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Abstract—A new multidisciplinary workflow is suggested to re-

characterize the Hamra Quartzite (QH) formation using artificial 
neural networks. This approach involves core description, 

routine core analysis, special core analysis and raw logs of 

fourteen wells. An efficient electrofacies clustering neural 

network technology based on a self-organizing map is performed. 

The inputs in the model computation are: neutron porosity, 

gamma ray and bulk density logs. According to the self-
organizing map results, the reservoir is composed of five 

electrofacies (EF1 to EF5): EF1, EF2 and EF3 with good 

reservoir quality, EF4 with moderate quality, and EF5 with bad 

quality. Hydraulic flow units are determined from well logs and 

core data using the flow zone indicator (FZI) approach and the 

multilayer perception (MLP) method. Obtained results indicate 

eight optimal hydraulic flow units. Hydraulic flow units for un-
cored well are determined using the MLP, the used inputs to 

train the neural system are: neutron porosity, gamma ray, bulk 

density and predefined electrofacies. A dynamic rock typing is 

achieved using the FZI approach and combining special core data 

analysis to better characterize the hydraulic reservoir behavior. 

A best-fit relationship between water saturation and J-function is 

established and a good saturation match is obtained between 
capillary pressure and interpreted log results. 

Keywords-flow zone indicator (FZI); hydraulic flow unit 

(HFU); multi-layer perception (MLP); self-organizing map (SOM); 

electrofacies (EF); J-function; lithofacies 

I. INTRODUCTION  

A crucial step in building a geological model is the 
assignment of petrophysical properties (porosity, permeability, 
fluid saturations) in the model cells between and beyond the 
existing well control [1]. The previous geological models of 

Hamra Quartzites (QH) fail to accurately classify and make 
estimations of the reservoir’s petrophysical properties [2]. As 
part of the updating of the geological model of QH in the Hassi 
Messaoud (HMD) southern periphery oil field, it would be 
interesting to refine the previous definitions of rock types. 
Reservoir rock typing should be a cooperative procedure 
between various disciplines such as geology, petrophysics and 
reservoir engineering [3]. These specialties have diverse 
definitions of rock types because of their different work scales. 
The authors provide many terminologies of rock types such as 
lithofacies, electrofacies (EF) and hydraulic flow unit (HFU). 
Geologists characterize lithofacies based on similar diagenetic 
process and depositional environment [4], petrophysicists 
determine EFs based on the same responses of log 
measurements in a well and reservoir engineers describe HFUs 
based on the identical pore size distribution and pore throat size 
[5]. These disciplines are not studying the rock types in the 
same manner and also there is a complex correlation between 
terminologies due to dimensionality problems [3]. The 
challenge is to choose a reference between these rock types, 
keeping in mind that raw log data have a restricted resolution 
and depend on environmental conditions [6], routine core data 
and core description have a lacking coverage and are sensitive 
to interpretation [3]. Artificial neural network (ANN) 
approaches are often employed in reservoir characterization 
dealing with EF and HFU modeling [7-9]. They are powerful 
tools in reservoir nonlinearity examination [10]. This ability 
grades ANN among the most used clustering and classification 
methods [11]. In literature, the self-organizing map (SOM) is 
performed to delineate EFs present in the reservoir [12]. Multi-
layer perception (MLP) neural networks have been recognized 
as universal function approximators [9, 13].  
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In this study, we present a multidisciplinary workflow for 
dynamic rock typing in reservoir characterization based on core 
description, well logs, routine core analysis (RCA) and special 
core analysis (SCAL). First, the lithofacies are derived from the 
grain size, the bioturbation and the silicification. Then, an 
unsupervised ANN SOM clustering algorithm is performed to 
delineate EFs present in the QH reservoir. Next, a capillary 
pressure (PC) based rock typing is performed using SCAL, PC 
and pore throat radius (PTR) distributions available in one well 
for the QH reservoir. After that, HFUs are determined from 
core data using flow zone indicator (FZI) approach, a 
supervised ANN MLP algorithm is carried out to determine the 
permeability in un-cored wells. Finally, a saturation height 
modeling (SHM) is performed and an equation for estimating 
water saturation as a function of height in a reservoir based on 
capillarity concepts is provided. 

II. GEOLOGICAL CONTEXT AND LITHOFACIES 

DETERMINATION 

The QH reservoir is located on lower Ordovician 
formations, it is a newly proven oil play in the HMD southern 
periphery oil field. The Cambro-Ordovician stratigraphic 
sequence of the HMD oil field consists of a siliciclastic series 
unconformably overlying an eruptive metamorphic basement 
(Figure 1) [14]. The QH reservoir is divided in six zones 
(QH_1 to QH_6) which are partially or totally eroded by the 
Hercynian tectonic phases. This subdivision is mainly based on 
logging responses and, in particular, on the GR logs [15]. 

 

 
Fig. 1.  Paleozoic section of the HMD southern periphery oil field, Algeria. 

The sedimentation of QH is dominated by sandstones 
which are intensively bioturbated (skolithos, pipes-rock) and 
underwent during their burial history an important quartz 
cementation which modified their mechanical properties and 
porosity [16]. The cores were used to define lithofacies based 
on the grain size, the bioturbation and the silicification. These 
lithofacies are deposited in foreshore, upper shoreface and 
proximal/middle to distal/middle shoreface environments.The 
lithofacies 1 and 2 are deposited in foreshore to upper 
shoreface environment. They appear to be shaly and consist of 
very fine sandstones with low porosity and which end with 
clay. They belong to the base of the QH. The lithofacies 3 and 
4 are deposited in proximal/middle shoreface environment. 
They consist of fine-to-medium sandstones with wide burrow 
and tigilites with low silicification. These two lithofacies, 
which usually present the best rock qualities, correspond to the 
middle part of the QH. The lithofacies 5 is deposited in 
distal/middle shoreface. It is described as fine sandstones, more 
homogeneous, highly silicified and surmounted by sandstones 
which are rich in microstylolites. It belongs to the upper part of 
the QH. 

III. METHODOLOGY AND DATA 

The objective of this work is to propose a multidisciplinary 
workflow for dynamic rock type characterization. This 
approach includes several steps. 

A. Electrofacies Determination 

The expression EF was defined as a set of raw well log 
answers which describes a portion of the reservoir and allows 
differentiation from the properties of other rock volumes [17]. 
The EF classification has been used to guide the distribution of 
petrophysical properties in the geological model, in a manner 
that reflects significant distinctions in reservoir characteristics 
and spatial framework which are consistent with the geologic 
controls on these characteristics. In the studied QH reservoir, 
we have applied the unsupervised method SOM for EF 
classification. In an unsupervised learning, the network does 
not receive any information from the environment indicating 
what should be its output. Thus, the network itself must 
discover the correlations between the learning patterns. Cells 
and connections must reach a certain degree of self-
organization [12]. The Kohonen SOM is usually composed of a 
two-dimensional neuronal grid (Figure 2). It offers the 
possibility to perform reduction in dimensions by projecting 
multidimensional data on a two or three dimension map. Each 
neuron i of the output layer has a neighborhood in this space 
[18] and has recurrent lateral connections in its layer (the 
neuron inhibits the distant neurons and lets act the neighboring 
ones). This type of neural network is mainly used in 
classification through an unsupervised learning Kohonen 
algorithm [7, 18, 19, 23]. If we name W�  the vector of the 
connections, or vector of weight, connecting the input vector Z 
of the input layer to the neuron i of the output layer, the whole 
dataset W�  constitutes the SOM parameters which are 
determined during the learning phase. The learning takes place 
in a predefined number of cycles which correspond to the 
presentation of the set of observations to the network. 
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Fig. 2.  Concept of the SOM method. 

In this study, we use the Ipsom module of Techlog. It 
provides an automatic unsupervised classification solution 
which is based on the neural network technology (Kohonen 
algorithm). The input data concern the raw well logs data such 
as neutron porosity log (NPHI), bulk density log (RHOB) and 
gamma ray log (GR) and the outputs are the map and the 
optimal number of EFs. The first stage corresponding to the 
learning phase will identify the existing EFs in a select group 
of six model wells and the second stage will be to apply these 
EFs determined from the model wells to the eight remaining 
wells with the appropriate sequence of logs.  

B. Hydraulic Flow Unit Determination 

The expression HFU was defined as a mappable part of the 
reservoir with some particular geologic and petrophysical 
features that affect fluid flow [20, 21]. So, if we subdivide the 
reservoir into HFUs, permeability can be predicted with 
sufficient accuracy. The main purpose of this work is to 
determine the flow units in the QH reservoir. Authors in [20] 
declared that core data measurements give information about 
depositional and diagenetic features which control the 
variations in pore geometry which leads to hydraulic flow units 
with the same flow properties. Their proposed method is 
focused on Cozeny-Karmen equation, so, by using a various 
combination of petrophysical, geologic and statistical analyses, 
flow units are associated to well log responses to build 
regression models for permeability estimations in the un-cored 
wells. Each HFU is characterized by a single flow zone 
indicator (FZI), which also depends on the reservoir quality 
index (RQI) and void ratio φZ [22, 24, 25]. These three 
parameters are defined according to the following equations: 

RQI	 = 0.0314× � �
��    (1) 

φ� = ��
����			     (2) 

FZI = 	 �
������� =

� !
�"     (3) 

where φe is the effective porosity in fraction, K  is the 
permeability in mD, RQI is the reservoir quality index in µm, 
φZ is the normalized porosity index, FZI  is the flow zone 

indicator in µm, F$ is the shape factor, τ is the tortuosity,	S'( is 

the surface area per unit grain in µm. The permeability in mD 
can be calculated as: 

K = 1014× FZI)*+,- × ��.
(����).   (4) 

The flow unit determination methods that have the most 
popularity are stratigraphic modified Lorenz plot (SMLP), 
Winland R35 and flow zone indicator (FZI) [24, 25]. In this 
study, we only focus on the FZI, thus, after calculating 
parameters of RQI and FZI from core data, HFUs can be 
differentiated on the basis of FZI values. Several clustering 
methods can be applied for FZI zoning. The most popular are 
Log-Log plot of RQI vs φZ, histogram analysis of FZI 
distribution and the probability plot of FZI distribution. In this 
paper, the number of HFUs is obtained by Lorenz plots. In un-
cored wells, the HFUs can be estimated using a MLP approach, 
a computation mathematical model is built between input and 
output data. The used inputs to train the MLP system are: 
NPHI, GR, RHOB logs and predefined EFs. The calculated 
FZI values are used as an output. 

C. Capillary Pressure and Saturation Height Modeling 

A capillary pressure (PC) based rock typing is performed 
using SCAL, PC and pore throat radius (PTR) distributions 
available in one well for the QH reservoir. A saturation height 
modeling is an equation for estimating water saturation as a 
function of height in a reservoir based on capillarity concepts. 
It is important for volumetric calculations and it is performed 
by geoscientist to predict the saturation in the reservoir for a 
given height above the free water level.  

IV. RESULTS AND DISCUSSION 

A. Determination of the EFs on Learning Wells 

Recorded log data of 6 wells located in the HMD southern 
periphery were used as models in the learning phase. They are 
chosen on the basis of their stratigraphic and geographic 
coverage and the quality and reliability of their measurements. 
According to core description and sedimentary environments, 
four tests clusters (3, 4, 5 and 6) were tried, assessed and 
compared. The results with five clusters highlight a good 
differentiation of EFs on the GR-NPHI and GR-RHOB cross 
plots (Figure 3(a)-3(b)), while there is insignificant overlap in 
the RHOB-NPHI cross plot (Figure 3(c)). This mode provides 
the best combination on both statistical and geologic grounds 
with comparison to core data and the review of EF distributions 
in the geological model. The mean log values of the five EFs in 
the model wells are summarized on Table I, the QH reservoir 
appears composed of five EFs: EF1, EF2 and EF3 are similar 
to clean sandstones with different rock qualities (very porous, 
porous and compact sandstone), EF4 is shaly sandstone and 
EF5 is shale. 

B. Propagation of the EFs to Other Wells 

The determined EFs are propagated, in our case, to 10 wells 
having the same set of logs (GR, NPHI and RHOB) as the 
learning wells. The results, for one well, are shown in Figure 4. 
A systematic quality control of the results was performed by 
examining each well predicted EFs distribution (Figure 4(g)) 
and their associated probabilities (Figure 4(h)). The probability 
of each EF appears very high (>65%), however, some intervals 

v Input Layer 

Z1 Z3Z2 ZN

Input Vector

Output Layer 

Wi Vector of Weight

Neuron i
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show a probabilistic distribution less than 40%. The EF3, with 
the best reservoir quality, is prevalent in the middle part of the 
QH, from 3400m to 3430m depth (Figure 4(g)). This is in 
complete agreement with the previous geological and 
sedimentary study. 

 

 
Fig. 3.  EF clustering results corresponding to five clusters, during the 

learning phase (QH, HMD oil field southern periphery): (a) cross plot GR-

NPHI, (b) cross plot GR-RHOB, (c) cross plot RHOB-NPHI, and  
(d) Map projection. 

TABLE I.  MEAN LOG VALUES OF THE 5 EFS DETERMINED BY SOM 

DURING THE LEARNING PHASE 

EF 
Average GR Average RHOB Average NPHI 

GAPI g/cm
3
 v/v 

EF1 8.3 2.58 0.015 

EF2 10.1 2.53 0.037 

EF3 11.5 2.48 0.060 

EF4 30 2.51 0.065 

EF5 70 2.58 0.090 

 

C. Capillary Pressure Based Dynamic Rock Typing 

In this step, the SCAL and PC data are available in one well 
of the QH reservoir. A PC data inventory is carried out, these 
data are loaded for data quality control. They are edited and 
corrected where issues with naming conventions units and 
inconsistent measurements are identified. Water saturation is 
plotted against PC in cross plots to check the shape and trend of 
the PC curves. Pore throat radius (PTR) distributions are 
integrated with capillary pressure data (curve trend, shape and 
irreducible water saturation range) to identify 3 HFUs (Figure 
5(a)-(b)). 

D. FZI Estimation in Cored Well 

Figure 6 shows a modified Lorenz plot generated for the HMD 
oil field southern periphery, which seems to suggest the 

presence of 5 or 9 possible HFUs from the observed inflexion 
points. Information obtained from lithofacies, EF analysis and 
PC based rock typing is integrated with FZI approach to 
classify QH reservoir into eight HFUs. However, a clear trend 
particular to each HFU is observed. No PC data exists for 
HFU1, HFU5, HFU6, HFU7 and HFU8 for QH reservoir. The 
HFU classification for this case is mainly driven by FZI 
correlation. 

 

 
Fig. 4.  Results after propagation of the 5 EFs determined by SOM to a 

well (QH, HMD oil field southern periphery): (a) measured depth, (b) QH 

subdivision, (c) GR log, (d) RHOB and NPHI logs, (e) PHIE log, (f) VSH log, 
(g) EF distribution, and (h) predicted probability associated to each EF. 

 

Fig. 5.  PC based analysis showing 3 HFUs (QH, HMD oil field southern 

periphery): (a) water saturation-PC curves cross plot, (b) pore throat radius 

(PTR) distribution. 

Figure 7 shows a composite plot of core porosity and 
permeability including PC data from all cored wells against 
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their respective FZI. The best quality rocks correspond to the 
red shaded points having the highest FZI values while the 
brown and cyan points represent the poorer quality rocks. As it 
is clearly indicated in Figure 8, this approach provides a very 
sufficient classification for the considered data. Polyline based 
on FZI is then fitted through the different HFUs to define poro-
perm relationships specific to each HFU. These relations are 
subsequently used in the geological model to propagate 
permeability across the field. 

 

 
Fig. 6.  Flow capacity-storage capacity Lorenz plot (QH, HMD oil field 

southern periphery) 

 
Fig. 7.  Composite plot of core porosity and core permeability from all 

cored wells against their respective FZI (QH, HMD oil field southern 
periphery) 

For each HFU (from HFU1 to HFU7) one equation of core 
permeability vs core porosity vs FZI is determined except for 
the HFU8, since the FZI is not applied on it. So, the HFU8 is 
defined like a very bad HFU with permeability less than 1mD 
and porosity less than 4%. The equations based on FZI 
correlation which provide the best poro-perm relationship for 
QH reservoir are summarized in Table II, in which, it can be 
seen that the correlation coefficient R² of each correlation 
clearly indicates the accuracy of HFU approach in permeability 
correlating with porosity. As part of the validation and quality 
control aspects of the rock typing, the cluster analysis results, 

consisting of 8 HFUs are investigated in terms of their 
stratigraphic and geographic distributions and the 
corresponding routine core analysis (RCA) petrophysical 
measurements. The rock typing distribution is showing a very 
clear and lateral variation of the reservoir quality. There is a 
strong stratigraphic control on the abundance of the HFUs with 
the best quality identified as HFU1, HFU2 and HFU3. These 
are mainly located in the zones QH_2 and QH_4 for QH 
reservoir (Figure 8). Above these intervals, the bad rock types 
are dominant. 

 

 
Fig. 8.  Results after determination of the 8 HFUs determined by FZI 

method to a well (QH, HMD oil field southern periphery): (a) measured depth, 

(b) QH subdivision, (c) GR log, (d) RHOB and NPHI logs, (e) DT log, (f) 

core permeability, (g) core porosity and PHIE log, and (h) distribution of 
HFUs in cored interval 

TABLE II.  PORO-PERM RELATIONSHIP FOR QH RESERVOIR 

HFU Color R2 Equation 

HFU1 Red 0.84 CKH � 	15- 
 CPORH6/0.0314-//1 8 CPORH0- 

HFU2 Blue 0.92 CKH � 	7.6- 
 CPORH6/0.0314-//1 8 CPORH0- 
HFU3 Yellow 0.96 CKH � 	4- 
 CPORH6/0.0314-//1 8 CPORH0- 
HFU4 Purple 0.95 CKH � 	2.2- 
 CPORH6/0.0314-//1 8 CPORH0- 
HFU5 Grey 0.85 CKH � 	1.2- 
 CPORH6/0.0314-//1 8 CPORH0- 
HFU6 Green 0.78 CKH � 	0.6- 
 CPORH6/0.0314-//1 8 CPORH0- 
HFU7 Brown 0.55 CKH � 	0.27- 
 CPORH6/0.0314-//1 8 CPORH0- 
HFU8 Blue light  CKH < 0.1mD	and	CPORH < 4% 

 

E. HFU Estimation in Un-Cored Well 

The K.mod from Techlog is one of the best neural networks 
to generate the HFUs for the uncored sections. In this section, 
an association between well log response and core data for a 
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given set of experimental points is achieved. At first an adopted 
training model for well/log/EFs data and its associated FZI in a 
cored well is defined. Thus, we chose the model well for 
training. Then the method is generalized for the test wells to 
un-cored intervals to obtain HFU from its log and EF data. At 
the beginning, we subdivided the data into two classes, one for 
the training phase and another for the validation and 
application phase. The main inputs for the MLP are NPHI, GR, 
RHOB and EFs. The HFU values in the cored well are used as 
the output of the system. In this study, the network system 
comprises of one input layer, two hidden layers and one output 
layer (Figure 9). In the learning phase, we found that the mean 
squared error between the desired output and the calculated 
output is minimal for two hidden layers of 8 nodes. Figure 10 
shows the results of the learning phase for one model well. 
HFUs-NN determined from MLP have a good match with HFU 
obtained from core porosity and core permeability. K-NN 
determined from MLP is correlated to core permeability with 
correlation coefficient (R²) of 0.6. In the generalization phase, 
the network with eight nodes in the two-hidden layer gives 
minimal error. The generalization phase results by MLP for 
one test well is represented in Figure 11. 

 

 
Fig. 9.  MLP network architecture used for pilot wells 

F. Saturation Height Modeling 

Composite data containing SCAL data from one well are 
created and used for the saturation height modeling of the QH 
reservoir. Water saturation array is computed from this data set 
and plotted against PC curves in cross plot in order to examine 
each pressure curve separately. Some PCs are erroneous and 
not used. Lab capillary curves were converted to reservoir 
conditions (oil-bine) using (5): 

PCC*$ =	DEFGH∗!�JK��∗EL$MK��!�JFGH∗EL$	MFGH    (5) 

where PCC*$  is the oil brine capillary pressure reservoir in psia, PCN+O  is the air brine capillary pressure in psia, IFTC*$  is the 
interfacial tension between oil and brine in dynes/cm (30), θC*$  
is the contact angle between oil and brine in degrees (30), 
IFTN+O  is the interfacial tension between air and brine in 
dynes/cm (35) and Cos	θN+O  is the contact angle between air 
and brine in degrees (0). 

 

 
Fig. 10.  HFUs results of the learning phase for one model well: (a) 

measured depth, (b) QH subdivision, (c) GR log, (d) RHOB and NPHI logs, 

(e) DT log, (f) core porosity and PHIE log, (g) distribution of HFUs in cored 

interval log, (h) distribution of HFU_NN using MLP, and (i) core permeability 

and predicted K-NN permeability using MLP. 

 

 
Fig. 11.  HFUs results of the generalization phase for one test un-cored 

well: (a) measured depth, (b) QH subdivision, (c) CGR log, (d) RHOB and 

NPHI logs, (e) PHIE log, (f) distribution of HFU_NN using MLP, and (g) 

predicted K-NN permeability using MLP in un-cored interval. 
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The corrected capillary pressure curves at reservoir 
conditions were used to calculate one J-function per HFUs 
using the following equation: 

J(SU0 � 0.2166 ∗ DV
WXL$M ∗ ��

�   (6) 

where J/SU0 is the Leverett capillary pressure function 
(unitless), PE is the capillary pressure in psia,	σ is the oil brine 
interfacial tension in dynes/cm (30), θ is the oil brine contact 
angle in degrees (30), φ is the porosity in fraction and K is the 
permeability in mD. 

Techlog software is used for PC saturation height modeling. 
A single one best fit relationship between water saturation SU 
and J-function (J) for each HFU is established in line with the 
below equations (Figure 12): 

J/SU0ZL[*N � /�U�\0 ]^_`ab_
c 			   (7) 

SU/J0ZL[*N � A ∗ J_LEV�ic)\jc k B			  (8) 

 
where 	J/SU0  is the Leverett capillary pressure function 
(unitless), SU/J0ZL[*N is the water saturation in fraction, A and LAMBDA are coefficicent determined by regression and B is 
the average irreducible water saturation for each HFU 
optimized using SCAL data.  

Available PC data only covered HFU2 HFU3 and HFU4 
for QH formation. Synthetic saturation height functions have to 
be generated for the rest of HFUs. To achieve this, the equation 
for HFU4 is used as starting point for the rather poorer HFUs 
and J-Leverett parameters A , B  and LAMBDA  are iteratively 
adjusted until an acceptable match with log interpreted SU is 
obtained. Functions are then checked and validated in Techlog 
to ensure that the shape of the original best fit curve to pc data 
is honored and not lost. HFU8 was considered as 100% water 
saturated or very bad quality reservoir. The obtained saturation 
height functions have a good match with SU from logs. Figure 
13 shows an example of the match obtained between saturation 
height model and log results for one well. 

 

 
Fig. 12.  Computed J-function and best fit (red) (QH, HMD oil field 

southern periphery) 

 
Fig. 13.  Example of the obtained saturation height model with log results 

for one well: (a) True vertical sub sea measured depth, (b) QH subdivision, (c) 

measured depth, (d) VSH log, (e) core porosity and PHIE log, (e) HFU 

distribution, (f) core permeability and predicted K_NN permeability using 
MLP, and (g) J-function saturation and log saturation. 

V. CONCLUSION 

In this work, a workflow has been proposed to enhance 
rock type characterization. The best definition of rock type and 
saturation height functions requires some essential data such as 
RCA, SCAL and good quality logs. In this paper, an EF 
analysis is performed in the QH reservoir using an 
unsupervised neural network Kohonen algorithm. This 
analysis, carried out on fourteen wells, mainly based on logs, 
allowed us to define three EFs with a best reservoir quality 
(EF1, EF2 and EF3), one with moderate quality (EF4) and one 
with bad (EF5). A work based on the definition of the flow 
zone indicator (FZI) was applied in the QH reservoir. FZI is an 
adequate parameter for determining hydraulic flow units 
because it is based on pore throat network which controls fluid 
flow in the reservoir. Conventional core, SCAL and reservoir 
facies are integrated to define eight HFUs; The best HFUs are 
mainly located in the zones QH_2 and QH_4. Above these 
intervals, the bad rocks types are dominant. This work proves 
that rock typing using FZI approach can be very efficient in 
building coherent and reliable permeability being necessary for 
reservoir characterization. In cored and un-cored intervals, a 
good agreement is obtained between core permeability and 
calculated K-NN permeability. Multi-layer perception is a 
robust and useful method to predict hydraulic flow unit in the 
un-cored intervals/wells. 

PC curves are available for 3 HFUs: HFU2, HFU3 and 
HFU4. Thus, synthetic J-functions are generated for HFUs 
without PC curves. Finally, a good SU  match is obtained 
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between the model and the interpreted log results. For better 
estimation of saturation height functions, we suggest to take 
plugs for every HFU defined already. This analysis is going to 
allow us to avoid synthetic saturation height functions and 
therefore minimize the uncertainties on volumetric calculation. 
It’s also recommended to measure in laboratory the oil brine 
interfacial tension and the contact angle. 
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