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Abstract—In this paper, a new Direct Model Reference Adaptive 

Control Procedure (DMRAC) for Linear Time-Invariant (LTI) 

delay systems is presented with the use of the concept of the 

command generator tracker which expands the class of processes 

that can now be controlled with zero output error. The stability 

of the error between the system and the model is guaranteed by 
the Lyapunov theory. The new algorithm is applied to control a 

perturbed delay system. Matlab simulation examples are given to 
demonstrate the usefulness of the algorithm.  
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I. INTRODUCTION  

The stability of time delay systems has been studied with 
the Lyapunov–Krasovskii and the Lyapunov–Razumikhin 
approach. These two concepts have been used in order to avoid 
the classical Lyapunov method. Authors in [1-3] give an 
overview of the stability of time delay systems with some 
advanced results. The rightmost roots of the characteristic are 
investigated in [4]. Authors in [5] studied the control of an 
MIMO nonlinear time delay system. Stability analysis and 
stabilization for Takagi–Sugeno (T–S) fuzzy systems with time 
delay have been studied in [6, 7]. In [8], a delay-dependent 
stabilization condition was proposed for the stability of a class 
T–S fuzzy time-delay system using homogeneous polynomials 
scheme and Polya's theorem with application on a truck-trailer 
model. Authors in [9] investigated the pre-specified 
performance for time-varying delays using model reduction, 
fuzzy logic, and LMI techniques. The PID controller has also 
been used in the stability of the time-delay systems [10]. The 
developed method guarantees gain and phase margins besides 
stability. 

The introduction of adaptive control in uncertain time delay 
systems has been studied thoroughly. In [11], the author used 
the back stepping transformation where regulation was 
achieved despite the presence of partial measurements and 
disturbance. The adaptive identification of the parameters and 
the time delay of the time delay system were addressed in [12]. 
This identification is achieved with the use of the concept of 
transformation of the system in the parameterized form. The 
convergence of the identification error is guaranteed using the 
persistent excitation (PE) condition. Also, finite time 

convergence was assured using the terminal sliding mode. In 
[13], the author applied a sliding mode controller to stabilize 
uncertain time-delay chaotic systems. The proposed controller 
was robust against time-delays, parameter uncertainties and 
disturbances. The H-infinity theory has also been used to 
control time-delay systems. In [14], time-delays appeared in the 
network used in the feedback loop. The delay-dependent 
stability criterion was derived from the Lyapunov - Krasovskii 
function and the Linear Matrix Inequality (LMI). The H2, H-
infinity and the LMI concepts have been used for discrete time 
delay uncertain systems. Authors in [15] used the past values of 
the states and the outputs, and were able to stabilize the system 
with time-varying delays. Finite time stability of time-delay 
systems has been investigated in [7, 16-18] with the utilization 
of the homogeneity theory. The observer design of time delay 
systems was used in [19] for a switched singular system where 
two design methods were used and in [20], a Luenberger-like 
observer has been used to estimate the unknown inputs for a 
large class of linear systems. The output regulation of time-
delay systems has also been investigated in [21] by using the 
adaptive concept and the observer design using RBF neural 
network systems to approximate unknown functions. In [22] 
the well known Lyapunov–Krasovskii theorem was used to 
investigate the output stabilization for time-delay 
nonholonomic systems. 

The simple MRAC of MIMO plants was first proposed in 
[23]. This class of algorithms does not require full state access 
or satisfaction of perfect model conditions. Asymptotic stability 
is ensured provided that the plant is Almost Strictly Positive 
Real (ASPR). Authors in [24] extended the original algorithm 
to a class of plants which violates this condition. This approach 
involved designing a supplementary feedforward filter to be 
included in parallel with the original plant resulting in a new 
augmented plant which had to satisfy the same strictly positive 
real condition. Unfortunately, the tracking error was not the 
true difference between the plant and the model outputs since it 
included the contribution of the supplementary feedforward 
filter which led to an asymptotically stable error [25-28]. The 
application of adaptive fuzzy control can be found in [33, 34]. 
The authors considered the internal model for controlling DC-
DC converters. Adaptive control is also used in many industrial 
fields, while authors in [35] used it for controlling UAV 
systems. 
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Authors in [36] developed a saturated command for planar 
systems where the stabilization is achieved in finite time using 
just a simple proportional derivative corrector PD whose 
parameters are optimally adapted. This finite time stability is 
analyzed with Lyapunov's theory and homogeneity concept. 
Author in [37] aimed to replace a mechanical cam system with 
an electromagnetic actuator. The electromagnetic actuator 
creates a force which acts on the valve shaft and allows it to 
move linearly allowing the admission and exhaust of the 
explosion gas and therefore the combustion engine rotation. 
Electromagnetic force is generated by making a velocity 
measurement without a speed sensor. The position is deducted 
adaptively according to the estimated speed. This adaptive 
technique improves the efficiency of the mechanical engine and 
its longevity. The same author in [38] follows up this work and 
tries to remedy the problems encountered by the classic PD 
corrector in the presence of noise at high frequencies by 
optimally approximating the PD corrector parameters. After 
finding an actuator’s model of electromagnetic valve actuator 
which replaces the classic mechanical valve actuator, the PD 
parameters are adjusted adaptively and on line with the 
variance minimization method. 

II. DIRECT MODEL REFERENCE ADAPTIVE CONTROL 

The model reference adaptive control is considered for the 
non-linear plant: 

.

1( ) ( ) ( ( )) ( ) ( )

( ) ( )

p p p p p p p

p p p

x t A x t A x t t B u t f x

y t C x t

τ= + − + +

=
    (1) 

where ( )px t is the (n×1) state vector, up(t) is the (m×1) control 

vector, yp(t) is the (q×1) plant output vector, f(t) is an (n×1) 
vector of nonlinearities, Ap, Bp are matrices with appropriate 
dimensions, and τ(t) is the time delay that verifies assumption 
(2) as stated below. We assume that the parameters of the linear 
part of the plant model are uncertain, i.e. only known within 
certain finite bounds. The range of the plant parameters is 
assumed to be known and bounded with: 

_

( , ) , , 1,...,ijp
ij
a a i j a i j n
−
≤ ≤ =     (2) 

_

( , ) , , 1,...,ijp
ij
b b i j b i j n
−
≤ ≤ =     (3) 

• Assumption 1: 

The non-linear function f(x) is Lipschitz in its arguments, 

that means 
1 2 1 2( ) ( )f x f x L x x− < −  where L>0 is the 

constant of Lipschitz, (.)  is the Euclidean norm and 
1 2
,x x

belong to a compact set nRΩ∈ . 

• Assumption 2 

The derivative of the delay system τ(t) verifies: 

1

d ( )

d

t

t

τ
τ≤  

The objective of this paper is to find, without explicit 
knowledge of Ap, Bp, and for non-linear f(xp), the control up(t) 
such that the plant output vector yp(t) follows the reference 
model given by: 

.

( ) ( ) ( ) ( )

         ( )

( ) ( )  

m m m m m m m

m m

m m m

x t A x t A x t B u t

B u t

y t C x t

τ

τ

τ

τ

= + − +

+ −

=

    (4) 

The output ym is the desired response to the set point 
command um. The model incorporates the desired behavior of 
the plant, but its choice is not restricted. In particular, the order 
of the plant may be much larger than the order of the reference 
model. The ideal control law that generates perfect output 
tracking and ideal state trajectories is assumed to be a linear 
combination of the model states and the model input (see [29]). 
In our case, we suppose that the ideal state, its delay and the 
ideal input are related to the model state. Its delay and the 
model input are related by: 

( )

( )

p m11 12

21  22 mp

x t x (t)S    S  
 

S S  u (t)u t

∗

∗

    
=    

      
    (5.0) 

The perfect output tracking means that the ideal output 
*
( )y t is equal to the output model ( )

m
y t  which means: 

* ( ) ( ) ( ) ( )

( ) ( )

p p p p 11 m p 12 m

m m m

y t C x t C S  x t C S  u t

y t C x t

∗= = +

= =
    (5.1) 

Taking into account (5.0) and that the ideal state * ( )x t  

verifies this relation and the assumption that the command um(t) 
is constant (in the case where the input is not a constant, we can 
always find a dynamic system to generate um(t) with a constant 

input), the derivative of *
( )x t can be written as: 

d ( ) d
( ( ) ( ))

d d

( ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( )

*

p
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τ τ

τ τ

τ τ

τ τ

= +

= + − + + −

= + − + + −
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( ( ) ( )) ( ( )
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* * *
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p 11 m 12 m 1 11 m
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A S x t S u t A S x t
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τ

τ

= + − +
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     (5.2) 

Using (5.1)-(5.2), we obtain the following algebraic system: 

2

0  

11 m p 11 p 21

11 m p 12 p 22

11 m 1 11

11 m 1 1

p 11 m

p 12

S A A S B S

S B A S B S

S A A S

S B A S

C S C

C S

τ

τ

= +


= +
 =


=
 =


=

    (5.3) 

which can be written as: 
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 0         0      

p p11 m 11 m

11 12

11 m 11 m 1

21  22
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A BS A S B
S    S

S A S B A
S S

CC

τ τ

  
    =    
      

    (6) 

In the system (6) we have more unknowns than equations, 
so the solution almost always exists. When Al, Amτ, and Bmτ are 
null, then the system and the model are without delay and we 
get the equations given in [29]. The adaptive control law based 
on the extended Command Generator Tracker (CGT) approach 
is given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )p e y x m u mu t K t e t K t x t K t u t= + +     (7) 

The adaptive law (7) has been applied for linear systems 
[30, 31]. Here we aim to extend it to a linear time delay system 
described by (1) by adding a delay in the input and output in 
the model (4). The tracking error is given by: 

( ) ( ) ( )y m pe t y t y t= −  and ( )eK t , ( )xK t and ( )uK t are adaptive 

gains concatenated into matrix K(t) as :  

[ ]( ) ( )  e x uK t K t K (t)  K (t)=     (8) 

Defining the vector r(t)(nr×1) as: 

( ) ( ( ) ( ))   
T

T T T

m p m m
r t y t y t x (t)  u (t) = −      (9) 

the control up(t) is written in a compact form as: 

( ) ( ) ( )pu t K t r t=     (10) 

where  

( ) ( ) ( )p IK t K t K t= +     (11) 

( ) ( ) ( ) . ( ) ,  0
T

p m p p pK t y t y t r t T T = − ≥      (12) 

.

( ) ( ) ( ) . ( ) ,   0T
I m p i i

K t y t y t r t T T = − >      (13) 

III. STABILITY STUDY 

The first step of the demonstration is to design a positive 
definite quadratic form in the state variables ex(t) and KI(t) of 

the adaptive system. 1

iT
−  is assumed to be a symmetric positive 

definite matrix. Then an appropriate choice of the Lyapunov-
Krasovskii functional [32] is: 

~ ~
1

( ) ( )

     ( ) ( )

t

T T

x x x x

t

T T

I i I

V e Pe e Qe d

Tr S K K T K K S

τ

α α α
−

−

= + +

 − −  

∫
    (14) 

where Tr is the trace of a matrix. Its time derivative is: 

. . .

.

~ .
1

( ) ( )

     (1 ) ( ) ( )

      2 ( )

T
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T
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II i
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Tr S K K T K S

τ τ τ

−

= + +

− − − − +

 −  

    (15) 

where P, Q are symmetric positive definite matrices of size 

n×n, 
~

K is a m×n matrix and S is a non-singular m×m matrix. 

Since the matrix 
~

K  appears only in the function V and not in 
the control algorithm, it is called fictitious gain matrix. It has 
the same dimension as K where: 

~ ~ ~ ~

e x up x m m
K r K C e K x K u× = + +     (16) 

The four gains 
~

eK , 
~

xK , 
~

uK  and 
~

xrK  are as 
~

K  fictitious. 

Then we take the equation of the error using the fact that 
*

x p pe x x= −  to find: 

.
* * * *

1

1
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    (17) 

If we set: *
( ) ( )p pdf f x f x= − and substitute *

pu from (5.0) 

and 
pu  from (7), we get: 

.

1

21 22

( )x p x x

p m m x m u m e p x

e A e Ae t

B S x S u K x K u K C e df

τ= + −
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    (18.a) 
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21 22
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p x x

T

p m m I p x p

A e A e t

B S x S u K r C e r T r df

τ= + − +

 + − − + 
    (18.b) 

Then the adaptive system is described by: 

[ ] dfrTreCrKuSxSB
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T
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xxpx

+−−++

−+=

2221

1

.

)( τ
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.
T

I p x i
K C e r T=     (20) 

Substituting (19) and (20) in (15), we get: 

. 1 21 22

1 21 22

~
1

.

( ) (

( ) (
    

    2 ( ) ( )  
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We can write it as: 

 



Engineering, Technology & Applied Science Research Vol. 10, No. 3, 2020, 5619-5626 5622 
 

www.etasr.com Keltoum: Model Reference Adaptive Controller for LTI Systems with Time-variant Delay 

 

.

1

21 22

1

21 22

~
1

( )

     ( )

     ( )

    ( )

    2 ( )  

   ( )

T T T T

x p x x x

T T T T T T T T T T T T T T

m p m p I p p x p p x

T T

x p x x x

T T

x p m m I p x p

T T T T

I i i x p

T

x

V e A Pe e t A Pe

x S B u S B r K B r T re C B Pe

e PA e e PAe t

e PB S x S u K r C e r T r

Tr S K K T T re C S

e t Q

τ

τ

−

= + − +

+ − − +

+ − +

+ − − +

 − +  
.

( ) (1 ) ( ) ( )                      
T

x x xe t e t Qe t dfτ τ τ− − − − +

   (22) 

Knowing that for two vectors ( ,1)U l and (1, )V l  have 

[ ]. .Tr U V V U= therefore: 
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which means that:  
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By setting: T

p pC GB P= and 1( )TG S S −= , the derivative of 

the Lyapunov function becomes: 
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Substituting 
~ ~ ~ ~

r e x up x m m
K K C e K x K u= + + in (24) we get: 
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Thus, if we set: 

~ ~

21 22( ) ( ) 0x um mS K x S K u
 − + − =  

    (25) 

or 
~

21xK S=  and 
~

22uK S=  (none of which is required for 

implementation), the derivative of V becomes: 
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Taking into account the Assumption 2, the derivative of the 
Lyapunov function verifies (27): 
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with 

~ ~

1
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Q P A B K C A B K C P Q= − + − +     (28) 

From (12), Tp is positive semi-definite, so (27) becomes: 
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Let’s take: 
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x

x
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e t τ
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 and 

1 1

2

1 1(1 )T
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A P Qτ
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= −  − − 
     (30) 

Then (29) is rewritten as: 

.

2

T

x xV E Q E df≤ − +     (31) 

When df is equal to zero, the error is asymptotically stable 

if and only if 
2 2

T
Q Q= is positive semi-definite. In the case 

where df is different from zero and satisfies the Assumption 1, 
then the derivative of the Lyapunov function verifies: 

.
*

2 2 2
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min 2 min 2
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x x x x x x x
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x
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L
e
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λ λ

λ
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≤ − + ≤ − + ≤

⇒ ≥

where 
min 2( )Qλ stands for the lowest eigenvalue of 

2Q which is 

a positive number since
2 2 0TQ Q= ≥ . The last inequality 

implies that the error ex is ultimately uniformly stable, which 
means that it belongs to a compact set around the origin. This 

set can be rendered much lower if we select 
min 2( )Qλ to be 
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large. One choice is given by 
2 .Q Iα= where I is the identity 

matrix and α is a scalar positive number. Finally the derivative 
of the Lyapunov function is negative definite in ex if

min 2/ ( )xe L Qλ≥ . Since V(t) is a positive definite function, 

then the vector ex(t) and the matrix KI(t) are bounded. We 
summarize the stability concept in the following theorem: 

• Theorem: 

The control given by (10), and the adaptive laws given by 
(11), (12) and (13) applied to the non-linear uncertain system 
(1) that verifies the Assumption 1 lead to a asymptotically 
stable error between the system and the model if and only if 

there are two P, Q matrices 0TP P= > and 0TQ Q= ≥ such 

that: 

1) The matrix 

1

2

1 1

             

    (1 )T

H PA
Q

A P Qτ

 
= −  

− − 
 

where  

~ ~

( ) ( )Te ep p p p p p
H P A B K C A B K C P Q= − + − +  

is positive semi-definite for some matrix 
~

eK . 

2) ( )  
T

pPB GC= , 1( ) ,TG S S −= for a non-singular matrix S. 

3) 2

1 2 1 2 1 2
( ) ( ) ,    0   f x f x L x x L x ,x R− < − > ∈   

~ ~

2

1 2 1 2 1 2

( ) ( )  

-      

( )         0,      0  , 0

( ) ( ) ,    0   ,

                

T
e ep p p p p p

T T

p p i

P A B K C A B K C P Q

I

PB GC T T G G

f x f x L x x L x ,x R

α

 − + − = −  
=

= ≥ > = >

− < − > ∈

 

where Rα +∈ , and I is the identity matrix. 

These relations imply that the feedback system is SPR for 
large α, and so that the original linear system is ASPR. 

IV. SIMULATION 

During simulations, it is required that the output of the 
system tracks the output reference. The controlled system is 
given by: 

.

1( ) ( ) ( ( )) ( )

( ) ( )

p p p p p p

p p p

x t A x t A x t t B u t

y t C x t

τ= + − +

=
 

with [ ]1

1   3 5   6 3
, , , 5  6

3   4 6   8 4
p

A A B C
     

= = = =     
     

. 

The transfer function of the reference model is given by: 

2
( )

1
mG s

s
=

+
 

The eigenvalues of Ap and A1 are given by:

{ }( ) -0.85; 5.85pAλ = and { }1( ) 0.31; 12.68Aλ =  which means 

that the two matrices are instable. The model input is illustrated 

in Figure 1, where 1mu = from 0 to 20s and 1mu = −  from 20s 

to 40s. From 40s to 60s we have chosen a sinusoidal input 

given by ( ) 2sin( )mu t t= and from 60s to 100s, another 

sinusoidal input, ( ) sin(t/3)mu t = , was selected.  

 

Fig. 1.  The model input ( )mu t  

A. Case 1: Without Perturbation 

In this case we supposed that the controlled system is not 
affected by noise measurement and actuator failure. The 

adjustable parameter is chosen to be 
3,31p iT T I= = ×  where 

3,3I  is the identity matrix of order 3. Figure 2 shows the two 

outputs where the output of the controlled system tracks the 
reference whatever is the model input. The controlled system is 
given in Figure 3 where we can see that this command has the 
same form as the model input. The four gains are presented in 
Figure 4. Note that these gains are used to construct the 
controlled system input (see (11), (12) and (13)). These gains 
are bounded so the controlled system input is also bounded. 

B. Case 2: With Perturbation and 3,31p iT T I= = ×  

In this case, a noise measurement and an actuator fault are 
added, so the perturbed system is given by: 

.

1( ) ( ) ( ( )) ( ( ) ( ))

( ) ( ) ( )

p p p p p p

p p p

x t A x t A x t t B u t d t

y t C x t n t

τ= + − + +

= +
 

where d(t) is the actuator fault given by d(t)=1sin(2t), and n(t) 
represents the measurement noise given by n(t)=1sin(4t). The 
adjustable parameters are taken as in the previous case. Figure 
5 illustrates the outputs of the system and the model. It is clear 
that the tracking has been deteriorated due to the perturbation 
that has affected the system. Figure 6 represents the control 
input where the controller is doing a big effort in order to damp 
the effect of the perturbation and let the system output track the 
reference model. 
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Fig. 2.  Outputs of the system and the model without perturbation 

 
Fig. 3.  The system command u(t) 

 
Fig. 4.  The gains Ke, Kx, and Ku 

 

 
Fig. 5.  Outputs of the system and the model with perturbation 

3,3
1

p i
T T I= = ×  

 
Fig. 6.  The system command u(t) 

 
Fig. 7.  Outputs of the system and the model with perturbation 

3,310p iT T I= = ×  
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C. Case 3: With Perturbation and 
3,310p iT T I= = ×  

In this case and in order to overcome the drawback that has 
appeared in the previous case, we augmented the adjustable 

parameter Tp, Ti as 3,310p iT T I= = × . Figure 7 shows a perfect 

tracking compared to Figure 5 and Figure 8 shows the effect of 
the controller in overcoming the perturbation and letting the 
system output track the reference model. Note that this 
command is bounded and does not represent a high oscillation. 
Figure 9 presents the gains that are bounded and they are 
adjusted to construct the system input. 

 
Fig. 8.  The system command u(t)  

 
Fig. 9.  The gains Ke, Kx, and Ku 

V. CONCLUSION 

This paper presents an adaptive command applied for a 
perturbed time delay system. The Lyapunov’s theory has been 
addressed in order to achieve a robust command against the 
uncertainty which is inherent in all real systems. The 
simulation results confirm the robustness of the developed 
command. 
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