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Abstract—In this study, an approach is being proposed which will 
predict the output of an observation based on several parameters 
which employ the weighted score classification method. We will 
use the weighted scores concept for classification by representing 
data points on graph with respect to a threshold value found 
through the proposed algorithm. Secondly, cluster analysis 
method is employed to group the observational parameters to 
verify our approach. The algorithm is simple in terms of 
calculations required to arrive at a conclusion and provides 
greater accuracy for large datasets. The use of the weighted score 
method along with the curve fitting and cluster analysis will 
improve its performance. The algorithm is made in such a way 
that the intermediate values can be processed for clustering at the 
same time. The proposed algorithm excels due to its simplistic 
approach and provides an accuracy of 97.72%.  

Keywords-weighted score; classification; clustering; deviation; 
threshold; SVM; decision tree  

I. INTRODUCTION  

Classification is a data mining technique in which a 
collection of data is categorized into classes in which the 
training dataset may or may not have class labels. A dataset 
may have two or more class labels. In this work we are 
focusing on binary classification using clustering technique 
based on curve analysis and weighted score method followed 
by verification. To illustrate with an example, let us suppose 
that we have a dataset containing data about spam from a 
repository. We want to identify the data points above and 
below the threshold level which are classified as spam and not 
spam respectively. The threshold level can be obtained through 
sorting and processing of the dataset. The proposed algorithm 
preprocesses the dataset to find the weighted score as well as to 

predict the threshold value, which is then represented 
graphically. After this step, verification is done using cluster 
analysis. Observations on various datasets were found to be 
accurate to a high degree. Deviations of various data points 
from the threshold values were obtained and various inferences 
were found. We have also calculated the individual effect of an 
attribute with respect to its effect on classification. Data 
provided by datasets contain hidden information that might not 
be known to the user. An effort has been made to develop a 
new algorithm to facilitate mining techniques. The simplistic 
approach of the algorithm is easy to understand and implement. 

The proposed algorithm is based on clustering which acts as 
a stable preprocessing method for binary classification. 
Weighted score method assigns different importance degrees to 
the instances of a dataset. The proposed classifier calculates the 
mean of each sample which is multiplied with each attribute’s 
value summed up to assign a weight to that sample. A 
threshold value is taken and plotted data points fall below or 
above it. The minimum and maximum values among the 
weighted sample sums are subtracted from the threshold value 
which is halved to obtain the centers of two clusters. Clustering 
is performed using these centers and by taking maximum 
distance into consideration which will be the same with the 
distance between a center and the threshold value. The clusters 
obtained correspond to the binary class labels which classify 
the dataset. Observations are cross verified using the clustering 
method. Weighted score is a simple technique and also 
incorporates the individual contribution of an attribute 
consisting of its weighted score in its contribution to the 
deviation of the data point from the threshold.  
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II. LITERATURE REVIEW 

Various studies have been proposed for classifying datasets 
into two categories. Previous researchers utilized different 
classification approaches. SVM (support vector machines), is 
basically used for classification and regression analysis and 
employs supervised learning techniques. In SVM algorithm, 
new examples are assigned or classified into categories and 
therefore it is regarded as a non-probabilistic classifier. SVM 
can be thought of as a clustering algorithm in space in which 
points belonging to a cluster are distant from points of other 
clusters. In that space a hyper-plane divides the points in 
groups. A particular hyper-plane with the characterization of 
minimizing the total distance of the data points on either of its 
sides is selected. This is also called a linear classifier. There are 
various variations to the basic approach of the SVM namely 
linear kernel SVM, polynomial kernel SVM and radial kernel 
SVM. The most efficient method for fitting SVM is the 
sequential minimal optimization (SMO) method. It breaks the 
problem down into sub-problems that can be solved 
analytically rather than numerically. There are various SVM 
applications like the recognition of standing people in a picture. 
Authors in [1] used SVM along with k nearest neighbor (KNN) 
for visual category recognition. Authors in [2] used variations 
of SVM to predict the future popularity of social media 
messages. The disadvantages of SVM are that the theory only 
covers the determination of the parameters for a given value of 
the regularization and kernel parameters and is dependent on 
the kernel choice. As a result, SVM comes up with the problem 
of overfitting from optimizing the parameters to model 
selection. Kernel models can be quite sensitive to overfitting 
the model selection criterion [3]. In [4], local space time 
features were used for recognizing complex motion patterns 
using SVM. 

A decision tree is a predictive model to go from 
observations and related choices about an item to possible 
outcomes about the item's target value. It has various 
applications in statistics, data mining and machine learning. In 
this structure, each node denotes a test on an attribute, leaves 
represent class labels and branches represent conjunctions of 
features that denote the test outcome. Besides being simple to 
interpret and understand, decision trees are able to handle both 
categorical and numerical data [5]. To solve the problem of 
fragmentation and replication, a notion of decision graphs has 
been introduced which allows disjunctions or joins. There are 
assumptions taken into consideration regarding decision tree 
algorithm. At the beginning, the whole training set is 
considered as the root. Feature values are preferred to be 
categorical. If the values are continuous then they are 
discretized prior to building the model. Records are distributed 
recursively on the basis of attribute values. The decision tree 
algorithm is sensitive to root selection. If the dataset consists of 
n attributes then the decision of which attribute to place at the 
root or at different tree levels as internal nodes is a complicated 
step. Any random node cannot be placed at the root. If the 
random approach is followed, it may give bad results with low 
accuracy. Placing attributes is done by statistical approach. A 
variation of this weighted class based decision tree [6] has been 
proposed in which weights are easy assigned according to the 
importance of class labels which are further classified using a 

decision tree. The dataset is split in this approach which might 
potentially introduce bias where small changes in the dataset 
can introduce big impact. Decision-tree can lead to over-
complex trees that do not generalize well the training data. 

Studies have shown that classification issues are often more 
precise when using a combination of classifiers which 
outperform a highly specific classifier [7]. Using a combination 
of classifiers noisy data can be handled in a better way with 
augmented accuracy and speed even though complexity issues 
may emerge [8]. Weighted score method assigns different 
importance degrees to instances of a dataset and is often used 
as a pre-processing method. Automated weighted sum 
(AWSum) uses a weighted sum approach where feature values 
are assigned weights that are summed and compared to a 
threshold in order to classify an example. It provides insight 
into the data [9]. Authors in [10] dealt with the weighted score 
fusion method which involves the classification of a fruit based 
on the diverse and complementary features that can be used to 
describe it. The algorithm has various steps which involve 
preprocessing, multiple feature selection, optimal feature 
selection and SVM. However, the approach requires 
improvements in the real world environment. A quadratic 
classifier is used in statistical classification to separate 
measurements of two or more classes of objects or events using 
a quadric surface. It is a more general version of the linear 
classifier. Statistical classification considers a set of vectors of 
observations x of an object or event, each of which has a 
known type y referred to as the training set. The problem is 
then to determine the class of a new observation vector. The 
correct solution is quadratic in nature. In the special case where 
each observation consists of two measurements, this means that 
the surfaces separating the classes will be conic sections, thus 
the quadratic model is the generalization of the linear approach 
developed to incorporate the conic separating surfaces for 
classification. Quadratic discriminant analysis (QDA) is closely 
related to linear discriminant analysis (LDA), where it is 
assumed that the measurements from each class are normally 
distributed. Unlike LDA however, in QDA there is no 
assumption that the covariance of each of the classes is 
identical. Classification error rate ranges around 20%-30%. 

An artificial neural network consists of units (neurons), 
arranged in layers, which convert an input vector into some 
output. Each unit takes an input, applies a (most probably a 
nonlinear) function to it and then passes the output on to the 
next layer. The networks are defined to be feed-forward, which 
means that a unit feeds its output to all the units on the next 
layer, but there is no feedback to the previous layer. 
Weightings are applied to the signals passing from one unit to 
another. These weightings are tuned in the training phase 
(learning phase) to adopt the neural network to the particular 
problem. The network processes records one at a time, and 
learns by comparing their classification with the known actual 
classification. The errors from the initial classification are fed 
back into the network and used to modify the network's 
algorithm for further iterations. Neurons are organized into 
layers: input, hidden and output. The input layer is composed 
not of full neurons but rather consists simply of the record's 
values that are inputted to the next layer of neurons. Next there 
are one or more hidden layers. The final layer is the output 
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