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Abstract—Compressive sensing (CS) is an innovative idea that 
has opened new areas for viable communication of correlated 
data. In this paper, a comparative performance analysis of two 
different variants of compressive sensing i.e. block based 
compressive sensing (BCS) and line based compressive censing 
(LCS) schemes is performed for natural images. The idea is to 
evaluate which variant performs better in terms of 
reconstruction quality and provides easy initial solution. The 
experimental analysis demonstrates that LCS scheme can 
enhance the image reconstruction at lower subrates by 0.5 dB to 
2.5 dB, when compared to the BCS scheme. 

Keywords-compressive sensing; block based approach; line 
based approach; reconstruction; image 

I. INTRODUCTION 

Compressive sensing (CS) is one of the latest techniques 
that have achieved popularity recently and is applied to various 
imaging applications [1], such as magnetic resonance imaging 
(MRI) [2, 3] and seismic identification [4]. CS [5, 6] idea is to 
express a signal (image/video) with sample estimation rate 
much lower than that of the Nyquist rate which is essential for 
the recovery of the signal. One of the innovative of this is the 
single-pixel camera [1] that openly condenses the sampling and 
amount of data that will be transmitted, but increases the 
difficulty of recovering the original signal. In other words, the 
recovery of the original signal from small number of sample 
measurements is difficult. Numerous earlier researches have 
already examined the utilization of CS in image compression 
[3-8]. Many researchers concentrated their work on proposing 
how natural images can be compressed utilizing CS and the 
recovery of the encoded signal (image) from such little 
estimation. In CS we concentrate mostly towards discrete signs 
instead of constant time space signals. In addition, compressive 
sensing of natural images is exposed to few issues such as 
computationally complex reconstruction algorithm and 
requirement of large memory to store the random sampling 
operator Φ. In order to encounter the aforementioned issue 
different approaches were developed i.e. block based 
compressive sensing and line based compressive sensing. The 
block-based approach is far more developed and widely 

employed as compared to the newly developed line based 
approach to reduce of the computationally complexity of CS 
scheme [9-14]. Such methodologies value CS because (i) 
block/line based estimation is more convenient for applications 
where the sample image data don't need to be encoded 
completely in a block/line form until the point when the 
estimation of the whole image is completed, (ii) the application 
and capacity of the estimation operator are straightforward, (iii) 
the individual handling of each block/line of image data brings 
about simple initial solution with considerably quick and better 
recovery process. 

In this paper, a performance comparison of two different 
variants of compressive sensing i.e. block based compressive 
sensing and line based compressive sensing for images is 
performed. The purpose is to find out which variant works best 
to solve the issues related to CS. The variants are evaluated 
based on computational complexity and reconstruction quality 
at various subrates for different test image datasets. In addition, 
block based and line based approaches are also compared at 
various block/line sizes to validate the effectiveness of each 
scheme. The paper is structured as follows. The fundamentals 
of the CS along with block based and line based approaches are 
presented in section II. Section III presents and discusses the 
simulation results. Section IV concludes the paper. 

II. THEORY OF COMPRESSIVE SENSING 

The CS theory [5] states that a sparse (original or some 
transform domain) signal can be completely recovered from a 
number of samples below than that stated by the Nyquist 
theorem. The CS scheme efficiently eases the computational 
prerequisites, for example, memory, processing power, and 
transmission data transfer capacity at the encoder by relating 
signal acquirement and dimensionality reduction into a distinct 
stage. CS is effective in two circumstances. When direct 
measurements of a high-resolution signal are hard to attain and 
when multiple high-resolution signals are complex to encode. 
In literature, CS is a standard and isn’t stated for any particular 
signal other than underlying sparsity assumptions. CS permits 
great prospect of signal reconstruction by utilizing least amount 
of unsystematic measurements, as long as the signal/image is 
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