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Abstract—This paper presents the design of a Multi-Input Multi-

Output (MIMO) PID controller for a twin-rotor MIMO system. 

A multivariable control system consisting of two loops is designed 
for a non-linear system with two inputs and two outputs. The 

designed controllers have been tested on a simulated model with 

different possibilities and real-time results were taken. The 

designed PID controller efficiently controls the loops of the 

system and does not suffer from any process interactions. The 

results indicate that the performance of the PID controllers is 

excellent and both the transient and the steady-state enactment 

are adequate. The yaw and pitch rotor’s real-time responses are 
almost the same as the desired ones. 
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I. INTRODUCTION  

Helicopters have been widely used for fast or immediate 
transports like medical emergencies, personal use, crime 
prevention, traffic conditioning, fire detection, etc. [1]. The 
Twin Rotor MIMO System (TRMS) can be related to the 
helicopters in many aspects, e.g. the complex structure, 
nonlinearity, and cross coupling rotors' behavior. The TRMS 
due to the coupling effect suffers from many issues regarding 
the transversal vibration in beam. Many studies have been 
carried out to handle this issue by providing mathematical 
models representing unbalanced external forces. The 
implementation of the discrete time model has attracted 
attention [2, 3]. For a complex system, an adaptive controller 
was designed [4, 5] and implemented in order to get the desired 
output of the uncertain system and the errors were successfully 
tracked by the adaptive self-tuning control scheme. Adaptive 
natured control motivation led the authors in [6, 7] to compute 

a mathematical model of TRMS which is based on the adaptive 
control principle and the on-line identifier ARMAX model. 
The two multivariable adaptive controllers were implemented 
into the system and compared with the fixed gain PID 
controller. The controllers showed very good results in error 
tracking with Self-Tuning Control (STC) having external 
disturbances. 

A robust technique was used in [8, 9]. A fuzzy integral 
sliding controller was utilized in the vertical subsystem and on 
the horizontal plant a fuzzy sliding controller was implemented 
to track the errors. In [10-12], a Particle Swam Optimization 
(PSO)-based control technique was implemented to a TRMS 
with a PID controller that helped tune the PID controller at 
optimal point. PSO-based controller with PID was also used in 
[11] with the addition of a compensator. Although the 
compensator-based technique tracked the errors efficiently, the 
overall system was very complex to implement. An 
autonomous adaptive controller implemented with the PID 
controller to mitigate the oscillation errors was proposed in 
[13] to control TRMS. The comparison results showed that the 
autonomous adaptive controller with frictional order PID was 
more suitable than the integral order PID controller. A 
predictive control approach used for wind turbine speed control 
was presented in [14] and an optimizated control of the 
hydraulic actuator was presented in [15] with PID controllers 
by minimizing integral time. A multivariable PID controller 
was proposed in [16-18] with the ability to operate 
autonomously and the yaw and pitch angle were efficiently 
controlled. Linear Parameter Varying (LPV) modeling [19] 
implements a control technique to the TRMS that takes care of 
the errors [18]. This controller performs well with fast 
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response, but having the design complexity as its main 
drawback of its implementation. A self-tuned online parameter 
estimation-based controller was designed in [20] for the TRMS 
kit and its simulation results were compared with real time 
data. The online estimation-based self-tuned adaptive controller 
needs to have real time data and varying parameters’ exact 
computation. The ARX model was utilized to design the online 
estimation-based controller in almost all the cases. 

This paper presents the design of a Multi-Input Multi-
Output (MIMO) PID controller for a twin rotor MIMO system. 
A multivariable control that consists of two loops for a non-
linear system with two inputs and two outputs was designed. 
The designed controller was tested on a simulated model and 
the results were compared with real data. The designed PID 
controller efficiently controls the loops of the system and does 
not suffer from any process interactions. 

II. TWIN ROTOR MIMO SYSTEM MODEL 

A basic TRMS model (TMRS-33-220) is illustrated in 
Figure 1. The system is standing with the help of a tower, 
arranged in such a way that the model exhibits its rotary 
motion. The model can move in two directions, vertically and 
horizontally and the motion of the free-fall beam generates 
force. The beam pivoted on the tower is attached via bearings. 
These bearings allow the free movement in the vertical and 
horizontal direction within some limitations [21] (it cannot 
move freely up to 360o). If the beam is locked, the model 
cannot roll. Two rotors are also attached on end points of the 
free-fall beam. The ends are categorized as the main and tail 
rotors.  

 

 
Fig. 1.  The TRMS model. 

 
Fig. 2.  Block diagram of the TRMS. 

The mathematical model of the TRMS is quite complex and 
difficult to implement. For convenience, the overall model is 
separated in small units for decoupling [22]. The overall model 
is divided into six parts as shown in Figure 2. The sub model 
load+ DC motor has ωy and ωp as inputs. The aerodynamic 

rotor block has the ωy and ωp as inputs and its outputs are 
aerodynamic torques Jp, Jy Jp,a. The last blocks are the 
mechanics of the tail and main rotors. Their outputs are 
azimuth angles ψres,y and ψres,p. The first order differential 
equation expresses the dynamics of the propeller sub system. 
The simplification of the TRMS can be made by two point 
mass system.  

III. THE PROPOSED CONTROLLER DESIGN 

For the TRMS model, the motion of the system can be 
described in terms of main and tail rotors as shown in (1)-(2): 
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where
hS  is the angular momentum around the vertical plane 

of the beam (in the horizontal plane), Jpr is the moment of 
inertia (in the DC motor tail propeller subsystem), Jyr is the 
moment of inertia (in the DC motor main propeller subsystem), 
and ωy and ωp describe the system’s velocity for nonlinear 
system’s output voltage. Figure 3 shows the block diagram 
which mathematically can be expressed as: 
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where 
yrT  and 

prT are main and tail rotor propeller system 

time constants.  
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Fig. 3.  Block diagram. 

The PID controllers combine the advantages of the 
individual P, I, and D controllers. The above system structure is 
composed of two summing points. Their function is to 
determine the error signal which is the difference between the 
set point and the measured variable. The error signal is 
amplified via a proportional amplifier and again by integral and 
derivative amplifiers. Secondly, the additions of the outputs 
from the amplifiers are also carried out by the summing points. 
The three term function can be expressed as: 

0

(0)
t

g

out g g g i g g d

dE
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dt
= + + +∫     (7) 

Three term controllers were connected in series and in 
parallel. When these three controllers were connected in 
parallel, the PID controller is considered to be non-interacting. 
In this situation, the interaction of the proportional control 
action with the integral and derivative control action is 
neglected. Most of the PID controllers are available in serial or 
interaction configuration. Due to the interaction fact, the 
derivative precedes the proportional controller by 90o. The PID 
control model is discussed in detail below. 

A. PID Controller Model 

The simulation model of the PID controller for the main 
rotor is shown in Figure 4. Figure 5 shows the tail rotor 
configuration. Their parameters are given in Tables I and II 
respectively.  

 
Fig. 4.  Main-rotor controller. 

 
Fig. 5.  Tail-rotor controller. 

TABLE I.  MAIN AND TAIL ROTOR PARAMETERS 

Parameter Value 

Moment of inertia 6.8e-2Kgm2 

Torque c1 (psi) 6e-3Nm 

Torque c2 (psi) 1e-3Nm 

Static characteristics d1,c1 0.0134,0.0924 

Parameter Kgy 0.05s/rad 

Movement of gravity Mgy 0.32Nm 

TABLE II.  TAIL ROTOR PARAMETERS 

Parameters Values 

Moment of inertia 2e-2Kgm2 
Torque c1 (psi) 1e-1Nm 
Torque c2 (psi) 1e-3Nm 

Static characteristics d2,c2 0.01,0.09 
 

 
Fig. 6.  Simulation model for pitch and yaw rotor TRMS system with PID controllers.
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B. TRMS Model  

The simulation model of the TRMS with overall 
connections and control methodology is given in Figure6.  

IV. SIMULATION RESULTS AND DISCUSSION  

The simulation results for the pitch rotor PID controller 
with Kg, Kd and Ki being the proportional, derivative and 
integral parameters having values 09, 09, 07 respectively are 
given in Figure 7. The simulation results for yaw rotor PID 
controller with Kg, Kd, and Ki having values 02, 10, 02 
respectively are given in Figure 8. 

 

 
Fig. 7.  Pitch PID controller simulation. 

 
Fig. 8.  Yaw PID controller simulation. 

The plots of tail and main rotor are given in Figures 9 and 
10 respectively. Figure 9 shows the desired and actual yaw 
angle in the time interval 0-100s. The designed behavior of the 
yaw angle for the TRMS versus time is presented with different 
line patterns for desired and actual position. It can be seen that 
there is no major difference. Figure 10 shows the desired and 
actual pitch angle during the time interval 0-100s. The designed 
behavior of the yaw angle for the TRMS versus time is 
presented with different line patterns for the desired and actual 
positions. Again, the pattern lines are almost the same.  

 
Fig. 9.  Yaw rotor responses. 

 
Fig. 10.  Pitch rotor responses. 

 
Fig. 11.  Simulation results of yaw and pitch rotors with PID controller. 
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Figures 11 and 12 show the response of the TRMS system. 
The plot between angle in radians and during 0-100s describes 
the behavior of the pitch angle response. In both Figures, the 
plot shows that the desired and the actual results do not have 
much difference. So, the controller results are considered 
satisfactory. 

 

 
Fig. 12.  Real time results of yaw and pitch rotors with PID controller. 

V. CONCLUSION 

This paper presents a MIMO PID controller designed for a 
twin rotor system. A non-linear system based design with two 
inputs and outputs accurately tracks the errors. The 
performance indices of the simulation results are satisfying 
and the design simplicity of the control is a major advantage. 
Both loops are efficiently controlled by the controller without 
having any process interactions. The steady-state and the 
transient performance of the proposed controller are 
satisfactory. The yaw and pitch rotor’s real time responses are 
almost the same. 
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