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Abstract—In order to cope with the increasing energy demand, 

microgrids emerged as a potential solution which allows the 

designer a lot of flexibility. The optimization of the controller 

parameters of a microgrid ensures a stable and environment 

friendly operation. Non-dominated Sorting Sine Cosine 

Algorithm (NSSCA) is a hybrid of Sine Cosine Algorithm and 
Non-dominated Sorting technique. This algorithm is applied to 

optimize the control parameters of a microgrid which 

incorporates both static and dynamic load. The obtained results 

are compared with the results of the established Non-dominated 

Sorting Genetic Algorithm-II (NSGA-II) in order to justify the 

proposal of the NSSCA. The average time needed to converge in 

NSSCA is 7.617s whereas NSGA-II requires an average of 
10.660s. Moreover, the required number of iterations for NSSCA 

is 2 which is significantly less in comparison to the 12 iterations in 

NSGA-II. 

Keywords-multi-objective; NSGA-II; NSSCA; dynamic load; 

static load; SPSS;   

I. INTRODUCTION  

Renewable energy sources are often integrated in 
microgrids because they are environmentally friendly and are 
considered an answer to the fossil fuel scarcity. However, due 
to their unpredictable nature, renewable energy sources often 
hamper stability and may cause large frequency and voltage 
deviations in a microgrid [1]. The control parameters play a 
significant role for smooth and efficient operation of a 
microgrid. If there is any type of disturbance in the system, the 
selection of proper controller parameters and their tuning at 
optimized value ensures stable system operation [2]. Thus, 
research is now focused in optimizing the controller 
parameters, load sharing, cost etc. of a microgrid with a view to 
enhance its stability, efficiency, and cost effectiveness [3, 4]. In 
this aspect, various optimization algorithms are often adopted 
because they can often identify the global optimum system and 
also have a better convergence probability [5, 6]. In Single 
Objective Optimization (SOO), the aim generally is to search 
for the best design or decision, which is expected to be the 
global solution of the optimization problem. But in the case of 
Multiple Objective Optimization (MOO), there may be one or 
more solutions which may be the best (global minimum or 

maximum) with respect to all objectives [7]. However, MOO 
renders a greater flexibility to the designers than SOO while 
selecting the most optimum result [8] because instead of 
presenting a single solution, MOO provides a set of solutions 
known as the Pareto front where none of the solutions 
dominates the others and thus the designer can choose any 
solution depending on his choice/requirements. Various works 
have been conducted in optimizing the controller parameters of 
a microgrid. In [9], artificial fish swarm algorithm was used to 
optimize only the droop controller gains for controlling the 
frequency deviation in a microgrid operating in islanded mode 
but it did not optimize other controller parameters. Authors in 
[10] used the MOO NSGA-II in optimizing the controller 
parameters but lacked comparison analysis between existing 
works. In this regard, the present study proposes a new MOO 
where Sine Cosine Algorithm (SCA) is combined with Non-
dominated Sorting technique to form the hybridized Non-
dominated Sorting Sine Cosine Algorithm (NSSCA). Basically 
SCA is an SOO which was first introduced in 2015 [11]. The 
incorporation of Non-dominated Sorting Technique transforms 
this SOO into an MOO. The proposed NSSCA is being used to 
obtain global optimum control parameters for an islanded 
microgrid consisting of both static and dynamic load. The main 
focus of this study is to obtain a better dynamic performance 
during load variation by applying NSSCA. In order to establish 
the efficacy of the designed NSSCA, the results are compared 
with the ones of the established Non-dominated Sorting 
Genetic Algorithm (NSGA-II) [12]. 

II. MICROGRID MODEL 

In this study, an islanded microgrid as shown in Figure 1, 
composed of two Distributed Generation (DG) units where one 
unit has static (R-L) load installed and an induction motor on 
the other unit is considered as the dynamic load. The complete 
microgrid model used in this study is adopted from [2, 13]. In 
microgrid modeling, inverter, loads, and network design are the 
three main parts. Figure 2 shows the block diagram of an 
inverter connected to the microgrid along with its associated 
controllers. Among the three controller units: power controller 
determines the frequency and magnitude of the output voltage 
reference for the voltage controller, voltage controller 
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determines the inductor output currents’ reference using 
proportional integrator (PI) regulator after comparing the actual 
and reference voltage values, and finally the current controller 
supplies switching signals to the inverter. There are thirteen 
states for individual inverter units, i.e. twenty-six states in total 
for the two inverters, two states for static load model, two 
states for line network, and five states for the induction motor. 
The complete microgrid model used in this study is developed 
by incorporating the state space model of individual inverter, 
static load model, line network, and induction motor. The total 
number of state variables is eight as shown in (1).  

∆�� � �∆��	∆�� 		∆	�			∆
��� 		∆
���		∆�����		∆����� 		∆����	�    (1) 
 

 

Fig. 1.  Two DGs with static and dynamic load. 

 
Fig. 2.  Block diagram of an inverter connected to microgrid. 

III. PROBLEM FORMULATION 

Stable operation of a microgrid in islanded mode is an 
important aspect that needs to be ensured in order to acquire 
proper system output. The presence of both static and dynamic 
load in the microgrid creates challenges to its stable operation. 
Moreover, controller parameters play a vital role in system 
stability. In this system, PI regulators are used to vary gains of 
both voltage and current controllers. These controller gains 
need to be fine-tuned within proper limits for stable operation 
of the microgrid. 

A. Objective Function 

The microgrid model used in this study has eight controller 
gain parameters as there are two inverters for two DGs and 
each inverter has a separate voltage and current controller unit. 
Each voltage and current controller has separate PI regulators 
to control the controller gains. Here, ����, ���� and ����, ���� 
represent the PI gains of the voltage controller of inverter-1 and 
inverter-2 respectively. Similarly, ���� , ����  and ���� , ���� 
represent the PI gains of the current controller of inverter-1 and 
inverter-2 respectively. Eigenvalue analysis provides 

information regarding damping characteristics of a system 
which plays an important role in system stability. If the 
eigenvalues of the states of the microgrid model move away 
from the imaginary axis and go in the left half of the s-plane, 
their real part becomes more negative, the damping 
performance of the system is improved, and system stability is 
ensured. The main objective of this study is to optimize the 
above-mentioned controller gains to obtain a stable 
performance. The objective functions are mentioned in (2) and 
(3) where � and ζ indicate the real part of the eigenvalues and 
the damping ratio respectively. 

��������, !� � "#��$%�&$� # minimum+�, -.    (2) 
��������, !� � "/�$%�&$� # minimum+ζ,-.    (3) 

N represents the total number of states, which is 35 for this 
study. For each of these states the �  and /  values will be 
evaluated so that both the objectives are satisfied. 
��$%�&$� and 	/�$%�&$�  specify the limit of objective functions 
[14]. These two objective functions are contradictory in nature 
which can be understood from (4) where ω represents the 
frequency of the states. From (4) it can be seen that if the 
magnitude of � increases then / becomes more negative i.e. it 
reduces and vice versa.  

		/, � 	 012
3124 5624

    (4) 

The constraint for this study is given in (5) where controller 
gains are limited to a desired boundary which is obtained by 
performing root locus analysis in order to obtain a stable 
microgrid system with improved damping performance. 

0	 8 	 ����,� , ����,�, ����,�, ����,� 	 8 	500    (5) 
B. Proposed Solution 

NSSCA, a novel hybridized optimization algorithm, is 
proposed in this study. The optimization technique is presented 
with the help of the flow chart in Figure 3. The detailed steps of 
the algorithm are given below. 

Step 1: Initialize the system parameters and generate the 
initial set of population. The total number of iterations is also 
defined in this step. 

Step 2: The fitness of the solutions is evaluated by the 
objective functions !� and !�. 
Step 3: Non-dominated sorting of the initial generation of 

population is carried out on the basis of fitness value. 

Step 4: In this step, crowding distance and ranking of the 
population is done.  

Step 5: The position of all the solution sets is updated by (6) 
and (7) following [11]. 

:�;5� � 	 :�; < =� > sin+=� - > |=A��; # :�;|,					=B 8 0.5    (6) 
	:�;5� � 	 :�; < =� > cos+=� - > |=A��; # :�;|,					=B F 0.5    (7) 

where :�; is the current solution after the G;H iteration where the 
solution is along the �;H  dimension. Similarly ��; is the 
destination solution point after the G;H  iteration along the �;H  
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dimension. Here, =� indicates the direction along which the 
solution will move, i.e. whether the solution will confine its 
movement within the space between the solution and the 
destination point or traverse beyond it. =� is updated using (8) 
where I  is a constant and J  is the maximum number of 
iterations. 

=� � I # G K
L     (8) 

=� is a random number [0, 2π] which indicates the distance of 
the movement of the solution inside or outside the destination 
and =A indicates a random weight in defining the effect of 
destination in distance calculation. If =A M 1	 then the effect of 
the destination is emphasized and the opposite if  =A 8 1 [11]. =B is a random number between �0, 1� which indicates which of 
(6) or (7) should be followed to update the position. 

 

 
Fig. 3.  Flowchart of the NSSCA. 

Step 6: In order to update the position of the solutions =� , =� , =A and =B need to be updated to reach the best destination 
point and determine the best solution.  

Step 7: Merge the new set of solution with the initial set of 
and then non-dominated sorting, crowding distance calculation 

and ranking of the merged set of solutions is applied until the 
maximum number of iterations is reached.  

Step 8: The best possible position of the solution is 
determined after the final iteration and that position indicates 
the best solution 

IV. RESULTS AND DISCUSSION 

A. Eigenvalue Analysis 

The ability of the proposed NSSCA algorithm in stabilizing 
the system was examined through eigenvalue analysis. The 
eigenvalues of different states obtained before and after 
optimizing the controller parameters using NSSCA are shown 
in Table I. From the Table, it can be observed that for some of 

the states∆
�� , ∆
�� , ∆����  and ∆�O�P$Q  the eigenvalues are 
positive which indicates their location on the right side of the s 
plane and thus instability to the system is introduced. After 
optimizing the controller parameters using NSSCA, it is 
observed that the obtained negative eigenvalues of the 
aforementioned states shifted their location from the right side 
to the left side of the s plane making the system more stable. 

TABLE I.  EIGENVALUE ANALYSIS 

Index State 
Eigen value of the state 

Before optimization After optimization 

1 ∆��  - 2909410 + 12209388i -2909410 + 12209388i 

2 ∆��  - 2909410 - 12209388i -2909410 - 12209388i 

3 ∆	� -3261123 + 8309127i -3261123 + 8309127i 

4 ∆
�� -3261123 - 8309127i -3261123 - 8309127i 

5 ∆
��  -55.194 + 45315i -19853 + 389577i 

6 ∆
��  -55.194 - 45315i -19853 - 389577i 

7 ∆
��  -352.417 + 44476.812i -19823 + 389227i 

8 ∆����  -352.417 - 44476.812i 19823 - 389227i 

9 ∆����  -4107.969 + 31524.405i -29070 + 318066i 

10 ∆���� -4107.969 - 31524.405i -29070 - 318066i 

11 ∆����  -5629.972 + 29764.098i -29078 + 318482i 

12 ∆���� -5629.972 - 29764.098i -29078 - 318482i 

13 ∆���� -8720.541 + 8365.113i -8277.936 + 20647.906i 

14 ∆�� -8720.541 - 8365.113i -8277.936 - 20647.906i 

15 ∆��  -6328.127 + 8624.675i -12555.159 + 18762.199i 

16 ∆	� -6328.127 - 8624.675i -12555.159 - 18762.199i 

17 ∆
�� -1291.429 + 0i -2209.282 + 504.685i 

18 ∆
��  213.426 + 784.754i -2209.282 - 504.685i 

19 ∆
��  213.426 - 784.754i -25.460 + 198.321i 

20 ∆
��  -81.284 + 376.280i -25.460 - 198.321i 

21 ∆����  -81.284 - 376.280i -157.538 + 0i 

22 ∆����  -162.677 + 0i -1.092 + 55.904i 

23 ∆���� -70.227 + 1.578i -1.092 - 55.904i 

24 ∆����  -70.227 - 1.578i -70.694 + 0i 

25 ∆���� -67.497 + 0i -67.571+ 1.586i 

26 ∆���� 22.647 + 0i -67.571 - 1.586i 

27 ∆�O�P$Q  1.315 + 0i -2.187 + 0i 

28 ∆�O�P$R -2.394 + 0i -0.369 + 0.044i 

29 ∆�O�K�Q -2.393 + 0i -0.369 - 0.044i 

30 ∆�O�K�R -0.018 + 0.045i -1.686 + 0.009i 

31 ∆�R% -0.018 - 0.045i -1.686 - 0.009i 

32 ∆�Q%  -0.021 + 0i -1.686 + 0i 

33 ∆�R&  -0.329 + 0i -0.560 + 0i 

34 ∆�Q&  -0.200 + 0i -0.701 + 0i 

35 ∆SO  -0.202 + 0i -0.701 - 0i 
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C. Time Domain Simulation Analysis 

In this section, the comparison among NSGA-II and 
NSSCA is presented based on the overshoot obtained from the 
step response of the inductor current (d-q), output voltage (d-
q), real power and reactive power for both DG-1 and DG-2 as 
shown in Figure 4. Considering the d-axis component of the 
inductor current of DG-1 as shown in Figure 4(a), the 
percentage of overshoot in the case of NSSCA is much less 
compared to NSGA-II. When, the d-axis component of the 
inductor current is considered for DG-2, NSGA-II results in 
25% overshoot compared to zero overshoot in the case of 

NSSCA. For both DG-1 and DG-2, when the step response of 
the q-axis component of the inductor current is considered, no 
overshoot is caused by NSGA-II and NSSCA. Considering the 
step response of the output voltages (d-q) of both DG-1 and 
DG-2 as shown in Figure 4(e)-(h), it can be observed that 
NSSCA causes less overshoot than NSGA-II with the only 
exception in case of the q-axis component of the output voltage 
of DG-2. For both DGs, the step response of the real and 
reactive power indicate that both the algorithms cause zero 
overshoot as depicted in Figure 4(i)-(l). In the light of the 
above discussion, it can be concluded that NSSCA provides 
better step response compared to NSGA-II. 

 

 
Fig. 4.  Step response. 

D. Statistical Tests 

In order to justify the uniqueness of each algorithm, 
independent samples’ t-test was performed to compare the 
equality of means using SPSS [15] statistical analysis software. 
The t-test was performed with respect to the total number of 
iterations required to complete the optimization process, the 
total execution time of the optimization process, and the total 
summation of the real part of the eigenvalues. While running 
the t-test, SPSS software generated the results of the F-test 
which indicate whether the data samples from the two grouping 
variables (i.e. NSGA-II and NSSCA in this case) possess equal 
variances or not. For the F-test, the null hypothesis assumes 
that the data samples from the two groups have equal variances 
and the alternative hypothesis assumes that the data samples 
have non-equal variances. The null hypothesis can only be 
rejected when the significant factor (p-value) of the F-test is 
less than 0.05. From the results summarized in Table II, it can 

be observed that the p-value of the F-test is greater than 0.05 
only in case of the total summation of the real part of the 
eigenvalues. Thus, the data sets of NSGA-II and NSSCA 
possess non-equal variances in terms of total number of 
iterations and total execution time. The corresponding t-test 
results are also summarized in Table II. In the case of the t-test, 
the null hypothesis assumes that the means of two data sets are 
equal and as the alternative hypothesis it is assumed that the 
means of two data sets are not equal. If the significant factor 
(p-value) of the t-test is less than 0.05, then the null hypothesis 
can be rejected. From Table II it can be observed that there is a 
significant difference between the two algorithms with respect 
to the total number of iterations and the execution time as for 
both cases the p-value of the t-test is less than 0.05, whereas, 
with respect to the total summation of eigenvalues the null 
hypothesis cannot be rejected as the p-value of the t-test is 
greater than 0.05. However, from the data presented in Table 
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III, the total summation of the eigenvalues in the case of 
NSSCA is slightly higher compared to NSGA-II which 
indicates that NSSCA ensures slightly better stability to the 
system. From the above analysis, it can be concluded that each 
algorithm possesses unique characteristics. Considering the 
mean values of the total number of iterations, total execution 
time, and total summation of eigenvalues of both algorithms, 
NSSCA was found to exhibit significantly better performance. 

TABLE II.  COMPARISON BETWEEN NSGA-II AND NSSCA BASED ON 
THE F-TEST AND T-TEST RESULTS 

Parameters 

F-test t-test for equality of means 

F Sig. 
Mean 

diff. 
t df 

Sig. 

(2-tailed) 

Total 

iterations 
60.035 0.000 10.133 6.177 29.273 0.000 

Total 

summation of 

eigenvalues 

(real) 

2.477 0.121 30941 1.356 58 0.180 

Execution time 38.545 0.000 3.043 2.155 33.202 0.039 

TABLE III.  GROUP STATISTICAL DATA OF NSGA-II AND NSSCA 

Parameters Algorithm Mean 
Standard 

deviation 

Standard 

error mean 

Total number of 

iterations 

NSGA-II 12 8.965 1.637 

NSSCA 2 0.615 0.112 

Total summation of 

eigenvalues (real) 

NSGA-II -12709275 68444 12496 

NSSCA -12740216 104560 19090 

Execution time 
NSGA-II 10.660 7.468 1.363 

NSSCA 7.617 2.015 0.368 
 

V. CONCLUSION 

In this study, the non-dominated sorting technique was 
merged with the Sine Cosine Algorithm (SCA) in order to 
develop a multi-objective optimization algorithm named 
NSSCA. This algorithm was applied to optimize the controller 
gains of a two bus microgrid model. The microgrid model was 
developed considering static load in one of the buses and an 
induction motor as dynamic load in the other bus. The 
performance of NSSCA in optimizing the controller gains was 
compared with NSGA-II by applying NSGA-II for the same 
two-bus system. From the comparative study in terms of 
eigenvalue analysis, time domain analysis, and statistical tests 
it was observed that NSSCA performs better in stabilizing the 
system by optimizing controller gains. The computations done 
by NSSCA were significantly faster compared to NSGA-II in 
terms of both required number of iterations and execution time. 
Thus, NSSCA can be considered as a prospective algorithm in 
optimizing the controller gains of a microgrid model.  
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