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Abstract—This study aims to assess the classification accuracy of 

a novel mapping workflow for sugarcane crops identification that 

combines light detection and ranging (LiDAR) point clouds and 

remotely-sensed orthoimages. The combined input data of plant 

height LiDAR point clouds and multispectral orthoimages were 

processed using a technique called object-based image analysis 

(OBIA). The use of multi-source inputs makes the mapping 

workflow unique and is expected to yield higher accuracy 

compared to the existing techniques. The multi-source inputs are 

passed through five phases: data collection, data fusion, image 

segmentation, accuracy validation, and mapping. Data regarding 

sugarcane crops were randomly collected in ten sampling sites in 

the study area. Five out of the ten sampling sites were designated 

as training sites and the remaining five as validation sites. 

Normalized digital surface model (nDSM) was created using the 

LiDAR data. The nDSM was paired with Orthophoto and 

segmented for feature extraction in OBIA by developing a rule-

set in eCognition software. A rule-set was created to classify and 

to segment sugarcane using nDSM and Orthophoto from the 

training and validation area sites. A machine learning algorithm 

called support vector machine (SVM) was used to classify entities 

in the image. The SVM was constructed using the nDSM. The 

height parameter nDSM was applied, and the overall accuracy 

assessment was 98.74% with Kappa index agreement (KIA) 

97.47%, while the overall accuracy assessment of sugarcane in 

the five validation sites were 94.23%, 80.28%, 94.50%, 93.59%, 

and 93.22%. The results suggest that the mapping workflow of 

sugarcane crops employing OBIA, LiDAR data, and 

Orthoimages is attainable. The techniques and process used in 

this study are potentially useful for the classification and 

mapping of sugarcane crops. 
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I. INTRODUCTION 

Global sugar production is approximately 180 million tons. 
World production is dominated by Brazil, followed by India, 
European Union, and Thailand. Sugarcane occupies about 80% 
of the world sugar production and is cultivation is concentrated 
in Asia and South/Central America [1]. Historically, there are 
recurring supply and demand imbalances reflected in extremely 
volatile prices on the world market. For the past several 
decades, world production of sugar has been more than the 
consumption, leading to low prices and stock overhangs. Due 

to the result of crop failures in one or more of the main 
producing countries, there have been shorter periods of deficit. 
Because of the crop failures short term price spikes, followed 
by equally sharp declines occur [1]. Increasing attention has 
been paid to sugarcane plantation in recent years not only for 
strained sugar supply due to rapid global population increase 
but also for a growing demand for biomass energy. 
Considering the global environment, sugarcane is an important 
resource of alcohol which can be processed into biofuels for 
motor vehicles and generation of electricity. Regarding 
economic and environmental aspects, there is a strong demand 
for effective methods of providing timely and accurate 
information on sugarcane growing areas and growth conditions 
at regional and global scale [2]. Despite the contribution of the 
production of sugarcane to the economic growth in the 
Philippines, there are insufficient records that can help growers 
make accurate decisions or proper planning to improve 
production. According to the Sugar Regulatory Administration 
(SRA), the sugar industry contributes about Php 87 billion 
(1.68 billion dollars) to the national economy, with more than 
700,000 workers. The productivity contribution of 80% comes 
from landholdings with size less than 5 hectares and the 1% 
comes from farms greater than 100 hectares [3]. Expanding the 
production of sugarcane is important to increase yield and 
maximize profit. The use of remote sensing technology and 
techniques for detailed mapping and effective data 
management has facilitated the expansion of small-scale 
growers and increased agronomic crop yield [4]. 

Object-based image analysis (OBIA) is gaining much 
attention in the remote sensing community. It is a sub-
discipline of GIScience devoted to partitioning remote sensing 
(RS) imagery into meaningful image objects. The 
characteristics of OBIA are assessed through spatial, spectral, 
and temporal scales [5]. The OBIA workflows are highly 
customizable, allowing the presence of human semantics and 
hierarchical networks [6, 7]. Generally, there are two main 
processes in OBIA: segmentation and classification. 
Segmentation is the process of grouping adjacent pixels 
together based on their homogeneity to create meaningful 
“objects” and these objects are subjected to classification. The 
segmentation and classification can be processed easily by the 
different algorithms in eCognition (Trimble eCognition version 
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9) because much of the work referred to as OBIA is originated 
from eCognition software [8–10]. Object-based classification 
can be done through user-defined rule-sets. Studies have been 
conducted using OBIA with other remote sensing techniques. 
Authors in [11–13] combined OBIA with data mining. Authors 
in [14, 15] used OBIA and images from the Landsat/TM/OLI 
and IRS/LISS-3 satellites. Authors in [16] also used 
Landsat/TM/OLI for sugarcane mapping, but with MODIS 
EV12 time series. Authors in [17] used OBIA procedure for 
UAV images to map and extract information for sugarcane 
skips in planting row.  

The use of OBIA with the nDSM feature from LiDAR data 
and orthoimages can provide detailed mapping and aid in the 
precise inventory of agricultural crops. LiDAR is one remote 
sensing tool used in resource mapping, and it has emerged as a 
powerful active remote sensing method for direct measurement 
of 3D plant structure in precision agriculture [18, 19]. The 
LiDAR-derived digital elevation information makes it 
invaluable in improving identification and delineation of 
remotely-sensed data. LiDAR technology has been applied in 
several studies concerning crops and geographic features. 
Authors in [20] used the LiDAR technology to measure 
sugarcane height. Author in [21] applied LiDAR as a ground-
based scanning system for measurements in sugarcane burning 
operations, whereas authors in [22, 23] used it in mangrove 
extraction in different coastal areas and as one of the layers 
during data processing. Authors in [24, 25] found that height 
features derived from LiDAR data can significantly 
differentiate between high and low vegetation. In [26], high-
resolution digital elevation models (DEM) derived from 
remotely sensed LiDAR data for contrast mapping used the 
dissimilarity between artificial and natural slopes to identify 
and to map discrete features. In [27], LiDAR intensity and 
height information, contributed to the normalized digital 
surface model for land-use classification in shady areas. 
LiDAR-derived agricultural land-cover map and field survey-
validated data was used for a theoretical biomass resource 
assessment, as well as an available potential of sugarcane mill-
based residue in [28]. Multispectral satellite imagery and 
LiDAR-derived digital elevation information was used for 
classifying estuarine vegetation types in [29]. OBIA, LiDAR, 
and orthoimages have been used with several other remote 
sensing techniques: OBIA can turn remote sensing into a 
meaningful image object, LiDAR has been used to generate a 
detailed resource mapping, and RGB with orthoimages visually 
observe the texture information to produce a combination of 
the three – a promising technological advancement for resource 
mapping. 

Considering the usefulness of this technique, it is widely 
studied in agriculture, coastal, and resource mappings, risk 
management, etc. With the integration of LiDAR data and high 
spatial resolution orthoimages, more input data layers are 
available for object-based SVM classification [30, 31]. 
However, different classes of objects are not separable by 
direct thresholding. Hence, samples from different classes of 
objects need to be classified using machine learning algorithms 
[32]. Among the machine learning algorithms, the SVM is used 
to classify objects in the image [33]. The SVM represents a 
group of theoretically superior non-parametric machine 

learning algorithms where there is no assumption made on the 
distribution of underlying data [34–36]. The basic concept 
behind SVM is to search for a balance between the 
standardized term and the training errors [37]. SVMs are not 
particular with training sample size. It is possible to 
successfully work with limited quantity and quality of training 
samples. In fact, only a quarter of the original training samples 
in an image are required to produce an equally high accuracy 
for the classification of two crops [38]. The most important 
characteristic is SVM’s ability to generalize from a limited 
amount and from the quality of training data [39, 40]. The rule-
set developed in eCognition and the validation using SVM for 
the classification of sugarcane crops is potentially useful to the 
crop yield estimation of the sugar industry in the Philippines. 

Multi-sensor fusion of LiDAR data and orthoimages were 
employed in the sugarcane plantation in Philippines. The sugar 
industry requires spatially explicit tools to provide reliable and 
precise information on sugarcane areas and on the location of 
sugarcane fields to improve accuracy in monitoring sugarcane 
production and yield estimates [41–43]. The study aims to 
assess the classification accuracy of a novel mapping workflow 
for sugarcane crops identification that combines LiDAR point 
clouds and remotely-sensed orthoimages. This paper 
demonstrates the rule-set developed in eCognition using 
LiDAR data and orthoimages to test and assess accuracy by 
applying them in the testing and validation sites. SVM is used 
in the validation sites to obtain accuracy results, which would 
be beneficial to the Philippines sugar monitoring agency. 

II. MATERIALS AND METHODS 

A. Study Area 

Medellin is a municipality in the northern part of Cebu, 
Philippines. The study area for this mapping is Barangay 
Poblacion (11°08'07.0"N 123°57'43” E), which is one of the 
villages of Medellin as shown in Figure 1. The main source of 
income is agriculture, particularly sugarcane crops. 

 

 
Fig. 1.  Map of study area with sugarcane at Barangay Poblacion, 

Medellin, Cebu Philippines 

B. Process Workflow 

This study used OBIA for classification. The process 
workflow is shown in Figure 2. The five phases in the process 
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workflow is data collection, data fusion, image segmentation, 
accuracy validation, and mapping. 

 

 

Fig. 2.  Process workflow  

C. Data Collection 

LiDAR data and orthoimages used in this study have been 
pre-processed by Phil-LiDAR Research Center at the 
University of San Carlos, Talamban-Campus. The LiDAR 
sensor used was a Pegasus at an altitude of 800m and scanning 
angle of 50

o
. The resolution was 1m. Data were collected from 

the sampling sites via visual interpretation from the 
orthoimages in the study area. According to [22, 44, 45] 
samples can be collected after segmentation and checked 
visually in orthoimages. The nDSM provides the height 
information of the objects that must be classified. The nDSM 
was produced by subtracting digital terrain model (DTM) from 
the canopy surface model or digital surface model (DSM). The 
orthoimage is an aerial RGB photo. Using the RGB alone, one 
can perform OBIA (segmentation and classification). The best 
feature to be used in RGB is texture information which can be 
observed by visual inspection. According to [46] the 
classification accuracy and reliability are estimated visually 
using RGB orthomosaic.  

D. Data Fusion 

The nDSM were integrated with orthoimages for image 
segmentation and rule-set development in eCognition to 
produce the classified image. The nDSM provided the real 
heights of the objects above the ground and was segmented 
according to a certain height threshold. Thresholding was done 
on grayscale images. Thresholding an image is classifying 
these pixels into groups setting an upper and lower bound to 
each group. The segmentation was done to differentiate high-
rise objects among others. The nDSM was used from the 
LiDAR data by applying plant height thresholds. LiDAR data 
provide accurate measurements of land cover structures in the 
vertical plane but have limited coverage in the horizontal plane. 

RGB data provided extensive coverage of land cover classes in 
the horizontal plane but were relatively insensitive to variation 
in their height. Therefore, the integration of LiDAR and multi-
spectral greatly improved the measurement and mapping of 
landcover classes [47, 48]. This paper gives emphasis on the 
classification of a certain class of vegetation which was 
medium elevation objects with a mean threshold condition of 
less than or equal to 2.0m in the LiDAR nDSM. With RGB 
alone some object classes like trees can be misclassified as 
grass or something else. This was where LiDAR data become 
very useful. The nDSM was the LiDAR height data normalized 
with respect to the ground surface. All ground points in nDSM 
were normalized to zero. 

E. Image Segmentation 

Segmentation started with classifying pixels to produce a 
land cover or land classification result, classification was done 
on the “segments” or groups of pixels (“object” based 
classification). There were four image layers used in the object-
based image analysis. These layers were nDSM from LiDAR 
and orthophoto consisting of three bands, red, green, blue for 
pre-segmentation process. Image layers were assigned to 
synchronize the segmentation process. The segmentation 
process was based on nDSM and orthophoto images. The 
features used in RGB were texture information which was 
observed by visual inspection (Figures 3-4). The rule-set 
(Figure 5), was developed in eCognition, was used in the five 
training and the five validation sites in the study area. 

 
Site No Orthophoto nDSM 

1 

  

2 

  

3 

  

4 

  

5 

  

Fig. 3.  Training site orthophotos and nDSM of the study area  
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Site No Orthophoto nDSM 

1 

  

2 

  

3 

  

4 

  

5 

  

Fig. 4.  Validation site orthophotos and nDSM of the study area. 

 

Fig. 5.  Rule-set applied to the training and validation sites 

Training and validation sites were identified through visual 
interpretation of the orthoimages. According to [49], the 
training sites can be interpreted from high resolution imagery. 
In the segmentation process (Figure 6), the high, medium and 
low elevation objects were classified. 

The quad tree-based was the first segmentation process 
using nDSM and having a scale parameter of 2.0m. Quadtree 
segmentation was used to create image objects by cutting and 
creating squares of different sizes to easily separate images 
with significant proportion of background. Scale parameters 
values were based on a trial and error principle and a suitable 
value was found through a series of tests [50]. Spectral 
difference segmentation was conducted with maximum spectral 
difference of 2.0m. The spectral difference was to merge 
neighboring image objects if the difference between their layer 

mean intensities was below the value given by the maximum 
spectral difference. Spectral difference was designed to refine 
existing segmentation results, by merging spectrally similar 
image objects produced by previous segmentations. The multi-
resolution segmentation algorithm consecutively merged pixels 
or existing image objects. Multi-resolution was an optimization 
procedure which, for a given number of image objects, 
minimizes the average heterogeneity and maximizes their 
respective homogeneity. In the pre-classification process, high 
elevation objects were assigned to a mean nDSM greater than 
2.0 (nDSM>2.0). Medium elevation was assigned to mean 
nDSM such as 0.25≤nDSM≤2.0. The objects identified for 
medium elevation were sugarcane and shrub. The “Shrub” 
class consisted of vegetation or crops that were within the 
height range of 0.25 and 2 meters. A method needs to be 
developed on this kind of vegetation. The remaining objects, 
less than or equal to 0.25m were considered as low elevation 
objects. After assigning objects, another segmentation process 
follows, the multi-resolution segmentation. In Figure 7, 
examples of quadtree, spectral difference and multi-resolution 
segmentation are shown.  

 

 

Fig. 6.  Segmentation process of high and medium elevation objects. 

 
Fig. 7.  Examples of (a) quadtree, (b) spectral difference, and (c) multi-

resolution segmentations. 

Segmentation algorithms were used to subdivide entire 
images at pixel level, or specific image objects from other 
domains into smaller image objects. To discriminate other 
objects, nDSM was used as a discriminating factor to group the 
objects according to their heights. The orthoimages (RGB) for 
the texture information of the image were done by visual 
inspection.  

F. Accuracy Validation Using SVM 

SVM is a supervised learning algorithm used to classify 
entities in an image. It was used to classify land features in the 
images. The classified objects were obtained from the 

(a)                                     (b)                                   (c) 
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segmentation procedure. nDSM was used as a feature to 
develop the SVM model. The process was done by sample 
collection through manual classification. Sugarcane was 
extracted from the segmented images. The samples collected 
for sugarcane were 5846. Only a quarter of the original training 
samples in an image were required to produce equally high 
classification accuracy. The ability of SVM to generalize well 
from a limited amount and/or quality of training data is its most 
important characteristic [39, 40]. SVM was applied to the 
validation sites to test the accuracy of the samples. 

G. Classification Map 

The final classification map was generated using the QGIS 
software (QGIS ver. 2.18 Las Palmas de G.C.). Segmented 
images from eCognition were exported to QGIS as raster files 
and converted to polygons to generate the classified map for 
Barangay Poblacion. Sugarcane, shrub, high, and low elevation 
objects were identified. 

III. RESULTS AND DISCUSSION 

A. Classified Images 

Sugarcane crops were extracted and classified using nDSM 
to discriminate and group objects according to their height. 
Multi-resolution segmentation in eCognition was used to 
delineate medium elevation objects using the setting (scale 
parameter = 40, shape = 0.2 and compactness = 0.5). Sugarcane 
was identified as a medium elevation object based on nDSM.  

 

Validation 

No 

Classified image training 

site 

Classified image 

validation site 

1 

  

2 

  

3 

  

4 

  

5 

  

Fig. 8.  Classification results on training and validation sites 

Then, samples were collected for sugarcane. Orthoimages 
were used for texture and visual inspection to verify sugarcane 
crops in the study area. As a result, in the classification process 
using the SVMs applied to the training and validation sites, 

sugarcane was identified as shown in Figure 8. A final 
classified map with sugarcane crops of Barangay Poblacion is 
shown in Figure 9.  

 
Fig. 9.  Land cover classification map of Barangay Poblacion. 

B. Accuracy Assessment 

Overall accuracy and KIA for sugarcane are 98.74% and 
97.47% respectively. Accuracy results were obtained after 
SVM using eCognition. Table I is an example of the confusion 
matrix. Accuracy assessment and KIA for each validation site 
are shown in Table II.  

TABLE I.  ACCURACY ASSESSMENT AFTER SVM. 

Confusion Matrix 

User class/Sample Sugarcane Shrub Sum 

Sugarcane 5846 109 5955 

Shrub 30 5043 5073 

Sum 5876 5152  

Accuracy    

Producer 0.9948945 0.978843  

User 0.9816961 0.994  

Hellden 0.9882512 0.986406  

Short 0.9767753 0.973176  

KIA per class 0.989 0.96082  

Totals    

Overall Accuracy 0.9873957   

KIA 0.9746584   
 

Accuracy and KIA results in validation site 2 were low 
compared to the other sites due to the area coverage and 
misclassifications of sugarcane class as shrub class. The 
similarities in spectral characteristics of sugarcane crops with 
other vegetation such as shrub, result to low accuracy [29]. 
Experimenting on other LiDAR derivatives was needed to 
improve classification and segmentation [22]. The overall 
accuracy assessment for each validation site shows that 
sugarcane is correctly classified. According to [51], the Kappa 
statistic or KIA indicates the extent to which the classification 
result is better than pure chance: the higher the KIA value, the 
greater the classification accuracy. With the overall accuracy 
results, this study will be able to address the existing problem 
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of SRA and provide accurate information for policy makers in 
the sugar industry.  

TABLE II.  ACCURACY ASSESSMENT AFTER SVM FOR EACH 

VALIDATION SITE. 

Validation Site Accuracy assessment (%) KIA (%) 

1 94.23 78.91 

2 82.76 58.63 

3 94.50 71.90 

4 93.59 85.46 

5 93.22 67.67 
 

C. Assessment of the System Workflow 

The graph of the different overall accuracy assessment, 
KIA and accuracy for sugarcane in the five validation sites is 
shown in Figure 10.  

 

 

Fig. 10.  Graph of sugarcane accuracy assessment and KIA. 

The high accuracy of the results indicates that the process 
workflow developed in this study is applicable and useful in the 
classification of sugarcane crops in other areas. The overall 
high accuracy is comparable with using traditional data and 
techniques [22]. This study extracts sugarcane crops in 
Barangay Poblacion Medellin Cebu. The high accuracy results 
of the developed process can be used for mapping and 
monitoring of sugarcane crops in Philippines and in other sugar 
producing countries.  

IV. CONCLUSION 

This study developed a mapping workflow to assess 
classification accuracy for sugarcane crop identification using 
OBIA, LiDAR data and orthoimages. The accuracy results in 
the validation sites were 94.23%, 80.28%, 94.50%, 93.59% and 
93.22%, and the overall accuracy result was 98.74% (KIA was 
97.47%). Therefore, using this workflow in identifying 
sugarcane in other areas with acceptable accuracy assessment is 
possible. This can contribute to regional and global scale of 
providing information on sugarcane growing areas and growth 
conditions. Further research with additional samples is 
necessary in order to improve the workflow. The data used in 
the process are essential because the workflow is dependent on 
the images provided by LiDAR or any other remote sensing 
technology.  
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