, a neural network is
used to model the plant which consists of the pile, the
excavator, and the tracking controller. The first step of training
the plant network is collecting data from the object. The
performance of the network depends significantly on the way
the data cover and describe the operating range of the object. In
system identification problems, the data are often obtained by
generating the input signal in the form of a sequence of step
functions that have random durations and amplitudes. In this
case, the reference input signal is produced with a random
amplitude within the intervals [0.3, 0.5] and [0.5, 0.8] in the
first 100 and the next 100 steps respectively. The duration of
each step function is d∈[1, 10]. The main reason is that the
collected data need to cover the operation range of the object.
In the first 100 steps, because the size of the pile is still large,
one should use a trajectory with small h. In contrast, in the next
100 steps, because a large amount of the pile is already taken,
one needs to shift the range of the trajectory deep inside the
pile with the expectation that the excavated weight is still
acceptable. This signal is applied to the plant, then the plant’s
output is collected. The obtained data are shown in Figure 6.

Fig. 6. A mini batch of the training data for the plant network.

Note that there are 40 mini batches whose length is 200
samples, however Figure 6 only shows an instance of the mini
batches. Before training, the input data are normalized in the
range [-1, 1]. Note that h is the representation of the desired
trajectory, the control error in the controlling robot affects the
practical trajectory, so the dug weight could not be the same as
expected. In this case, the collected data include this control
error. When the training data are available, the plant network
can be designed. This network is illustrated in Figure 7. The

input of the network passes through a 0:1 TDL. The TDL of the
input has a current element (zero delay) due to the pile feature.
When one adjusts the excavator’s trajectory, the dug weight
immediately changes depending on the shift of the trajectory,
therefore the current component is added to demonstrate this
feature. The TDL of network’s feedback output is 1:5. The
Bayesian regularization algorithm is used for training. The
training result is shown in Figure 8. Then, the network is tested
with the testing data. The test result is illustrated in Figure 9.

Fig. 7. Plant network’s architecture.

Fig. 8. Training result of the plant network.

Fig. 9. Testing result of the plant network.

B. Controller Network

First of all, one must choose an appropriate reference
model. Note that the plant network is of the 5th order, thus, a
fifth-order dead-beat system is utilized as a reference model.
The transfer function of the chosen reference model is:

1 2 3 4 5
5 4 3 2

()
15

z z z z z
Gm z

− − − − −
+ + + +

= (4)

The next step is collecting data from the reference model
for the controller training set. The training data for the
controller is demonstrated in Figure 10. The left side in Figure
10 shows the input data of the training set. The right side shows
the response of the reference model. Note that the initial value
of the reference model’s output is the limited dug weight, this
means that the dug weight can reach the maximum value in the
first period. It can be seen that although the controller only

Engineering, Technology and Applied Science Research Vol. 11, No. 3, 2021, 7088-7093 7092

www.etasr.com Vu et al.: Recurrent Neural Network-based Path Planning for an Excavator Arm under Varying …

operates with unit set-point, the input has different values that
range from 0.4 to 1. The reason is that the controller has to
work with different states of the object, so this type of input
helps training the controller with practical states of the object,
e.g. the controller can be trained to give a suitable trajectory
that will help the dug weight increase from 0.5, which is its
current value, to the desired value of 1. The training data have
8 mini batches, each mini batch having a length of 90 samples.
Figure 10 illustrates an example of the total training set. The
major neural network’s architecture, which includes the plant
network and the controller network, is shown in Figure 11. The
transfer function of the output layer of the controller is the
tansig function, which means that the output of the controller is
within the range from -1 to 1 which is equal to the normalized
input range of the plant network.

Fig. 10. Training data of the controller network.

Fig. 11. Major network’s architecture.

Fig. 12. Training result of the major network.

The used training algorithm is the Bayesian regularization.
Figure 12 describes the training result of the major network. It
can be seen that the training error is very small, therefore the
controller can be tested on the practical object.

C. Stability Analysis

The system contains a plant neural network and a controller
neural network. It is a five-layer discrete-time RNN. To
analyze the stability of the RNN, there are several stability
criteria [22-25]. In this case, the stability criteria from [22]

were applied. To do so, the recurrent neural network will be put
in the standard form as:

x(k+1) = f(W^1x(k)+W^2x(k+1)+b) (5)

where x(k) is defined as a vector of layers' output in the past
(such as a^1(k-1), a^2(k-1), a^2(k-2), a^2(k-3) ..., where a^i is
the output of layer i, i=1,2…5), W^1 and W^2 are the weight
matrices of layer 1 and 2. The size of the state vector is 41 in
this case. We did obtain the matrices W^1 and W^2, b and f, but
the upper bound and lower bound matrices for the function
vector f(41×1) must be found as the requirement of the stability
criteria in [20]. This leads to the problem that the equilibrium
point of the system in (5) must be determined. It is not easy to
find the equilibrium point in this case because its size is 41 and
the function vector includes nonlinear functions such as the
tansig. Thus, in this work the stability of the system is verified
through simulations.

D. Simulation Results

In order to verify the effectiveness of the proposed scheme,
simulations are done in Matlab/Simulink. In the simulations,
the initial path of the arm is set so that the dug mass is 0.4. The
trajectory generator should calculate the reference trajectory for
the plant to meet the requirement. The dug weight desired
value is tracked during working time despite the change of the
pile. Figure 13(a) shows the change of the pile during working
time. Initially, the slope of the pile is about 62 degrees.
Because of the digging, this slope will decrease gradually and
reach the value of 46 degrees at the 42th step. Figure 13(b)
shows the values of h for each step. The initial value of h is set
at -0.9 and after 50 steps its value is 0.8. Corresponding with
these 50 values of h, 50 trajectories will be generated to adapt
to the change of the pile.

(a) (b)

Fig. 13. The change of system during working time. (a) θ, (b) h.

Fig. 14. The dug weight response during working time.

Engineering, Technology and Applied Science Research Vol. 11, No. 3, 2021, 7088-7093 7093

www.etasr.com Vu et al.: Recurrent Neural Network-based Path Planning for an Excavator Arm under Varying …

Figure 14 illustrates the dug weight response of the system
during working time. In the first step, the excavator works with
the given trajectory and the dug weight is 0.4. The information
about the trajectory and the weight will be given to the
controller to calculate the reference trajectory for the next step.
After 5 steps, the dug weight accomplishes the desired value
and remains at this state during the working time despite the
change of the pile.

V. CONCLUSION

A simple but efficient algorithm has been proposed to
design the reference trajectory for an excavator arm in a
dynamic environment. The model of the tracking controller, the
arm, and the pile is approximated, at first by an RNN. A second
RNN combined with the MRAC algorithm is used to calculate
the reference trajectory of the system. By this combination, the
calculated trajectory can be adjusted after each duty cycle to
adapt with the change of the pile so that the dug weight remains
around the nominal value despite the reduction of the pile. The
effectiveness of the overall system was verified through
simulations. The results show that the proposed scheme gives a
good performance, i.e. the dug weight always tracks the
nominal value as the pile changes its shape during working
time.

REFERENCES

[1] H. Feng et al., "Robotic excavator trajectory control using an improved
GA based PID controller," Mechanical Systems and Signal Processing,

vol. 105, pp. 153–168, May 2018, https://doi.org/10.1016/j.ymssp.
2017.12.014.

[2] R. Ding, B. Xu, J. Zhang, and M. Cheng, "Self-tuning pressure-feedback

control by pole placement for vibration reduction of excavator with
independent metering fluid power system," Mechanical Systems and

Signal Processing, vol. 92, pp. 86–106, Aug. 2017, https://doi.org/
10.1016/j.ymssp.2017.01.012.

[3] H. Shao, H. Yamamoto, Y. Sakaida, T. Yamaguchi, Y. Yanagisawa, and

A. Nozue, "Automatic Excavation Planning of Hydraulic Excavator," in
Intelligent Robotics and Applications, Berlin, Heidelberg, 2008, pp.

1201–1211, https://doi.org/10.1007/978-3-540-88518-4_128.

[4] A. Stentz, J. Bares, S. Singh, and P. Rowe, "A robotic excavator for
autonomous truck loading," in Proceedings. 1998 IEEE/RSJ

International Conference on Intelligent Robots and Systems. Innovations
in Theory, Practice and Applications, Victoria, BC, Canada, Oct. 1998,

vol. 3, pp. 1885–1893, https://doi.org/10.1109/IROS.1998.724871.

[5] J. Seo, S. Lee, J. Kim, and S.-K. Kim, "Task planner design for an
automated excavation system," Automation in Construction, vol. 20, no.

7, pp. 954–966, Nov. 2011, https://doi.org/10.1016/j.autcon.2011.03.
013.

[6] Y. H. Zweiri, L. D. Seneviratne, and K. Althoefer, "Model-based
automation for heavy duty mobile excavator," in IEEE/RSJ International

Conference on Intelligent Robots and Systems, Lausanne, Switzerland,
Sep. 2002, vol. 3, pp. 2967–2972, https://doi.org/10.1109/IRDS.2002.

1041723.

[7] S. Lee, D. Hong, H. Park, and J. Bae, "Optimal path generation for
excavator with neural networks based soil models," in 2008 IEEE

International Conference on Multisensor Fusion and Integration for
Intelligent Systems, Seoul, Korea, Aug. 2008, pp. 632–637,

https://doi.org/10.1109/MFI.2008.4648015.

[8] N. T.-T. Vu, N. P. Tran, and N. H. Nguyen, "Adaptive Neuro-Fuzzy
Inference System Based Path Planning for Excavator Arm," Journal of

Robotics, vol. 2018, Dec. 2018, Art. no. e2571243, https://doi.org/
10.1155/2018/2571243.

[9] Z. Li, X. Li, S. Liu, and L. Jin, "A study on trajectory planning of

hydraulic robotic excavator based on movement stability," in 2016 13th
International Conference on Ubiquitous Robots and Ambient

Intelligence (URAI), Xi’an, China, Aug. 2016, pp. 582–586,
https://doi.org/10.1109/URAI.2016.7625784.

[10] R. Tiwari, J. Knowles, and G. Danko, "Bucket trajectory classification of

mining excavators," Automation in Construction, vol. 31, pp. 128–139,
May 2013, https://doi.org/10.1016/j.autcon.2012.11.006.

[11] Y. B. Kim, J. Ha, H. Kang, P. Y. Kim, J. Park, and F. C. Park,

"Dynamically optimal trajectories for earthmoving excavators,"
Automation in Construction, vol. 35, pp. 568–578, Nov. 2013,

https://doi.org/10.1016/j.autcon.2013.01.007.

[12] S. X. Yang and M. Meng, "Neural network approaches to dynamic

collision-free trajectory generation," IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 31, no. 3, pp. 302–318,

Jun. 2001, https://doi.org/10.1109/3477.931512.

[13] Howard Li, S. X. Yang, and Y. Biletskiy, "Neural network based path
planning for a multi-robot system with moving obstacles," in 2008 IEEE

International Conference on Automation Science and Engineering,
Arlington, VA, USA, Aug. 2008, pp. 163–168, https://doi.org/10.1109/

COASE.2008.4626446.

[14] A. Pashkevich, M. Kazheunikau, and A. E. Ruano, "Neural network
approach to collision free path-planning for robotic manipulators,"

International Journal of Systems Science, vol. 37, no. 8, pp. 555–564,
Jun. 2006, https://doi.org/10.1080/00207720600783884.

[15] D. Simon, "The application of neural networks to optimal robot

trajectory planning," Robotics and Autonomous Systems, vol. 11, no. 1,
pp. 23–34, May 1993, https://doi.org/10.1016/0921-8890(93)90005-W.

[16] J. Giri, P. Giri, and R. Chadge, "Neural Network Based Modelling of

Time Optimal Interpolation of Non-linear Trajectory," Materials Today:
Proceedings, vol. 5, no. 2, Part 2, pp. 7981–7990, Jan. 2018,

https://doi.org/10.1016/j.matpr.2017.11.482.

[17] G. Atmeh and K. Subbarao, "A Dynamic Neural Network with Feedback
for Trajectory Generation," IFAC-PapersOnLine, vol. 49, no. 1, pp.

367–372, Jan. 2016, https://doi.org/10.1016/j.ifacol.2016.03.081.

[18] Y. Li, R. Cui, Z. Li, and D. Xu, "Neural Network Approximation Based

Near-Optimal Motion Planning With Kinodynamic Constraints Using
RRT," IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp.

8718–8729, Nov. 2018, https://doi.org/10.1109/TIE.2018.2816000.

[19] P. Zhang, C. Xiong, W. Li, X. Du, and C. Zhao, "Path planning for
mobile robot based on modified rapidly exploring random tree method

and neural network," International Journal of Advanced Robotic
Systems, vol. 15, no. 3, May 2018, Art. no. 1729881418784221,

https://doi.org/10.1177/1729881418784221.

[20] A. S. Kote and D. V. Wadkar, "Modeling of Chlorine and Coagulant
Dose in a Water Treatment Plant by Artificial Neural Networks,"

Engineering, Technology & Applied Science Research, vol. 9, no. 3, pp.
4176–4181, Jun. 2019, https://doi.org/10.48084/etasr.2725.

[21] L. B. Salah and F. Fourati, "Systems Modeling Using Deep Elman

Neural Network," Engineering, Technology & Applied Science
Research, vol. 9, no. 2, pp. 3881–3886, Apr. 2019, https://doi.org/

10.48084/etasr.2455.

[22] N. H. Nguyen and M. Hagan, "Stability analysis of layered digital
dynamic networks using dissipativity theory," in The 2011 International

Joint Conference on Neural Networks, San Jose, CA, USA, Jul. 2011,
pp. 1692–1699, https://doi.org/10.1109/IJCNN.2011.6033428.

[23] N. E. Barabanov and D. V. Prokhorov, "Stability analysis of discrete-

time recurrent neural networks," IEEE Transactions on Neural
Networks, vol. 13, no. 2, pp. 292–303, Mar. 2002, https://doi.org/

10.1109/72.991416.

[24] N. E. Barabanov and D. V. Prokhorov, "A new method for stability

analysis of nonlinear discrete-time systems," IEEE Transactions on
Automatic Control, vol. 48, no. 12, pp. 2250–2255, Dec. 2003,

https://doi.org/10.1109/TAC.2003.820158.

[25] M. Liu, "Delayed Standard Neural Network Models for Control
Systems," IEEE Transactions on Neural Networks, vol. 18, no. 5, pp.

1376–1391, Sep. 2007, https://doi.org/10.1109/TNN.2007.894084.

