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Abstract—This paper describes one new approach to frequency 

locked loop (FLL), which is based on the time non-recursive 

processing of input periods. System parameters are defined by 

the ratio of frequencies. The conditions, under which the 

described system can have the properties of a FLL, are analyzed. 

All math analyses were made by the use of Z transform 

approach. It was shown that FLL is extremely fast and that it is 

suitable for usage in different predicting, tracking and 

modulation applications, for the measurements of frequency and 

for other applications. The FLL realization in the technique of 

standard integrated circuits is described. The oscilloscope 

picture, made on the realized 8 bit model, is presented. Analysis 

in frequency domain was made using matlab tools.  
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I. INTRODUCTION  

Time non-recursive time processing FLL (TNP FLL) 
described in this paper calculates and generates the output 
period using measurements and processing of the input periods 
only. The terms “non-recursive” and “recursive” are borrowed 
from the theory of digital filters. Actually, finite impulse 
response (FIR) digital filters calculate the next output using 
only input samples, without taking in account previous filter 
outputs. Such processing was called “non-recursive”. Infinite 
impulse response (IIR) digital filters use in calculations both 
input samples and previous outputs as well. This kind of 
processing was called “recursive”. In [1-10], to describe 
different applications, recursive processing was used. This 
means that the output period is calculated using input and 
output periods. Some use time differences between them, but 

they obviously include partly both periods in the processing. 
This actually means that all described algorithms in [1-10] 
function as feedback systems and they can possess the 
properties either of phase locked loop (PLL) or FLL. Unlike 
the described algorithms in [1-10], this approach of FLL is an 
open loop system. From the aspect of the algorithm used, it 
functions similarly to an FIR digital filter. Although digital 
filters process amplitude samples of the input signal, and TNP 
FLL uses periods of an input signal, it is very useful to 
understand the relationship between these two physically 
different systems in order to utilize, as much as possible, power 
digital filter theory and software tools in further development 

and application of TNP FLL. The theory and techniques for 
developing TNP FLL are basically very similar to the 
demonstrated ones in [1-10]. The applicability of this approach 
is very wide. Frequency multiplier is described in [1]. Time 
shifters are described in [2, 3] and time/phase shifting in [4]. 
TRP PLL and TRP FLL for noise rejection are described in [5-
7]. A wide range of tracking and prediction applications is 
described in [5, 6, 8]. Most of the algorithms described in [1-
10] are suitable for usage in software form. Such a software 
predictor is described in [9]. Very complex systems, consisting 
of a lot of subsystems, can also function as FLLs, whose 
realization is based on the same technique [10]. Articles and 
books [11-17] are used as theoretical base, for electronics 
implementation and for the development necessities. 

II. MATHEMATICAL DESCRIPTION OF FLL 

The general case of an input signal Sin and an output signal 

Sop of FLL is shown in Figure 1. The time difference τk is used 
instead of the phase difference. The periods TIk and TOk, as 

well as the time difference τk, occur at discrete times t0, t1, …tk, 
tk+1, which are defined by the falling edges of the pulses of Sop 
in Figure 1. The main recursive equation describing the 
functioning of FLL is presented by (1), where α and b are the 
system parameters. The natural relations between variables, 
which come out from Figure 1, are given by (2) and (3):  

2 1k k k
TO a TI b TI

+ +
+= ⋅ ⋅     (1) 

1k k k k
TO TIτ τ

+
= + −       (2) 

2 1 1 1k k k k
TO TIτ τ

+ + + +
= + −    (3) 

 

 

Fig. 1.  Time relation between variables. 

Note that (3) is just (2), shifted for one step. Equation (3) 
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will be taken in account for the simulation of FLL. According 
to (1) and (2), FLL has two output discrete variables, which 
describe the behaviour of FLL in terms of TIk. The output 

variables are TO(k+1)=f[TI(k)] and τ(k+1)=f[TI(k)]. To 
analyze the conditions under which the described system 
possesses the properties of FLL, the Z transforms of (1) and (2) 
are presented in (4) and (5) respectively, where TO1, TO0 and τ0 
are the initial values of TOk and τk. Note that, according to (1), 
TO1=bTI0. Substituting TO1=bTI0 into (4), TO(z) was found 

and presented in (6). Substituting TO(z) from (6) into (5), τ(z) 
was calculated and presented in (7). Note that, in order to 
shorter the mathematical procedure, (7) is reached taking in 
account that the relation between the system parameters must 
be α+b=1, shown later on, in (12). Two transfer functions, 
which describe FLL, can be now recognized. The first one is 
HTO(z), shown in (8), which describes the behaviour of the 
output period in terms of the input period. The second one 

Hτ(z), shown in (9), describes the behaviour of time difference 
in terms of the input period. 

2 2
1 0 0z TO( z ) zTO z TO aTI( z ) zbTI( z ) zbTI− − = + −   (4) 

0z ( z ) z ( z ) TO( z ) TI( z )τ τ τ− = + −    (5) 

02

( a zb )
TO( z ) TI( z ) TO

z

+
= +       (6) 

0 0

2

1

1

TO zz ( b )
( z ) TI( z )

z z

τ
τ

+− −
= − +

−

  (7) 

2TO

TO( z ) ( a zb )
H ( z )

TI( z ) z

+
= =       (8) 

2

1( z ) z ( b )
H ( z )

TI( z ) z
τ

τ − −
= = −     (9) 

III. ANALYSΙS OF FLL PROPERTIES  

It is necessary now to investigate the conditions under 
which the described system possess the properties of FLL or 
PLL. Let us remember that a FLL generates the output pulse 
rate whose frequency tends to reach the frequency of the input 
pulse rate during the transient state. FLL is in the stable state 
when the output frequency becomes either equal or in certain 
pre-defined relation to the input frequency. FLL does not care 
about the phase difference between input and output signals. 
FLL regulates only the frequency of the output signal. The 
phase difference of FLL depends on the initial conditions and 
FLL parameters. Unlike FLL, PLL regulates both frequency 
and phase difference between input and output signals at the 
same time. In most applications, classical PLL tends to 
equalize both frequency and phase of input and output signals. 
However, taking into account results in [2, 3], the phase 
difference of time recursive PLL between input and output 
signals can be regulated by the system parameters. This phase 
difference can take any value, but it does not depend on the 
initial conditions of the variables. Generally, some of time 
recursive PLLs can control the phase difference between input 
and output by the system parameters. Note that thereby, the 
phase difference does not depend on the initial conditions. 

Otherwise the system would represent FLL. The step analysis 
is the most suitable approach for the investigation of the 
properties of the system described. Let us suppose that the step 
input is TI(k)=TI=constant. Substituting the Z transform of 
TI(k) i.e. TI(z)=TIz/(z-1) into (6) and using the final value 
theorem, it is possible to find the final value of the output 

period TO∞=limTO(k) if k→∞, using TO(z): 

1lim[( 1) ( )] ( )
z

TO z TO z TI a b
∞ →
= − = +    (10) 

Substituting TI(z)=TI·z/(z-1) into (7) and using the final 
value theorem, it is possible to find the final value of the time 

difference τ∞=limτ(k) if k→∞, using τ(z): 

1 0 0lim[( 1) ( )] ( 2)
z

z z TI b TOτ τ τ
∞ →
= − = − + +  (11) 

It can be concluded, according to (10), that the described 
system can possess the properties of a FLL, if the system 

parameters satisfy (12). Note that if (12) is satisfied, TO∞=TI, 
i.e. for stable FLL, the output frequency is equal to the input 
frequency. Equation (11) confirms that the system possesses 

the properties of FLL, since τ∞ depends on the initial 
conditions. It comes out that the system does not possess the 
properties of a PLL. 

1a b+ =      (12) 

It is interesting to analyze, whether FLL is able to track the 
ramp input. To estimate this, it is necessary to determine well 
known velocity error KV, providing that the input period is the 
ramp function TI(k)=TIV(k)=ck, where c is a time constant. 
Note that TI(z)=TIV(z)=Z(c·k)=cz/(z-1)

2
. Generally, velocity 

error KV =lim[TOV(k)-TIV(k)] for k→∞. One more suitable 
expression for velocity error is KV =limTIV(k)[HTO(k)-1] for 
k→∞. Using the condition (12), the final value theorem and 
HTO(z) given by (8), KV is calculated and shown in (13). 
According to (13), FLL is able to track the velocity input with 
the constant error. However, if b=2 (α=1-b=-1), KV=0, i.e. FLL 
tracks the velocity input without any error. 

1lim{( 1) ( )[ ( ) 1]} ( 2)
V V TO z

K z TI z H z c b
→

= − − = −   (13) 

Let us now determine the behaviour of τV(k) for the velocity 
input, if k→∞. Taking in account b=2 and α=-1, and using the 
final value theorem, τV∞=lim τV(k)k→∞ is calculated using τV(z) 
and shown in (14). The expression τV(z) is found out by 
substitution of TI(z)=TIV(z)=cz/(z-1)

2
 in (7): 

1 0 0lim[( 1) ( )]
V V z

z z c TOτ τ τ
∞ →
= − = − + +   (14) 

According to (14), τV∞ is a constant. Besides the initial 
conditions TO0 and τ0, τV∞ depend on the time constant c, which 
is the slope of the ramp input function. It is worth checking 
whether FLL is able to track the acceleration input function 
TI(k)=TIA(k)=ck

2
. Note that, in this case, 

TI(z)=TIA(z)=Z(ck
2
)=cz(z+1)/(z-1)

3
. It is necessary to calculate 

now the acceleration error KA=lim[TOA(k)-TIA(k)], for k→∞. 
One more suitable expression for KA is KA=limTIA(k)[HTO(k)-1] 
for k→∞. Taking in account the values b=2 and α=-1, then 
using the final value theorem and HTO(z) given by (8), KA is 
calculated in (15). According to (15), FLL is able to track the 
acceleration input, but with the constant time error KA =-2c: 
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11 1 2A A TO zK lim{( z )TI ( z )[ H ( z ) ]} c→= − − = − ⋅  (15) 

IV. REALIZATION OF FLL  

According to the above analysis, FLL possesses powerful 
tracking performances for α=-1 and b=2. If we substitute these 
values into (1), it will be transformed into (16). If we now 
multiply, at the same time, all of its members by clock 
frequency fc, (16) will be transformed into (17). The functional 
scheme of FLL, which comes out from (17), is presented in 
Figure 2. According to (17), the input period TIk is measured by 
clock with frequency fc, the input period TIk+1 is measured by 
clock with frequency 2fc and the output period TOk+2 is 
generated by clock with frequency fc. FLL consists of a 
recursive calculation model (RCM) and a programmable period 
generator (PPG). RCM calculates Nb in binary form, according 
to the right part of (17), and PPG generates the output period in 
the next step. PPG is described in [2-4].  

12 2
++

+−= kkk TITITO       (16) 

12 2
++

⋅+⋅−=⋅ kckckc TIfTIfTOf     (17) 

Let us remember that PPG is based on the up-down counter 
and that the output period TO of Sop is TO=Nd·tc. Nd is the 
decimal value of binary code Nb and tc is the clock period, i.e. 
tc=1/fc. For the realization of RCM, presented in Figure 2, the 
technique in [1-10] was used. However, there are always 
differences in realization of any two RCMs. The differences are 
conditioned by the dissimilarity of the algorithms used. The 
real time functioning of FLL is presented in Figure 3. 

 

 
Fig. 2.  Functional scheme of FLL. 

 

Fig. 3.  The loop is in the stable state and TO is equal to TI. 

The oscilloscope picture is made on the realized 8-bit FLL. 
The voltage waveforms were taken when the FLL was in stable 
state. For this purpose, step input was chosen TI=0.1ms 
(fin=1/TI=10kHz), α=-1 and b=2. Clock frequency 
corresponding to parameter α was fc=110kHz. Clock frequency 
corresponding to parameter b was 2fc =220kHz. The ratio TI/tc 
=fc/fin=110kHz/10kHz=11. This ratio can be noticed in Figure 
3. As it can be seen, the output period is locked to the input 
period. The precision of locking depends on the ratio between 
the input period TI and the clock period tc=1/fc. Greater ratio 
TI/tc provides more precise locking. However, grater ratio of 
TI/tc requires greater capacity of all FLL parts. Note also that, 
in case that a fast dynamic input function is fed into FLL, like 
for instance a ramp function or an acceleration function, the 

capacity of FLL must be great enough to calculate the greatest 
output period which may appear within the transient state. 

Time differenceτ∞, which corresponds to stable FLL in Figure 
3, is not zero. This is consistent with the properties of any FLL. 

Time difference τ∞ has random value, because it depends on 
the initial conditions, according to (11). 

V. APPLICATIONS OF FLL 

In this chapter some of the applications of FLL will be 
considered. Besides the above analysis, these considerations 
will be supported by the simulation of FLL operations. The 
simulations are to demonstrate the tracking performances of 
FLL, to prove the mathematical analysis, to discover additional 
properties and possible efficient applications of FLL, and to 
enable better insight into the procedure and the physical 
meaning of the described variables. All discrete values in 
simulations were merged to form continuous curves. Note that 
all variables in the following figures were presented in time 

units. The time unit can be, µsec, msec or any other, but 

assuming the same time units for TI, TO, τ and c, it was more 
suitable to use just “time unit” or abbreviated “t.u” in the text. 
It was more convenient to omit the indication t.u in diagrams. 
All simulations were performed using (1)-(3). The simulations 

of TO(k) and τ(k) for the step input TIk=10t.u, are shown in 
Figure 4(a). All values for three cases of different parameters α 
and b, initial conditions and final values are shown in Figure 
4(a). The system parameters satisfy (12) in all cases and 
consequently, the output periods reached input periods. 
According to (11), using the parameter values and the initial 

conditions presented in Figure 4(a), τ1∞ can be calculated as: 

τ1∞=TI(b-2)+TO0+τ0=10(0.1-2)+3+0=-16t.u. This result agrees 

with the simulated τ1∞. In the same way, it can be calculated 

that τ2∞=-4t.u, and τ3∞=6t.u. Note that calculated values τ2∞, 

and τ3∞ also agree with the simulated τ2∞, and τ3∞ presented in 
Figure 4(a). These simulation results prove the correctness of 
the mathematical description and step analysis. The real time 

relation between Sin, Sop and τk, for simulated case Nr. 2, is 
shown in Figure 4(b). For the stable FLL, period TO∞=TI=10t.u 

and τ∞=-4t.u. Note that FLL is very fast. It takes only two steps 
to reach the stable state. 

 

 
Fig. 4.  (a) Transition states of FLL for the step input and different system 

parameters. (b) Real time presentation of Sin, Sop and τk for the simulated 

case Nr 2. All transient states are finished in two steps. 

(a) 

(b) 
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The simulations of TO(k), KV and τ(k) for the velocity input 
TIk=(10+4·k)t.u, are shown in Figure 5. The values for two 
cases of different parameters α and b, initial conditions and 
final values are shown in Figure 5. The case Nr. 1 corresponds 
to the condition α+b=1. According to (13), KV1=c(b-2)=4(0.2-
2)=-7.2t.u. This calculated result agrees with KV1. The case Nr. 
2 matches both, the previous one α+b=1 and the additional 
conditions b=2 and α=-1. According to (13), KV2=c(b-2)=0.0t.u. 
This result also agrees with KV2 simulation result, proving the 
previous conclusion. So if b=2 (α=1-b=-1), KV=0, i.e. FLL 
tracks the velocity input without any error. Finally, according 

to (14), τ2∞=-c+TO0+τ0=-4+8+3=7t.u. This result agrees with 

the simulated τ2∞. All simulated values KV1, KV2, τ2∞ agree with 
the calculated ones by (13) and (14). The identity of analytical 
and simulation results proves the correctness of the entire 
theoretical approach, as well as the validity of the obtained 
results. Even for the ramp input, demonstrated in Figure 5, FLL 
takes only two steps to reach stable state. 

 

 
Fig. 5.  Simulation of the input and output variables in the tracking of the 

velocity function. All transient states are finished in two steps. 

The simulations of TO(k), KA and τ(k) for the acceleration 
input TIk=(10+4·k

2
) t.u, are shown in Figure 6. The values for 

two cases of different parameters α and b, initial conditions and 
the final values are shown. Note that the parameters α and b 
and the initial conditions are the same as those in Figure 5, so 
comparison between them is available. The case Nr. 1 
corresponds to the condition α+b=1 and the case Nr. 2, satisfies 
both conditions, α+b=1 and b=2, α=-1. It can be seen that, for 
the case Nr. 2, the output period TO2 is able to track even the 
acceleration function, but with constant error KA2. 

 

 
Fig. 6.  Simulation of the input and output variables in the tracking of the 

acceleration function. All transient states are finished in two steps. 

According to (15), KA2=-2·c=-2·4=-8t.u. This result agrees 
with the simulated KA2 in Figure 6. The acceleration error KA1, 
for case Nr. 1, tends to minus infinity in Figure 6. That means 
FLL is not able to track the acceleration function if the 
parameters do not satisfy the conditions b=2, α=-1. Time 

difference τ2∞ also tends to minus infinity in Figure 7. 
Simulations showed that, providing that α+b=1, FLL is very 
fast. It always reaches stable state after only two steps, no 
matter if the input function was a step function, a velocity 
function or an acceleration function. No FLL or PLL, described 
in [1-10], possesses this property. From a practical point of 
view, this means that this FLL is very suitable for tracking and 
predicting applications, as well as for other applications which 
require very short transition time. 

VI. ANALYSIS OF FLL IN FREQUENCY DOMAIN  

Analysis of FLL in frequency domain should expend 
knowledge of its properties. For this purpose, Matlab 
commands, devoted to digital filter design, were used. Since 

FLL is described by two transfer functions HTO(z) and Hτ(z), 
shown in (8) and (9), using Matlab command freqz, frequency 
responses in the regain (0, pi) [rad], from both transfer 
functions, are generated for α=-1 and b=2 and presented in 
Figures 7(a) and 7(b) respectively. The frequency responses 
consist of magnitude and phase responses. The sampling 
frequency fs=200Hz corresponds to the region (0, 2pi) [rad], so 
that fs/2=100Hz, covers the region (0, pi). Regarding Figure 7, 
time presentations of TI and TO as well as the spectrums of TI, 
TO and τ, shown in Figure 8, will be used. The input signal is 
the input period TI, presented in Figure 8(a), as 
TI(k+1)=10+6·sin[(2pi/fs)·fm·k)]. It can be considered as a 
constant period of 10t.u., which is modulated by samples of 
sinus signal, whose amplitude is 6t.u. and frequency fm=10Hz. 

 

 

Fig. 7.  (a) Frequency responses - HTO(z). (b) Frequency responses - Hτ(z) 

The number of time steps is chosen to be k=200=fs. The 
angular sampling step is ws=2pi/200 [rad]. Since 200 frequency 
sampled steps covers region of one period, (0, 2pi), it means 
the sampling rate will be 20 samples/period. This provides 
sufficiently good resolution of TI in Figure 8(a) for this 
analysis. FLL generates the output TO, which is calculated 
according to (1), (2) and (3). Note that TO exactly tracks TI 
with delay of one step. Matlab commands fft and stem are used 
for the generation of the spectrums of TI, TO and τ in Figure 

(a) 

(b) 
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8(b). These spectrums present the absolute values of 
amplitudes, covering the whole region (0, 2pi) [rad]. They 
appear as positive values in the symmetric second half (pi, 2pi) 
[rad]. The constant of 10t.u as a part of the input signal 
TI(k+1), corresponds to zero frequency component. This 
constant appears as very strong amplitude with the frequency 
of 0Hz in TI and TO spectrums. Besides the constant of 10t.u., 
TI(k+1) consist of the sinusoidal signal, whose frequency 
amplitude can be seen in the spectrums of TI, TO and τ at 
10Hz. Time amplitude of TO spectrum at 0Hz is practically the 
same as in spectrum of TI, because FLL attenuation, shown in 
Figure 7(a) for HTO, is 0 [dB] at 0Hz. However the time 
amplitude at 10Hz is slightly amplified at the output TO, 
because the magnitude, at Figure 7(a), for HTO, is about 
0.9[dB]. According to Figure 8(b), the amplitude of the input 
sinus signal at 10Hz is about 560t.u. and in the spectrum of τ, 
this component amounts about 200t.u. If we express this 
attenuation in dB, it gives 20log(200/560)~-8.6dB. This 
corresponds to attenuation of -8.6dB, as shown in Figure 7(b). 
Unlike the very strong amplitude at 0Hz in the spectrum of TO, 
this component completely disappeared in the spectrum of τ in 
Figure 8(b), because FLL attenuation, shown in Figure 7(b), for 
Hτ(z), is about -42dB at 0Hz. This fact means that the width of 
time difference τ contains the input sinus signal, but without the 
zero frequency component. However, according to (11), τ 
depends on the initial conditions too. The difference between 
two adjacent τ, i.e. τk+1-τk, will eliminate the initial conditions, 
since their influence is the same in every τ, if FLL is in the 
stable state. The demodulated input sinus signal, without input 
period and all other influences is shown as τk+1-τk in Figure 9. 
The agreements between time and frequency presentations of 
FLL input and output signals, confirm the correctness of the 
presented analysis.  

 

 
Fig. 8.  (a) Time presentation of TI and TO. (b) Spectrums of TI, TO and τ 

 

Fig. 9.  Demodulated input sinus signal in time domain 

VII. CONCLUSION 

This paper is closely related to the recently published 
articles in [1-10]. Due to the fact that this FLL version is based 
on measurement and processing of input periods only, it is 
simpler for the realization in comparison to those described in 
[1-10]. At the same time, it takes FLL only two steps to reach 
stable state for any kind of input. It was shown that this FLL 
can be very efficiently used for step tracking, ramp and 
acceleration functions. It is especially suitable for applications 
which require fast FLL with very short transient time. This 
FLL is scalable to the very strict requirements in the fields of 
tracking and predicting. Although TNP FLL and the digital 
filter represent different types of systems, since the former is 
based on time processing and the latter is based on processing 
of amplitudes, this study showed that Matlab tools devoted to 
the design of FIR digital filters, can be used to analyze the TNP 
FLL in the frequency domain. All it takes is to understand the 
physical aspects of the whole process and to identify the 
meanings of TNP FLL variables in Matlab. Using Matlab, wide 
options for new analyses and new applications of TNP FLL 
emerged. One as such is described in this article, where TNP 
FLL is used as a demodulator. 
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