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Abstract—In this work, a new method for nonlinear time-history 

earthquake analysis of 2D steel frames by a fiber plastic hinge 

method is presented. The beam-column element based on the 

displacement-based finite element method is established and 

formulated in detail using a fiber plastic hinge approach and 

stability functions. Geometric nonlinearities are taken into 
accounting by stability functions and the geometric stiffness 

matrix. A nonlinear dynamic algorithm is established based on 

the combination of the Newmark integration method and the 

Newton-Raphson iterative algorithm for solving dynamic 

equations. The proposed program predicts the nonlinear inelastic 

responses of 2D steel frames subjected to earthquakes as 

efficiently and accurately as commercial software. This study also 

shows that the initial residual stresses of steel should be 

considered in nonlinear inelastic time-history earthquake 

analysis of 2D steel frames while SAP2000 does not consider the 
effects of residual stresses. 

Keywords-earthquake; inelasticity; geometric nonlinearity; 
stability functions; nonlinear algorithm; steel frames   

I. INTRODUCTION  

Nowadays, steel frames are widely used in civil engineering 
and pre-engineering buildings. There are two analysis methods 
for designing steel structures: first-order elastic analysis and 
direct analysis. In the first-order elastic analysis, structures are 
assumed to be still elastic, and the effects of nonlinearities are 
neglected, while in the direct analysis, all important nonlinear 
phenomena, such as the plasticity of materials, geometric 
nonlinearity, residual stresses, the flexibility of connections, 
etc., are considered. There are two common direct analysis 
methods: plastic hinge method [1-9] and distributed plasticity 
method [10-19]. Distributed plasticity method is complicated, 
computationally expensive, but more accurate. Plastic hinge 
method is simple, effective, and with acceptable accuracy. 
There are several studies on steel frames subjected to dynamic 
loadings using finite element method. In 1991, authors in [20] 
carried out 44 shaking table tests on steel frames with flexible, 
semi-rigid, and rigid connections. In 1994, authors in [21] 
studied the seismic behavior of two-story steel frames with 
semi-rigid connections. They concluded that the semi-rigid 
steel frame is suitable for earthquake-resistant design. Authors 
in [22] studied the dynamic behavior of steel frames with beam 
flanges shaved around the weld connection. They discovered 

that the dissipation capacity of the new design connection is 
much better than traditional connections. In 2008, authors in 
[23] analyzed the nonlinear elastic dynamic behavior of steel 
portal frames with semi-rigid connections. Authors in [24] 
developed a dynamic time-history analysis for steel frames 
using one element per member. Authors in [25] studied the 
nonlinear dynamic collapse analysis of semi-rigid steel frames 
using the finite particle method. Nguyen and Kim developed a 
plastic hinge method using stability functions for nonlinear 
dynamic analysis of steel frames [6, 7, 13], including the 
effects of semi-rigid connections and also developed 
distributed plasticity methods using stability functions for 
nonlinear dynamic analysis of semi-rigid steel frames 
employed by the Hilber-Hughes-Taylor method for solving 
dynamic equations [14, 15, 17]. Recently, authors in [26-28] 
tried to investigate the behavior of steel frames with the effects 
of connections. To the best of our knowledge, there is no study 
on the fiber plastic hinge method using stability functions for 
nonlinear dynamic analysis of steel frames. 

In this paper, a fiber plastic hinge method for nonlinear 
inelastic time-history earthquake analysis of 2D steel frames 
was developped. Stability functions are used for optimizing the 
number of finite elements for structural analysis and 
simultaneously considering the second-order effects. The 
plastic hinges are divided into several fibers for capturing 
accurately gradual plasticity of hinges and so that the impact of 
residual stresses are directly considering as initial stresses. The 
Newmark integration method and the Newton-Raphson 
iterative algorithm are combined for solving dynamic 
equilibrium equations of structures. The proposed program can 
be developed for direct analysis and design of steel frames. 

II. NONLINEAR 2D BEAM-COLUMN 

A. P δ−  Effect 

Stability functions studied in [29] were utilized for 

predicting the P δ−  effect. The second-order effect can be 
captured precisely by stability functions. With one element for 
the member, it is efficient to economize sources and analysis 
time. Residual stresses are assigned as the initial stress pattern 
of ECCS [30]. The force-displacement relationship using the 
incremental form of a 2D beam-column element can be written 
as: 
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where P∆ , IM∆ , and JM∆  are the axial force and moments, 

δ∆ , Iθ∆ , and Jθ∆  are the axial movement and rotations, A is 

the sectional area, I is the moment of inertia around the z axis, 
L is the elemental length, E  is Young’s modulus of steel, and 

1S  and 2S  are stability functions [29]. 

B. Fiber Plastic Hinge 

In Figure 1 of [9] the fiber plastic hinge method is 
illustrated. In this method, two ends I and J of the element have 
monitored the behavior of stress and strain of fibers. If the fiber 
is yielding, the tangent elastic modulus of the fiber is assigned 
to be equal to zero. The force-displacement relation of a 2D 
element considering both the P δ−  effect and plasticity can be 
formulated as: 
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where Iη  is a scalar parameter accounting for the gradual 

yielding of the fiber hinge at the I end, Jη  is a scalar parameter 

accounting for the gradual yielding of the fiber hinge at the J 
end. They are estimated as:  
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where n  is the sum of fibers on the sections at I and J, tIiE  and 

tJiE  are the tangent moduli of the thi  fiber at I and J, iA  is the 

area of the thi  fiber, iI  is the moment of inertia of the 
thi  fiber, 

iy  is the center coordinate of the thi  fiber, and tE  is the 

tangent modulus of an element. 

C. Shear Deformation 

For calculating the effects of shear deformation, the 
incremental equilibrium equation is modified for 2D beam-
column element as: 
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where: 
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D. P−∆  Effect 

 
Figure 1 presents a 2D element with six degrees of 

freedom. The elemental tangent stiffness matrix considering the 
P−∆  effect is calculated as: 
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where the transformation matrix [ ]
3 5

T
×
 of the element is 

formulated as: 
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and gK    is the geometric stiffness matrix written as: 
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Fig. 1.  Fiber plastic hinge method. 

III. NONLINEAR SOLUTION 

The nonlinear solution algorithm invented in [31] is 
developed to find a solution to the structural system. The 
balanced iteration at each time step is adjusted by the Newton-
Raphson iterative method. The dynamic equilibrium equation 
of steel frames is written as: 

[ ]{ } [ ]{ } [ ]{ } { }TM D C D K D F∆ + ∆ + ∆ = ∆�� �      (12) 
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where D ∆ 
��  is the vector of incremental acceleration, D ∆ 

�  

is the vector of incremental velocity, [ ]D∆  is the vector of 

incremental displacement, [ ]M  is the structural mass matrix, 

[ ]C  is the structural damping matrix, [ ]TK  is the structural 

tangent stiffness matrix, and { }F∆  is the applied dynamic 

loading. 

The structural damping matrix [ ]C  is calculated as the 

Rayleigh damping matrix [32]: 

[ ] [ ]M K iC M Kα β= +       (13) 

where Mα  is the mass-proportional damping factor, Kβ  is the 

stiffness-proportional damping factor, and iK    is the 
structural initial stiffness matrix. 

If both first vibration modes of the structure are assumed to 

have the same damping ratio ξ, then: 
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where ω1 is the natural frequency of the first vibration mode 
and ω2 is the natural frequency of the second vibration mode. 

IV. VERIFICATION AND DISCUSSION 

In 1985, Vogel [33] proposed a portal steel frame subjected 
to static loadings for verifying the accuracy of the nonlinear 
inelastic analysis of finite element programs. In this paper, the 
Vogel steel frame subjected to earthquakes is studied as shown 
in Figure 2. Young’s modulus is E=205,000MPa, Poisson’s 
ratio is v=0.30, and the yield stress of steel is σy=235Pa. The 
columns are out-of-straightness of ψ=1/400 for considering 
initial imperfection. The lumped masses of 50kN.s

2
/m are put 

at the top of the columns. The frame was subjected to Loma 
Prieta and Northridge earthquakes (the data were taken from 
[34] and can be seen in Figure 3 and Table I). The fiber plastic 
hinges are divided into 429 fibers, 6×33=198 fibers for each 
flange, and 33×1=33 fibers for the web. The obtained results by 
the proposed program are compared with those of commercial 
software SAP2000 version 22 using the plastic hinge modeling 
of interaction P-M2-M3. 

 
Fig. 2.  Vogel steel frame subjected to earthquakes. 

TABLE I.  TIME STEPS AND GROUND ACCELERATION PEAK OF 

EARTHQUAKES 

Earthquake Time step (s) PGA (g) 

Loma Prieta (1989) 0.005 -0.529 

Northridge (1994) 0.010 -0.640 

 

(a) 

 

(b) 

 

Fig. 3.  Time-history of earthquakes: (a) Loma Prieta, (b) Northridge. 

 

(a) 

 

(b) 

 

Fig. 4.  Nonlinear elastic time-displacement responses of column top: 

(a) Loma Prieta, (b) Northridge 4.0 m
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Figures 4 and 5 show the time-lateral displacement 
response at the right-column top of the frame subjected to 
Loma Prieta and Northridge earthquakes performed by 
nonlinear elastic and inelastic dynamic analyses. It can be seen 
that the obtained results by the proposed program are in good 
agreement with those of SAP2000. 

 

(a) 

 

(b) 

 

Fig. 5.  Nonlinear inelastic time-displacement responses of column top:  

(a) Loma Prieta, (b) Northridge. 

Figures 6 and 7 show the time-rotational displacement 
response at the right-column top of the frame subjected to 
Loma Prieta and Northridge earthquakes performed by 
nonlinear elastic and inelastic dynamic analyses. The obtained 
results by the proposed program are again in good agreement 
with those of SAP2000. However, under the Loma Prieta 
earthquake in the nonlinear inelastic analysis, the time-
rotational displacement responses of the proposed program and 
SAP2000 are different because the proposed program uses the 
proposed fiber plastic hinge method while SAP2000 uses the 
plastic hinge method. We can see that the proposed method is 
accurate and effective in predicting the nonlinear behavior of 
2D steel frames subjected to earthquakes.  

Commercial software SAP2000 does not consider the 
effects of residual stresses on the behavior and strength of steel 
frames. Figures 8 and 9 show the nonlinear inelastic time-
displacement response of the column top of the frame 
considering the effects of residual stresses (Present RS, red 
line) and without considering the effects of residual stresses 
(Present, blue line). It can be seen that the lateral displacement 
responses of the frame are almost the same (Figure 8), while 
the rotational displacement responses of the structure are 
clearly different if we consider the effects of residual stresses, 

as shown in Figure 9. Residual stresses may significantly 
impact the nonlinear inelastic behavior and strength of steel 
frames so they should be considered in engineering design. 

 

(a) 

 

(b) 

 

Fig. 6.  Nonlinear elastic time-rotational displacement responses of column 

top: (a) Loma Prieta, (b) Northridge. 

(a) 

 

(b) 

 

Fig. 7.  Nonlinear inelastic time-rotational displacement responses of 

column top: (a) Loma Prieta, (b) Northridge. 
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(a) 

 

(b) 

 

Fig. 8.  The effects of residual stresses on nonlinear inelastic time-

displacement responses of column top: (a) Loma Prieta, (b) Northridge. 

 

(a) 

 

(b) 

 

Fig. 9.  The effects of residual stresses on nonlinear inelastic time-

rotational displacement responses of column top: (a) Loma Prieta, (b) 
Northridge. 

V. CONCLUSION 

A second-order inelastic analysis program based on the 
finite element method for 2D steel frames was developed 

successfully. The effects of P-δ, P-∆, material inelasticity, 
residual stresses, and imperfections were accounted for the 
nonlinear analysis by the generalized displacement method. 
The proposed method is simple, accurate, and efficient in 
predicting the strength and behavior of steel frames. The 
proposed method can directly consider the effects of residual 
stresses of steel as SAP2000 cannot. The proposed method can 
be integrated into commercial software for daily engineering 
design using advanced analysis. 
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