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Abstract—In this paper, a dynamical analysis of the novel 

hyperchaotic system with four parameters is presented. 

Genetically optimized proportional integral and derivative (PID) 

controllers were designed and applied for the chaos suppression 

of the 4-D novel hyperchaotic system, by varying the genetic 

algorithms (GA) options to view the impact factor on the 

optimized PID controllers. The use of the final optimized PID 

controllers ensures less time of convergence and fast speed chaos 

suppression.  

Keywords-hyperchaos; chaos suppression; PID control; 

optimization; genetic algorithm 

I. INTRODUCTION  

The study of chaotic and hyper chaotic attractors arising in 
nonlinear dynamical systems has received much attention as it 
has potential applications in many branches of science and 
engineering. Chaotic systems are characterized as nonlinear 
dynamical systems, are irregular, aperiodic, unpredictable and 
have sensitive dependence on the initial conditions [1-4]. A 
hyperchaotic system is mathematically defined as a chaotic 
system having more than one positive Lyapunov exponents 
implying that its dynamics are expended simultaneously in 
many different directions. Thus, a hyperchaotic system has 
more complex dynamical behaviors than a chaotic system [5]. 
There are many well-known hyperchaotic systems [6-10] and 
the 4-D novel hyperchaotic Vaidyanathan system [11]. PID 
control, in which parameters are optimized by genetic 
algorithm, is used in chaos suppression and synchronization for 
chaotic and hyper chaotic systems [11-16]. In this paper, the 
qualitative properties of the novel hyperchaotic system are 
described. The Lyapunov exponents of the system are having 
two positive signs showing that the system is hyperchaotic.  

II. DYNAMICAL ANALYSIS OF THE NOVEL 4-D 

HYPERCHAOTIC SYSTEM  

In this work, the Vaidyanathan novel hyperchaotic system 
is described by (1) [7]: 

𝑋̇ = 𝑓 (𝑋) = {

𝑥̇ =  𝑎 (𝑦 − 𝑥) +  𝑤
𝑦̇  =  𝑐𝑦 −  𝑥𝑧

𝑧̇ =  𝑥𝑦 –  𝑏𝑧 +  𝑦
𝑤̇ =  𝑥𝑧 +  𝑟𝑤

   (1) 

where 𝑥, 𝑦, 𝑧, 𝑤 are the variable states, and 𝑎, 𝑏, 𝑐, 𝑟 are positive 
constant parameters. In this work, we show that the system (1) 
is hyperchaotic when we take parameters as:  

a = 39, b = 3, c = 22, r = 1   (2) 

For numerical simulations, we take the initial values of the 
hyperchaotic system as: 

x(0)=0.2,  y(0)=0.2 

z(0)=0.2,  w(0)=0.2  (3) 

Figures 1, 2 show the 3-D projections of the novel 4-D 
hyperchaotic system (1) on (x, y, z), (x, y, w) space projections, 
respectively. 

 

 

Fig. 1.  3-D projection of the novel 4-D hyperchaotic system on (x, y, z) 

space. 

A. Equilibrium Points 

The equilibrium points of the novel hyperchaotic system 

(1) are obtained by solving (4) [11]: 

𝑋̇ = 𝑓 (𝑋) = 0    (4) 
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The parameter values are taken as in the hyperchaotic 

case (2), and are found as: 

E0 = [

0
0
0
0

] E1 = [

7.6394 
14.4163 
41.5161 
−264.2990 

] E2 = [

−8 .6394
−16.3034 
41.5161
298.8957

] (5) 

 

 

Fig. 2.  3-D projection of the novel 4-D hyperchaotic system on (x, y, w) 

space. 

B. The Lyapunov Exponents 

The Lyapunov exponents of the system (1) are numerically 
determined as: 

L1=1.0623,   L2=0.2952 

L3=0,   L4=-20.1063  (6) 

Since there are two positive Lyapunov exponents in (3), it 
is clear that the 4-D system (1) is hyperchaotic. 

C. The Kaplan-Yorke Dimension  

The Kaplan-Yorke dimension of the 4-D hyperchaotic 

system (1) is derived as in (7): 

𝐷𝐾𝑌 = 3 +
𝐿_1+𝐿_2+𝐿_3+𝐿_4

|𝐿4|
= 3.0675  (7) 

which is fractional as is in [1]. 

III. GENETICALLY OPTIMIZED PID CONTROL OF THE SYSTEM. 

Control of nonlinear systems is difficult in the absence of a 
systematic procedure as is available for linear systems. Many 
techniques are limited in their application to a special class of 
systems. Here again, more commonly available methods are 
heuristic in nature and the genetic algorithm can reduce the 
arbitrariness in the design of a controller to a great extent. 
However, even if a model of the nonlinear system is available, 
no systematic and generally applicable control theory is 
available for the design of controllers for nonlinear systems. 
The best-known controllers used in industrial control processes 
are proportional-integral derivative (PID) controllers because 
of their simple structure and robust performance in a wide 
range of operating conditions. 

In the past decades, control theory has gone through major 
developments. Advanced and intelligent control algorithms 
have been developed in [18-20]. However, the PID-type 
controller remains the most popular in industry. Reasons for 

this are the simplicity of this control law and its few tuning 
parameters. Hundreds of tools, methods and theories are 
available for this purpose. However, finding the appropriate 
parameters for the PID controller is still a difficult task, so in 
practice control engineers still often use trial-and-error for the 
tuning process. PID control consists of three types of control, 
Proportional, integral and derivative control. PID controller 
algorithm can be implemented in many forms but they are 
mostly used in feedback loops in [11-16]. A simple diagram 
illustrating the schematic of the PID controller can be seen in 
Figure 3 [11, 15], where: 

𝑢𝑖 = 𝐾𝑝𝑒𝑖 + 𝐾𝐼 ∫ ∫ 𝑒𝑖(𝜏)𝑑𝜏
𝑡

0
− 𝐾𝐷

𝑑𝑒𝑖

𝑑𝑡
,   

𝑖 = 𝑥, 𝑦, 𝑧, 𝑤      (8) 

where 𝑢𝑖 is the output PID controller, 𝑒𝑖 is the error signal, and 
𝐾 𝑃 , 𝐾𝐼 , 𝐾 𝐷  are the proportional, integral and, the derivative 
gains respectively. 

 

 

Fig. 3.  Schematic of the PID control 

The proportional controller output uses a “proportion” of 
the system error to control the system. However, this 
introduces an offset (static) error into the system. The integral 
controller output is proportional to the amount of time there is 
an error present in the system. The integral action removes the 
offset introduced by the proportional control but introduces a 
phase lag into the system. The derivative controller output is 
proportional to the rate of change of the error. Derivative 
control is used to reduce or eliminate overshoot and introduces 
a phase lead action that removes the phase lag introduced by 
the integral action. The effective PID controller’s parameters 
𝐾𝑃 , 𝐾𝐼 , 𝐾 𝐷  are optimized using genetic algorithms. Genetic 
Algorithm (GA) is a stochastic global search method that 
mimics the process of natural evolution [18-20]. It starts with 
no knowledge of the correct solution and depends entirely on 
responses from its environment and evolution operators (i.e. 
reproduction, crossover and mutation) to arrive at the best 
solution. By starting at several independent points and 
searching in parallel, the algorithm avoids local minima and 
converging to sub optimal solutions.  

IV. GENETIC ALGORITHM STAGES 

There are three main stages of a (GA), known as 
reproduction, crossover and mutation (Figure 4).  

• Reproduction: Just like in natural evolution, an example of 
a common selection technique is the “roulette wheel” 
selection method.  

• Crossover: Once the selection process is complete, the 
crossover algorithm is initiated. The simplest crossover 
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technique is the single point crossover.  

• Selection: Using selection and crossover on their own will 
generate an amount of different strings. If there is not 
enough diversity in the initial strings, the GA may converge 
on sub-optimum strings due to a bad choice of initial 
population. This problem may be overcome by the 
introduction of a mutation operator into the GA.  

• Mutation: Mutation is the occasional random alteration of a 
value of a string position. The probability of mutation is 
normally low around 0.1% - 0.01%. Once a string is 
selected for mutation, a randomly chosen element of the 
string is changed or ‘mutated’. 

 

 

Fig. 4.  The GA process 

The steps in creating and implementing a GA are: [19] 

• Generate an initial, random population of a fixed size of 
individuals. 

• Evaluate their fitness. 

• Select the fittest members of the population. 

• Reproduce using a probabilistic method (e.g., roulette 
wheel). 

• Implement crossover operation on the reproduced 
chromosomes. 

• Execute mutation operation with low probability. 

• Repeat step 2 until a predefined convergence criterion is 
met. 

• The convergence criterion of a GA is a user-specified 
condition i.e. the maximum number of generations or when 
the string fitness value exceeds a certain threshold. 

The hyper chaotic system with the PID controllers is 
described as in (9): 

𝑋̇ = 𝑓 (𝑋) =

{
 

 
𝑥̇ =  𝑎 (𝑦 − 𝑥) +  𝑤 + 𝑢𝑥
𝑦̇  =  𝑐𝑦 −  𝑥𝑧 + 𝑢𝑦

𝑧̇ =  𝑥𝑦 –  𝑏𝑧 +  𝑦 + 𝑢𝑧
𝑤̇ =  𝑥𝑧 +  𝑟𝑤 + 𝑢𝑤

  (9) 

where: 

ui = Kpei + KI ∫ ∫ ei(τ)dτ
t

0
− KD

dei

dt
,  

i = x, y, z, w     (10) 

Since this work is using GA to optimize the gains of the 
PID controller, there are going to be three strings assigned to 
each member of the population, these members will be 
comprised of a 𝐾𝑃 , 𝐾𝐼 , 𝐾 𝐷  in (10). Each string will be 
evaluated throughout the course of the GA, real (floating point) 
numbers will be used to encode the population. The three terms 
are entered into the GA application in Simulink via the 
declaration of a three-row, between -0.2 and 0.2 which is called 
the initial range, the controlled system is given a step input and 
the error is assessed using an appropriate error performance 
criterion i.e.  

e = E0 − X      (11) 

where 

e = [

ex
ey
ez
ew

] , E0 = [

0
0
0
0

],  X = [

x
y
z
w

]   (12) 

The chromosome is assigned an overall fitness value 
according to the magnitude of the error, the smaller the error 
the larger is the fitness value.  

A. GA Options: 

• Variable bounds matrix=[-0.2,0.2], 

• Population Size=80 individuals,  

• Number of generations=100, 

• Selection function=stochastic uniform, 

• Crossover fraction=0.8, 

• Mutation function=default function, 

• Stopping criteria=error performance criterion or the 
maximum number of generations, 

In order to evaluate the PID values chosen by GA, the 
objective function is written based on error performance 
criterion:  

Fobj = ∑abs ei     (13) 

The objective function (13) is designed as the sum absolute 
error which gets the absolute value of the error to remove 
negative error components. This kind of error performance 
criteria is good for simulation studies. The best population may 
be plotted to give an insight into how GA converged to its final 
values. Table I shows the PID gain values of the best solution 
for the 4-D novel hyperchaotic system. For numerical 
simulations of the system, we take the parameter values of (2) 
and the initial conditions of (3). 

Figure 5 represents the converged states to the equilibrium 
point, Figure 6 shows 3-D projection (𝑥, 𝑦, 𝑧) space of chaos 
suppression, and Figure 7 shows the action control of the 
output of the PID optimized by the GA. 
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TABLE I.  OPTIMIZED PID GAIN VALUES  

PID Controller Kp KI KD 

ux 0.8736 0.9530 -1.0075 

uy -1.1834 0.8585 2.9629 

uz 1.4453 0.1727 -1.7600 

uw 2.5530 0.0005 2.8930 

 

 

Fig. 5.  Time-history of converged states (control in action at 0.8s) 

 

Fig. 6.  Time-history of chaos suppression errors. 

 

Fig. 7.  Action control of the PID optimized by the GA 

B. Impact Factor of the GA Options on the Optimized PID 

Controllers. 

Genetic algorithm is typically characterized by three 
options. To get the optimum PID controllers, two of them 
remain fixed while the third option varies. Let ex, ex1, ex2 the 
errors for the state 𝑥 for the three bounds respectively. 

1) The Initial Range Variable 

The crossover and the mutation probability are kept fixed. 
Variable bounds matrix=[-0.2;0.2], [-0.5;0.5], [-0.8;0.8], 
crossover fraction=0.8, mutation function=default function. 
Table II show the best PID optimized for the bounds matrix [-
0.8;0.8].  

TABLE II.  PID GAIN VALUES, BOUNDS MATRIX= [-08;0.8] 

PID Controller Kp KI KD 

ux  4.015 10.044 -3.437 

uy  -1.94  7.084  5.959 

uz  2.306  1.131 -8.61 

uw 10.119 0.002 11.846 

 
Figure 8 represents the time history of chaos suppression 

errors for the state 𝑥, the best one is for the bound [-0.8;0.8], 
the time of convergence is typically small. 

 

Fig. 8.  Time-history of chaos suppression errors. 

2) Fixed Crossover Fraction Variable, Bounds Matrix and 

Mutation Probability. 

The best bound matrix [-0.8;0.8] and the same probability 
mutation default function are used while the crossover rate 
varies (0.6;0.4;0.8). Table III represents the best PID optimized 
for crossover rate=0.6. The time of convergence is typically 
small (control in action at 0.08s) (Figure 9). 

TABLE III.  PID GAIN VALUES CROSSOVER RATE=0.6 

PID Controller Kp KI KD 

ux -3.643  4.438 -11.021 

uy  2.007 17.038  7.866 

uz 16.364  2.53 -11.973 

uw 12.339 0.001 16.909 

 

 

Fig. 9.  Time-history of chaos suppression errors. 
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3) Fixed Mutation Probability Variable, Bounds Matrix 

and Crossover.  

The best of the bound matrix [-0.8;0.8] and crossover 
rate=0.6 are used, while the probability mutation default 
function varies according to the Gaussian and adaptive feasible 
function. Table IV gives the best PID values.  

TABLE IV.  PID VALUES, GAUSSIAN FUNCTION 

PID Controller Kp KI KD 

ux  5.8108  8.9852 -11.8140 

uy  2.7394  9.8449 14.7133 

uz  9.4557 -0.0000 -11.7124 

uw 15.4197 11.3442 21.3892 

 
Mutation probability=Gaussian function, the time of 

convergence is typically small (control in action at 0.10s). 
Figure 10 shows the chaos suppression. 

 

Fig. 10.  Time-history of chaos suppression errors. 

V. CONCLUSION 

In this paper, a novel hyperchaotic system was described 
and its qualitative properties were discussed. Lyapunov 
exponents were calculated to prove that the system is 
hyperchaotic. Chaos suppression was done by the use of PID 
controller’s gains which were optimized by the use of GA. 
After varying GA options, i.e. the initial range of the 
controller’s gains, the crossover rate and the mutation function, 
in order to view their impact factor on the optimized PID 
controllers, the optimum controller was the one with the 
smallest time for chaos suppression. It was shown that the best 
controller had bound matrix [-0.8;0.8], crossover rate=0.6 and 
mutation probability=default function with control in action at 
0.08s.  
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