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Abstract-The high sensitivity of crystallization to shear flow is a 
subject of great research interest the last several years. A set of 
syndiotactic polypropylene/clay composite samples were used to 
examine the effect of shear flow on crystallization kinetics. This 
phenomenon alters both processing and material final properties. 
In the present work, the effects of clay contents and shear flow on 
the rate of flow induced crystallization were investigated using 
rheological technique. Small amplitude oscillatory shear 
experiments were performed using advanced rheometric 
expansion system (ARES). The crystallization rate is found to 
alter by both shear and clay contents in the polymer composites. 

Keywords-shear flow; flow induced crystallization; syndiotactic 
polypropylene/clay composites; induction time; Deborah number; 
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I. INTRODUCTION 

The enhancement in the rate of polymer crystallization due 
to the application of flow is known as flow induced 
crystallization. In other words flow induced crystallization can 
be defined as the process in which the rate of polymer 
crystallization is accelerated by the action of flow [1]. This 
phenomenon alters both processing and material final 
properties. The physics behind flow induced crystallization is 
simple. When a polymer is subjected to a flow, the polymer 
chains are oriented and stretched. This results to a decrease in 
the entropy or equivalent increase in free energy [2, 3]. This 
increase in free energy acts as a driving force and thus 
accelerates the polymer crystallization process by accelerating 
the rate of nucleation. In general, the process of crystallization 
occurs in two steps. In the 1st step, the formation of nuclei 
(stable nuclei) occurs, while in the 2nd step the subsequent 
growth of crystallite occurs. The flow has an effect on the first 
step of crystallization (nucleation stage) [1]. The flow 
mechanism induced crystallization has been explained very 
well in [2, 3]. The process can be explained as the stretching of 
long chains to form fibrous crystals. During the stretching 
process, distortion of chains from their most probable 
conformation results and hence a decrease in the 
conformational entropy occurs. If this deformation is 
maintained in this lower conformational entropy state, then less 

conformational entropy needs to be sacrificed by transforming 
to a crystalline state. The decrease in total entropy allows the 
crystallization to occur at high temperatures that will take place 
under quiescent conditions. Normally, the formation of such 
fibrous morphology is accompanied by the formation of an 
epitaxial layer over and around the inner fiber giving rise to the 
so called shish-kebab kind of morphology [3]. 

A critical review shows that the outside, kebab like regions 
are essentially folded chain regions comprised of chains which 
do not crystallize during the orientation process [2-5]. While, in 
the inner shish region, the formation of folded chain discs 
occurs due to nucleation events taking place on the surface of 
extended chains. In the light of the above discussion, the 
enhancement in the rate of crystallization process by the shear 
flow is due to the enhancement in the rate of nucleation. 
Numerous works regard nucleation kinetics [5]. According to 
[7], isothermal nucleation kinetics is expressed as: ܰ = ݔ݁ܩ∆ܶ݇ܥ ቀா்ቁ ݔ݁ ቂ− ்(∆ீ)ቃሶ

  (1) 

where N=Rate of nucleation, k=Boltzmann’s constant, 
T=absolute temperature, ∆ܩ =GL-GS=Volumetric free energy 
difference between liquid and crystalline phase and K=constant 
containing geometrical and energetic factors of nucleus. 

It is generally accepted that the shear flow contributes to 
the free energy difference appearing in (2). ∆ܩ = ݂ܩ∆ +  (2)    ݍܩ∆

where ∆ݍܩ and ∆݂ܩ refer to the free energy contribution under 
quiescent and shear flow conditions respectively. In order to 
investigate the influence of flow on crystallization, a 
characteristic time for the crystallization is measured. This is 
usually called induction time. It is the time required for the 
steady state of nucleation to be reached. Both induction time 
and nucleation rate are nearly inversely proportional. Induction 
times can also be measured by detecting the sharp upturn in the 
viscosity vs time curve under constant shear rate [9]. The ratio 
between the induction time under quiescent and flow 
conditions can be defined as: 
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ߴ = ݂ܰ/ݍܰ = 1/1 + ]	exp	ݍܩ∆/݂ܩ∆ ்(∆ீ)] (3) 

where q and f refer to quiescent and flow conditions 
respectively. The dimensionless induction time is 1 under 
quiescent conditions, while it is less than 1 when the shear flow 
is applied .For steady shear flow ∆݂ܩ = 3ܿ݇ܶΓ	(݁ܦ)    (4) 

where De is Deborah number. It is the product of the shear rate 
and the polymer reptation time. Γ is dimensionless free energy, 
which is a function of De. In order to evaluate ߴ for a given 
polymer under isothermal flow conditions several material 
properties are needed. The quiescent free energy requires the 
knowledge of the thermodynamic melting temperature (Tm) and 
latent heat of fusion (Ho). ∆ݍܩ = 1)ܪ − ்்)    (5) 

Values of the quiescent crystallization constant (K) and 
exponent (n) are required for calculating ߴ. Besides this some 
values of rheological parameters of polymer melts like 
repetition time (Td), entanglement density (ߩe) and molecular 
weight between entanglements (Me) are also required. In case 
of polymer melting, the ability of the shear flow to produce 
conformation and morphological changes with respect to 
equilibrium and isotropic state results from the coupling 
between the shear flow intensity and relaxation behavior of the 
chain. According to the theory of repetition [6], chain segment 
conformation or orientation occurs only when the characteristic 
flow time (γ-1) is smaller than the repetition or disengagement 
time Td. In the other words chain stretching is possible only 
when γ-1<TR<Td. TR, and Td are the rouse and disengagement 
times respectively. The effect of flow on the chain orientation 
and consequently on the flow induced crystallization has been 
explained in terms of a dimensional form by defining a 
Deborah number for the system as: 

De=γ
.Td      (6) 

The above discussion clearly mimics that for De<1, there 
will be no effect on the crystallization kinetics, whereas faster 
crystallization kinetics should be observed only in case of 
De>1. Molecular structure factors like molecular weight, 
molecular weight distribution or polydispersity and tactility are 
the important structural properties in quantitatively determining 
the flow induced crystallization rate [8-10]. In case of 
monodisperse polymers, longer polymer chains will be more 
oriented than the shorter ones under the same flow conditions, 
as high molecular weight chain has longer relaxation times. 
The same applies on the polydisperse polymers. The presence 
of a long tail of molecular weight chains should enhance the 
flow induced nucleation rate. Fiber pulling experiments on the 
long series of isotactic polypropylenes of different molecular 
weight were conducted [10]. It was found that the overall 
crystallization kinetics exponentially increased upon increasing 
polymer’s molecular weight at constant fixed shear rate [10, 
11]. 

Authors in [11] conducted rheological flow induced 
crystallization experiments on the isotactic polypropylene 
samples of different molecular weight and molecular weight 

distribution. They found an increase in the rate of 
crystallization by increasing the molecular weight of the 
samples at constant shear rate. Furthermore, they found that 
after a combined thermo mechanical treatment which mainly 
caused a degradation of the high molecular weight tail, the 
effect of the shear rate on the crystallization rate was strongly 
reduced. 

In [14], authors obtained the same results by investigating 
the process using differential scanning calorimetry (DSC) 
technique. They performed experiments on both linear and 
branched chain polypropylene. Long chain branched 
polypropylene showed accelerated crystallization kinetics in 
comparison with that of low branched level. The crystallization 
of long chain branched polypropylene was found more 
sensitive to shear flow than that of linear polypropylene during 
the induced period at low shear rates, which depicts that the 
longer relaxation time of the polymer chains played an 
important role in the nucleation of polypropylene under shear 
flow fields. In a nut shell an increase in molecular weight will 
produce a faster crystallization under given flow conditions. 

Authors in [12] studied melt blended nanocomposites of 
PP/Talc. Nanocomposites of PP/Talc were processed using an 
internal mixer. An elongational rheometer was used to generate 
well controlled different extensional flow conditions. Samples 
were then characterized by WAXS to reveal and quantify the 
fillers and polypropylene crystalline phase orientation. 
Crystalline orientation of polypropylene was found to be 
strongly affected by the addition of Talc under extensional flow 
and Talc orientation. More recently, isotactic polypropylene 
(iPP) based single-polymer composites (SPCs) were prepared 
by introducing iPP fibers into the molten or super cooled 
homogeneous iPP matrix [13]. The influences of fiber 
introduction temperature (Ti) on the resultant morphology of 
transcrystallinity (TC) and mechanical properties of SPCs were 
investigated via a polarized optical microscopy (POM) and a 
universal tensile test machine. The effects of interfacial 
crystallization on mechanical properties were also studied. The 
tensile strength of SPCs was observed to increase firstly and to 
reach a maximum value at Ti=160°C, and then to decrease with 
further increasing of Ti. Wide-angle X-ray diffraction 
(WAXD), scanning electron microscopy (SEM) and POM were 
employed to understand the mechanical enhancement 
mechanism. It is found that the enhanced tensile strength of 
SPCs was strongly dependent on the synergistic effects of TC, 
high orientation degree of iPP fibers and good adhesion 
between the iPP fiber and the matrix. In the present work we 
studied the effect of clay loading and shear flow on the rate of 
crystallization of sPP/clay composites using rheological 
technique. 

II. EXPERIMENTAL WORK 

A. Materials 

Samples of sPP/clay composites with different contents of 
clay were used for the flow induced crystallization study. The 
diagnostic properties of the polymers are reported in Table I. 
All the samples were synthesized in our chemistry department 
using solution mixing technique [15]. 
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TABLE I. LIST OF ALL SAMPLES [15]. 

Sample 
Number 

Sample 
Name 

Percentage 
of clay contents 

Degree of 
syndiotacticity <%rrr> 

1 sPP-1 10%  
2 sPP-2 7.5%  
3 sPP-3 5%  
4 sPP 0 60 

 

B. Methodology 

The effects of shear flow and clay contents on the rate of 
crystallization (flow induced crystallization) were investigated 
by rheological technique using ARES rheometer. Before 
staring the flow induced crystallization experiments stability 
and range of shear stress were explored for each sample. After 
confirming the stability and determining the range of shear 
stress, the effect of shear flow on crystallization was examined 
at two different temperatures above and below the melting 
point. In case of sPP-1, shear flow was applied at 145°C and 
125°C, while in case of sPP-3, the shear flow was applied at 
120°C and 105°C. The procedure of the rheological flow 
induced crystallization experiments is explained below: 

1. Annealing of the polymer sample was carried out by time 
sweep test at 220°C for 20 minutes in order to clean the 
sample. 

2. The polymer sample was cooled from 220°C to 
temperatures above melting temperature by temperature 
ramp test at a constant cooling rate of 40°C/min, 1 rad/s of 
frequency and at a strain of 1%. 

3. Different shear rates ranging from 0.01 to 0.25s-1 were 
applied at a specific temperature.  

4. After the application of shear rate, temperature ramp test 
(crystallization test) was started within a time of 13 
seconds. 

5. In another set of experiments shear rate was applied at a 
temperature below melting point. Different shear rates 
within the range (0.01 to 0.25s-1) were applied at 125°C 
and 105°C respectively for sPP-1 and sPP-3 respectively 
within the induction time for different periods of time 
(shear flow times). Both sets of experiments were carried 
out for all samples. 

III. RESULTS AND DISCUSSION 

Annealing of the samples by time sweep test at 220°C and 
1rad/s was carried out for 20 minutes in order to investigate the 
stability and clean the sample completely from the spherulites 
and nuclei. Time sweep test for sPP-1 has been shown in 
Figure 1. Thermal stability of all samples was examined at 
220°C and at 1rad/s of frequency. All the samples were found 
to be stable. After confirming the thermal stability, the stability 
of the samples was examined for different shear rates. All the 
samples were found stable in the range of 0.01 to 0.25s-1 of 
shear rates as shown in Figure 2 for sPP-1. Crystallization 
behavior under quiescent conditions and at different shear rates 
was explored using the temperature ramp test from 220 to 
125°C for sPP-1. Different shear rates were applied at 125°C 
after cooling from 220°C. In case of quiescent condition, no 
shear rate was applied at 125°C. In both cases of quiescent and 
flow induced crystallization, crystallization behavior was 

observed by cooling from 220°C to 125°C. Changes in moduli 
dictate the process of crystallization. Jump in the elastic 
modulus after the incubation and induction time is considered 
as the actual crystallization process. Enhancement in the rate of 
crystallization was observed by the application of different 
shear rates. In another words the induction time is not the same 
in all cases. These findings have been exhibited graphically in 
Figure 3. 
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Fig. 1.  Time sweep test for sPP-1 at 220°C. 
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Fig. 2.  Plot between time and shear stress for sPP-1. 

In order to investigate the effect of shear flow on 
crystallization process, some other types of experiments were 
conducted on sPP-11 and sPP-5. In these experiments, different 
shear flows were applied within the induction time at 
temperatures below and above melting point after cooling from 
200°C for all samples. Each shear flow was applied for 
different periods of time ranging from 50 to 800 seconds 
depending upon on the induction time of the sample.  

A significant effect of shear flows was found on the 
crystallization kinetics. The characteristic Deborah number was 
calculated from the relaxation time and shear flows. Relaxation 
time was calculated by different methods. In all cases the 
Deborah number was found greater than one (De>1), which 
verifies our experimental findings that the applied shear flow is 
able to orient the polymer chains. Shear flow can be increased 
to the extent of making Deborah number greater. In the present 
experimental work this attempt was made, but the sample was 
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