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Abstract—In this paper, we address a new variant of the Multi-

Period Technician Routing and Scheduling Problem. This 

problem is motivated by a real-life industrial application in a 

telecommunication company. It is defined by a set of technicians 

having distinct skills that could perform a set of geographically 

scattered tasks over a multi-period horizon. Each task is subject 

to time constraints and must be done at most once over the 

horizon by one compatible technician. The objective is to 

minimize the total working time (composed by routing time, 
service time, and waiting time), the total cost engendered by the 

rejected tasks, and the total delay. Two variants of variable 

neighborhood descent are proposed, and three variants of 

variable neighborhood search to solve this problem. 

Computational experiments are conducted on benchmark 

instances from the literature. An analysis of the performance of 

the proposed local search procedures is given. The results show 
that our methods outperform the results of a mimetic method 
published in the literature. 

Keywords-technician routing and scheduling problem (TRSP); 

variable neighborhood search (VNS); variable neighborhood 

descent (VND) 

I. INTRODUCTION  

Technician routing and scheduling problem (TRSP) is a 
new challenge in logistics for the service sector and especially 
for utility companies in energy (gas, electricity), 
telecommunications, and water distribution areas [1]. The 
TRSP consists of planning tasks assigned to commercial or 
technical personnel, over a set of periods (days) in order to visit 
industrial facilities or customers for different types of activities: 
installation, inspection, repair, and maintenance. Until recently, 
the TRSPs, both static and dynamic cases, have received a 
limited attention. Thus, the number of publications and 
scientific reports is limited, although several variants of the 
TRSP have been studied in the literature. These variants can be 
divided into two classes: (i) one period TRSP, and (ii) multi-
period TRSP. The one period TRSP has been studied by 
authors who consider constraints as skills, time windows, tools, 
spare parts, stochastic service and stochastic travel times, 
multiple depots, and customer priority [1-6]. For the multi-
period TRSP, we can mention [7], which introduces the multi-
period technician scheduling problem with experience based on 
service times and stochastic customers. The aim is to minimize 

the expected sum of each day’s total service times over a finite 
horizon. Another multi-period TRSP was proposed in 2007 [8]. 
This problem consists in computing a schedule for technicians 
to perform a set of tasks on a five day horizon. The routing 
aspect is not considered, and tasks have different proficiency 
skill level constraints, that require a team of technicians. 
Authors in [10] studied the one-periodic variant of this 
problem, namely, the service technician routing and scheduling 
problem by taking on consideration the routing aspect. Authors 
in [9] presented a multi-period technician routing problem 
faced by a water distribution and treatment company. In [9], 
requests were divided into two categories (users requested 
interventions and company scheduled visits), and the skill 
constraints were not included.  

In this paper, we propose the study of a new multi-period 
TRSP variant where skill constraints and routing aspects are 
considered simultaneously, inspired by a realistic application in 
the telecommunication field. From the above survey, it appears 
that most papers on TRSP considered several realistic 
constraints, but to the best of our knowledge, the multi-periodic 
variant of TRSP with skill constraints and routing aspects has 
not been considered in the literature. The papers that consider a 
multi-periodic TRSP with skill constraints, and routing aspects, 
included other specific constraints as the technician team 
constraint [10]. Our study is also an extension of the problem 
studied in [9, 11 ,12] in which the skill constraints are ignored. 
As the considered problem is NP-hard and since it results from 
the combination of complex constraints, large instances can 
hardly be solved by exact methods. So, the best way to tackle 
this problem is by using the metaheuristic approaches. We 
choose a variable neighborhood search (VNS) to solve our 
problem, because its effectiveness has been proven on a 
number of variants of vehicle routing problems (VRP) as the 
vehicle routing problem with time windows [13], the vehicle 
routing problem with multiple depots and time windows [14, 
15], the periodic vehicle routing problem [16], and the 
workforce scheduling and routing problem [17]. 

In this paper, we propose two variants of variable 
neighborhood descent, as well as three variants of variable 
neighborhood search to solve the TRSP with skill constraints 
and routing aspects.  
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II. PROBLEM DESCRIPTION 

We consider a multi-period horizon H of several days 

(typically one week). For each day h∈H, a set of technicians K 
with different skills are available (a technician has one skill or 

more). Each technician k∈K has a known starting and ending 

location d∈D, which corresponds to the technician’s home or 
office (the starting location is the same with the ending 
location). Each technician has a working time limit per day 
Maxtimek,h. Requests belong to two categories: non-urgent 
tasks (NT) generated by the company, and urgent requests (UT) 
formulated by customers through a call center, for emergency 

reasons. Note that UT∪NT=T, with T the set of all tasks known 
in advance. Let si be the service time of the task i. The urgent 

tasks i∈UT are planned on a fixed day hi and are subjected to 
customer appointments within a given time window (bi, ei), 
where bi is the beginning of the time window, and ei the end of 
the time window. The task i could be affected to a technician k 
if the arriving time at task i (denoted aik) is before the end of 

the time windows (aik<ei). If ∀ k∈K, aik≥ei, then the task i is 
considered as a rejected task. If aik≤bi, a waiting time Wik 

occurs, with Wik=bi-aik. If aik≤ei, and aik+si>ei, a delay Lik 
occurs, with Lik=(aik+si)-ei. Non-urgent tasks are 
characterized by a validity period composed of one or several 

days [hbi, hei]∈H, where hbi is the early day and hei is the 
deadline for the execution of i. A request i requires certain 
skills (qualifications), and must be executed by only one 
compatible technician. The goal is to build a set of routes per 
day and per technician (at most |Kh| routes per day). Each route 
Rhk is a sequence of tasks assigned to only one technician k 
and one-day h. The following constraints must be satisfied: 1) 
each task must be executed at most once within the validity 
period or within the time window, 2) the total time of each 
route Rhk should not exceed Maxtimek,h, 3) the competence 
requirements must be respected, 4) each route must start and 

end at the same location d∈D. The objective function, 
measured in monetary units denoted f(x), consists in 
minimizing three costs: (i) the total working time composed by 
routing time that depends on the number of kilometers travelled 
by each technician, the service time and the waiting time, (ii) 
the total cost engendered by the ejected tasks, and (iii) the total 
delay. 

III. SOLUTION METHODOLOGY 

In this section, we describe the general framework of the 
variable neighborhood search (VNS), and then we present the 
basic components of the VNS that we have developed to solve 
our problem. 

A. Variable Neighborhood Search  

VNS is a metaheuristic, or a framework created 1997 [18, 
19] for approximately solving optimization problems, including 
combinatorial and non-linear continuous optimization problems 
[20, 21]. VNS is based on the systematic changes of 
neighborhood structures during the search for a (near) optimal 
solution of a considered problem. These changes occur in both 
descent phase, to improve the solution, and shaking and 
perturbation phase that aims to escape local optima traps. The 
main structure of the VNS (Algorithm 1) is shown in Figure 1. 

 
Fig. 1.  Algorithm 1:Variable neighborhood search VNS  

The inputs of VNS heuristic are x, kmax and tmax, and they 
present the initial solution, the number of neighborhoods to be 
explored and the maximum allowed CPU time. The main 
ingredients of variable neighborhood search include an 
improvement procedure to improve the current solution and a 
shaking procedure to perturb the search and escape from the 
corresponding valley, see lines 3 and 4. The improvement 
procedure in line 5 could be a single local search or an ordered 
list of set of neighborhoods.  

B. Initial Solution  

We propose to use as an initial solution the best insertion 
method with sorting list. This method is performed by two 
steps. In the first step, a list of unserved tasks (L, L=T), is 
sorted in increasing order according to validity day (VD), that 
represents the length of the period (number of days) in which 
the tasks can be done, VDi=hei–hbi. In the second step, the 
algorithm select a task i from the head of L, and scan all 
feasible insertions in all routes Rhk. The insertion cost of i in a 
route Rhk between two tasks x and y, named δ(i,Rhk,x,y) will be 
calculated as in (1). The algorithm performs the best insertion. 

( ) ( )

( )

    

 

 , , ,   –   
xi iy xy jk
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i Rhk x y C C C j Rhk i W
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δ = + + Σ ∈ ∪
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C. Local Search Procedures  

We propose five local search operators to be used either 
individually or together to focus the search in the inner loop of 
VNS. We consider three intra-route and two inter-route local 
search methods. The best improvement strategy is used for 
each method. The local search methods are:  

• One intra-route relocate: one node (task) from the route is 
removed and reinserted in other positions in the same route. 

• One intra-route exchange: two nodes (tasks) are exchanged 
in the same route. 

• 2 opt: two arcs are removed and reinserted in the same 
route  

• One inter-route relocate: one node (task) from the route is 
removed and reinserted in one other route in the solution. 

• One inter-route exchange: two nodes (tasks) are exchanged 
between two different routes. 

D. Variable Neighborhood Descent Procedures 

The variable neighborhood descent (VND) procedures 
explore several neighborhood structures either in a sequential 
or nested (or composite) fashion to possibly improve a given 
solution [21] because the solution which is a local optimum 
with respect to several neighborhood structures is more likely 
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to be a global optimum than the solution generated as a local 
optimum for just one neighborhood structure. The order of 
neighborhoods may play an important role in the quality of the 
final solution [22]. Two variants of VND are discussed in this 
paper regarding the decision made in neighborhood change 
procedure. If an improvement has been detected in some 
neighborhood: (1) Basic VND (B-VND): we return to the first 
neighborhood on the list, (2) Union VND (U-VND): at each 
iteration all the neighborhoods in the list are used to explore the 
search, and the next incumbent solution is the best one found 
by the best neighborhood. The outline of basic VND is 
presented in Algorithm 2 (Figure 2). The steps of the sequential 
neighborhood change which is presented in line 5 (Algorithm 
1) and line 7 (Algorithm 2) are given in Algorithm 3 (Figure 3). 
If an improvement of the incumbent solution in some 
neighborhood structure occurs, the search is resumed in the 
first neighborhood structure (according to the defined order) of 
the new incumbent solution, otherwise the search is continued 
in the next neighborhood (according to the defined order). 

 

 
Fig. 2.  Algorithm 2: Variable neighborhood descent VND 

 

Fig. 3.  Algorithm 3: Neighborhood change procedure 

E. Shaking Procedure 

The shaking procedure is used in VNS as mentioned in line 
3 of Algorithm 1 in order to hopefully resolve local minima 
traps. Our shaking procedure consists in selecting a random 
solution from the kth neighborhood structure, Nk(x). 

IV. COMPUTATIONAL RESULTS 

All developed algorithms were implemented in Matlab and 
all tests were carried out on a MacBook Pro Intel Core™ i7-
3520M with 2.90GHz CPUs, sharing a memory of 8GB (the 
algorithms use only one CPU). Our problem is an extension of 
the problem studied in [9, 11, 12], in which the skill constraints 
are ignored. For this, we use the data instance used in [9, 11, 
12], and evaluate the performance of our methods with their 
mimetic algorithm. We first compare the performance of 
different local search procedures with the initial solution. 
Different VND procedures are then tested and compared. 

Finally, we compare and evaluate the VNS procedures 
proposed in this paper.  

A. Description of Experimental Data Sets  

In order to evaluate and assess the performance of the 
proposed approaches, we compare them with the methods 
proposed by Tricoire in [9, 11, 12]. The instances of [9, 11, 12] 
are used for tests. For this, the skill constraints in our problem 
are relaxed, and lunch break constraints are added. They are 
inspired by a real life case, and they are available with detailed 
experimental results in [9] as well as on the web site: 
http://www. emn.fr/z-auto/routing-pbs/. All instances have a 
five-day planning horizon and three technicians available every 
day. The demands are randomly distributed over a 40km

2
 map, 

and Euclidean distances are used. The technicians drive at a 
constant average speed of 35km/h. Two sizes of instances are 
tested C1 with 100 customers and C2 with 180 customers, each 
one with 5 variants according to the distribution and the 
percentage of time windows and the percentage of urgent and 
non-urgent tasks. 

B. Evaluation Of The Performance Of The Local Search 

Procedures  

We study the impact of the locale search procedures. The 
results are shown in Table I. The first column indicates the 
name of each instance. Column 2 presents the result found by 
the initial solution, which is based on the best insertion 
strategy. The remained columns provide both the Gap and the 
computing time for each local search operator. The Gap is 
calculated by (2). Row 13 mentions the average results of all 
instances. The ranks of the local search operators according to 
their performances and computing time are provided in the last 
two rows. The best results are in bold. 

( )–( )Gap% /( ) ( )heuristic heuristic LS heuristic LSf x f x f x+ +=  (2) 

From Table I, we note that the 2 opt operator is the best one 
in almost all instances but it is the third one in terms of 
computing time. It is also worth noting that all the operators 
perform well and they all improve on average at least 7.14% 
and at most 9.66% the results found by the heuristic.  

C. Variable Neighborhood Descent Procedures 

The aim of this section is to evaluate and to compare 
different variants of VND procedures according to the manner 
in which the neighborhood is changed after each improvement 
occurs. Namely, it is obvious that the order of neighborhoods 
on the list affect the performance of VND procedures [22]. 
Thus, we take into account two possible orders of LS 
procedures according to their performance: 1) the value of f(x), 
and 2) the computing time. The used orders are mentioned in 
Table II. The results of VND procedures on Tricoire instances 
are summarized in Table III. The settings of the VND variant 
are provided in column and row headings as described above. 
For example, in Table III, the values in the two cells, at the 
intersection of the row C100_1 and 4th column, correspond to 
value achieved by B-VND that explores neighborhoods using 
the 1st order, as well as its execution time in second. The next 
column reports the percentage deviation of the obtained 
solution compared to best solution of the mimetic algorithm RE
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proposed by Tricoire [9, 11,12]. The deviations are calculated 
by:  

( )Dev% – /         ( ) ( ) ( )VND memetic memeticf x f x f x= (3) 

The next column reports the percentage deviation of the 
obtained solution compared to the result found by the initial 

solution, which is calculated by (2). In Table III, we report the 
results obtained by B-VND and U-VND using the two 
proposed orders. The average results are mentioned in the two 
last rows. In Table III, values in bold followed by a star 
represent new best solutions obtained by our method. 

TABLE I.  COMPARISON BETWEEN LOCAL SEARCH PROCEDURES 

 
 

2 Opt One intra route relocate One intra route exchange One inter route exchange One inter route relocate 

instances f(x)Heuristic Gap Time (s) Gap Time (s) Gap Time (s) Gap Time (s) Gap Time (s) 

C1_1 21024.64 14.04% 0.40 12.74% 0.47 12.79% 0.47 0.00% 0.29 3.74% 5.79 

C1_2 19347.33 6.15% 0.40 4.63% 0.45 4.65% 0.41 3.11% 5.49 5.30% 4.31 

C1_3 19658.79 8.68% 0.39 6.55% 0.43 5.74% 0.36 0.72% 1.53 4.29% 3.45 

C1_4 22232.21 9.86% 0.40 7.29% 0.29 7.32% 0.35 7.13% 5.26 6.10% 2.96 

C1_5 18219.65 -2.63% 0.19 -2.75% 0.28 -1.84% 0.24 -2.46% 2.58 8.58% 7.05 

C2_1 39085.88 10.03% 1.76 7.04% 1.45 7.07% 1.96 15.04% 44.40 8.27% 30.95 

C2_2 34873.74 12.22% 1.76 6.69% 1.62 5.89% 1.34 4.29% 22.04 6.47% 20.96 

C2_3 36349.52 13.70% 1.70 13.22% 1.75 11.36% 1.52 13.09% 39.18 15.12% 24.57 

C2_4 36679.56 8.59% 1.46 7.32% 1.95 6.00% 1.64 7.72% 29.95 7.97% 25.62 

C2_5 33700.93 11.00% 1.74 8.42% 1.27 9.58% 1.46 12.25% 28.76 6.23% 19.96 

Avg 28117.23 9.66% 1.02 7.47% 0.99 7.14% 0.98 7.17% 17.95 7.58% 14.56 

Rank (f(x))  1 3 5 4 2 

Rank (Time)  3 2 1 5 4 

 

TABLE II.  ORDERS OF LOCAL SEARCH PROCEDURES 

5 Local search operators 1st  2nd 

Order of 

local search 

2 Opt 1 3 

One intra route relocate 3 2 

One Intra route exchange 5 1 

One Inter route exchange 4 5 

One inter route relocate 2 4 
 

From the results presented in Table III, we may conclude 
the following: The VND variants that explore neighborhoods in 
1st order offer the best results in both objective function and 

CPU time compared to the other order type. If we consider the 
average results over all test instances, it appears that the best 
average results are obtained by U-VND even when we change 
the order of neighborhoods. So we can say that the U-VND is 
more effective than B-VND in terms of the objective function 
and CPU Time. From the average results over all test instances 
we show that all our VND procedures implemented and 
discussed in this paper are competitive and perform better than 
the mimetic algorithm when solving the same problem. For 6 
instances among 10, a new best solution is found by our 
method.  

TABLE III.  EVALUATION OF DIFFERENT VARIANTS OF VND 

 
B-VND U-VND 

 
Orders 1st 2nd 1st 2nd 

Instances 
 

Mimetic of 

Tricoire 
Value 

% Dev 

mimetic 

%Dev 

heuristic 
Value 

% Dev 

mimetic 

% Dev 

heuristic 
Value 

% Dev 

mimetic 

% Dev 

heuristic 
Value 

% Dev 

mimetic 

% Dev 

heuristic 

C100_1 
f(x) 17893.91 17578.37* -1.76% 19.61% 17594.18 -1.68% 19.50% 17578.37* -1.76% 19.61% 17594.03 -1.68% 19.50% 

Time (s) 
 

9.92 
  

11.42 
  

8.97 
  

13.28 
  

C100_2 
f(x) 15977.12 17202.92 7.67% 12.47% 17136.03 7.25% 12.90% 17153.67 7.36% 12.79% 17164.61 7.43% 12.72% 

Time (s) 
 

9.52 
  

9.58 
  

8.06 
  

8.73 
  

C100_3 
f(x) 16714.03 17493.5 4.66% 12.38% 17529.38 4.88% 12.15% 17491.94 4.65% 12.39% 17538.11 4.93% 12.09% 

Time (s) 
 

7.32 
  

5.93 
  

5.03 
  

6.74 
  

C100_4 
f(x) 17489.36 18285.77 4.55% 21.58% 18265.73 4.44% 21.72% 18229.85 4.23% 21.95% 18031.33 3.10% 23.30% 

Time (s) 
 

11.37 
  

12.68 
  

9.5 
  

14.03 
  

C100_5 
f(x) 16025.91 16535.47 3.18% 10.19% 16611.1 3.65% 9.68% 16535.47 3.18% 10.19% 16364.41 2.11% 11.34% 

Time (s) 
 

9.83 
  

9.78 
  

9.91 
  

15.47 
  

C180_1 
f(x) 28945.36 28607.43 -1.17% 36.63% 29299.56 1.22% 33.40% 28405.93* -1.86% 37.60% 28579.51 -1.26% 36.76% 

Time (s) 
 

113.28 
  

107.17 
  

84.19 
  

96.87 
  

C180_2 
f(x) 31191.12 28156.24 -9.73% 23.86% 27780.88 -10.93% 25.53% 27748.3 -11.04% 25.68% 27729.19* -11.10% 25.77% 

Time (s) 
 

66.39 
  

72.82 
  

58.22 
  

46.09 
  

C180_3 
f(x) 27728,44 26464,43 -4,56% 37,35% 27472,29 -0,92% 32,31% 26034,96* -6,11% 39,62% 26886,39 -3,04% 35,20% 

Time (s) 
 

85,99 
  

89,47 
  

78,46 
  

77,85 
  

C180_4 
f(x) 30245,61 29348,92 -2,96% 24,98% 29522,29 -2,39% 24,24% 30124,57 -0,40% 21,76% 29238,94* -3,33% 25,45% 

Time (s) 
 

57,23 
  

76,22 
  

52,22 
  

61,71 
  

C180_5 
f(x) 28158,57 26880,26 -4,54% 25,37% 26566,25 -5,65% 26,86% 26395,74* -6,26% 27,68% 26625 -5,45% 26,58% 

Time (s) 
 

78,74 
  

93,93 
  

70,71 
  

60,92 
  

Average 
f(x) 23036,94 22655,33 -1,66% 24,11% 22777,77 -1,13% 23,44% 22569,88 -2,03% 24,58% 22575,15 -2,00% 24,55% 

Time (s) 
 

44,96 
  

48.9 
  

38.53 
  

40.17 
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It is worth noting that all VND procedures also perform 
better and they all improve on average at least 23.44% and at 
most 24.58% the results found by the heuristic. That means that 
VND procedures improve the solution in average 15% more 
than the single local search operators (Table I). 

D. Variable Neighborhood Search Procedures 

In this section we evaluate and compare three variants of 
VNS procedures regarding to the improvement procedures in 
the inner loop: (1) B-VNS that uses a simple local search in the 

inner loop at each iteration and move to the other one as in 
Algorithms 1 and 3, (2) VNS_B-VND that uses a B-VND 
procedure, and (3) VNS_U-VND that uses a U-VND in the 
improvement phase. The neighborhoods in the VND 
procedures are ordered in the 1st order. The performances of 
VNS procedures have been tested on class C1 of the instances 
described above. We tested our VNS procedures by using 4 
different time limits, ranging from 360s to 1140s. For each 
instance and each VNS we ran the Algorithm 5 times. The 
results are summarized in Table IV and Figure 4. 

TABLE IV.  EVALUATION OF DIFFERENT VARIANTS OF VNS 

 
BVNS VNS_B-VND VNS_U-VND 

Time limit (s) Instances Mimetic of Tricoire % Dev_Best % Dev_Avg % Dev_Best % Dev_Avg % Dev_Best % Dev_Avg 

360 

Average C1 16820.07 

-0.27% 1.56% -1.04% 0.18% -1.25% 0.14% 

720 -0.56% 1.06% -1.59% -0.37% -1.87% -0.27% 

1080 -0.56% 0.99% -1.69% -0.53% -2.11% -0.47% 

1440 -0.57% 0.89% -1.96% -0.66% -2.19% -0.60% 

Average -0.49% 1.12% -1.57% -0.34% -1.85% -0.30% 

 

For each time limit and each VNS variant, we report the 
deviation from the best solution found over all variants of 
instance of class C1 in 5 runs compared to the best solution 
found by the mimetic algorithm of [9, 11, 12] (named % 
Dev_Best in Table IV). We also compute the deviation from 
the average value of the solutions found in 5 runs for all 
instances of C1 compared to the best solution found by the 
mimetic algorithm (named % Dev_Avg in Table IV). The 
deviations are calculated by (3). 

 

 
Fig. 4.  Comparison between VNS procedures 

From the results presented in Table IV and Figure 4 we 
may draw the following conclusions: 

Firstly, we remark that the performance of VNS procedures 
in this paper depends on the time limit. As we have a long time 
we achieve the best results. All VNS variants outperform the 
results of the mimetic algorithm even if our VNS methods are 
stopped at 360s. The collaboration of all local search 
procedures is more beneficial than only the use of one local 
search in the inner loop in the VNS procedure. If we consider 
the average results over all variants of instance C1, it appears 
that the best average results are obtunded by VNS_U-VND, 
and that confirms what we found in the last section. 

V. CONCLUSION AND PERSPECTIVES 

In this paper, we considered a new variant of the Multi-
Period Technician Routing and Scheduling Problem motivated 
by a real-life industrial application in a Telecommunication 
Company. To solve the problem, two variants of variable 
neighborhood descent B-VND and U-VND, as well as three 
variants of variable neighborhood search BVNS, VNS_B-VND 
and VNS_U-VND are proposed. All heuristic methods were 
tested and compared with the methods proposed by Tricoire [9, 
11,12]. The results confirm the effectiveness of our methods. 
Regarding future work, we will generate other instances to 
intensify the experimentations. Also, we will consider the 
dynamic aspect, where the demands appear dynamically over 
the planning horizon. 
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