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Abstract—An increase in load capacity during the operation of a 
power system usually causes voltage drop and leads to system 
instability, so it is necessary to monitor the effect of load changes. 
This article presents a method of assessing the power system 
stability according to the load node capacity considering 
uncertainty factors in the system. The proposed approach can be 
applied to large-scale power systems for voltage stability 
assessment in real-time. 

Keywords-stability; power system; power plane; uncertainty; 
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I. INTRODUCTION  

Power system stability could be defined as “the ability of an 
electric power system, for a given initially operating condition, 
to regain a state of operating equilibrium after being subjected 
to a physical disturbance with most system variables bounded, 
so that practically the entire system remains intact” [1]. In [1], 
power system stability is broadly classified into three groups: 
frequency stability [2-4], rotor angle stability [5-7], and voltage 
stability [8-14]. Voltage stability could be defined as the ability 
of the system to maintain steady voltages at all buses in the 
system after being subjected to a disturbance from a given 
initial operating condition [1, 8, 11]. Voltage stability is 
divided into two subcategories: large and small disturbance 
stability. System faults, tripping transmission lines or dropping 
in generators are considered large disturbances whereas load 
changes are considered small disturbances. Static voltage 
stability is considered in the present paper in particular. The 
system is assumed to be operated in an equilibrium state and 
static voltage stability analysis assesses the feasibility of the 
operating point to provide the system operators with a 
permissible region in which the system can operate normally. 
Many techniques have been used in static voltage stability 
analysis in the literature. The well-known P-V and Q-V curves 
are widely used [8, 15-20] to determine the maximum 
permissible loading of the system. In particular, a P-V curve 
provides the relationship between the real power load and bus 
voltage and it is depicted with a constant power factor [17].  

Contrariwise, a Q-V curve, plotted for a constant power 
[17], gives the change of bus voltages with respect to reactive 
power injection or absorption. Procedures for constructing both 
P-V and Q-V curves are time-consuming because a large 
number of power flows is needed to be executed using 
conventional methods and models [21]. Due to this drawback, 
they are not suitable to be used for online analysis. Moreover, 
they could be used only for certain increasing modes and not 
for providing the whole view of the analysis. Generally, they 
examine an individual bus by stressing the considered bus 
independently so they are not able to fully reflect the real 
stability condition of the system. In fact, voltage collapse 
occurs when the system load, i.e., real power and/or reactive 
power load, grows over a certain limit. Hence, voltage stability 
boundary needs to be plotted on a power plane [17]. It will 
form a P-Q curve [8, 22-26] that is very useful to determine 
boundary and operating regions for the system. Once the 
boundary is determined, the distance from the operating point 
to the voltage collape of the system can be directly assessed. 
For this work, stability reserve ratios are widely used in 
practice. Figure 1 shows, as an example, a P-Q curve (stability 
boundary) that divides power plane into two regions: normal 
region and impossible operating region. From Figure 1, 
stability reserve ratios Pk  and Qk  can be calculated as follows: 

lim 0
P

0

lim 0
Q

0

P - Pk = 100%
P

Q - Q
k = 100%

Q

 

where, P0 and Q0 are real and reactive power of the 
considered load at the operating point; Plim and Qlim are the 
limitations of real and reactive power, recpectively. A P-Q 
curve can be determined by various approaches. In [8, 22-24], 
the curve is characterized by a parabolic equation, while it is 
assumed to follow a circle in [25]. Nevertheless, such 
assumptions on the shape of the curve make it unrealistic. In 
addition, those techniques usually require high computational 
time so they are not suitable for online voltage stability 
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(so Yሶ i0 can be eliminated) and the load is separated as in Figure 
3.  

 
.

1E
.

(F 1)V 

.

2E

.

iE

.

FE

SL = PL+jQL

.

1(F 1)Z 

.

2(F 1)Z 

.

i(F 1)Z 

.

F(F 1)Z 
.

0Y

 
Fig. 3.  Simplified equivalent diagram. 

In Figure 3, Yሶ = G + jB is parallel with the admittance 
of the load Yሶ = G + jB, where 

0 (F 1)0 LG G G   

0 (F 1)0 LB B B  2
L L F 1,ratedG P / V   

2
L L F 1,ratedB Q / V   and 

F 1,ratedV   is the rated voltage at bus F+1. 

Equation (1) can be represented in a matrix form as in (5), 
in which the first matrix is denoted as Y (called admittance 
matrix): 
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It is worth noting that when we need to assess voltage 
stability at a certain load bus, that bus is numbered F+1 before 
forming either (1) or (5). Alternatively, at first, the equations 
are formed, then in order to consider any load bus i, rows i and 
F+1, and columns i and F+1 are exchanged. Based on the 
above analysis, we developped an algorithm for making a 
simplified equivalent diagram for the considered network, as in 
Figure 4. 

III. REPRESENTING UNCERTAIN FACTORS IN ELECTRICAL 

POWER SYSTEMS 

In a power system, random factors related to the load, 
failures of elements in the system, renewable energy sources 
can be represented by probability distribution functions [27-
29]. These functions describe the inherent nature of uncertainty 
factors and need to be integrated into the analysis of the 
system. In practice, such functions can be estimated based on 
historical data measured at loads, data on failures of lines, 
generating units, etc. In the literature load is usually expressed 

by a normal distribution function, while renewable power 
generation is usually represented by a generic function such as 
Beta, Gamma, Weibull functions, etc [29]. Random outage of 
an element such as transmission line, transformer, generating 
unit can be described by a 0-1 distribution function (0: outage 
state, 1: working state; an operating element can be failed with 
a certain probability) [29]. If all generating units in a power 
plant are the same, the combination of 0-1 distribution function 
for each unit could be represented by a binomial distribution 
function [29]. 
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Fig. 4.  Algorithm for making a simplified equivalent diagram based 
on Gaussian elimination method. 

IV. STABILITY ASSESSING ALGORITHM DEVELOPMENT  

For an electrical power system with N buses (excluding a 
grounding bus, with F generation buses, bus 1 is considered as 
the slack bus), in order to examine the stability of the system 
according to the change at a certain load bus, first, we use the 
algorithm discussed in Section II to obtain the simplified 
equivalent diagram for the considered network. When the 
system is operating at a certain state with known network 
configuration, generating power, load, ect., we increase load at 
the considered bus and use the pragmatic criterion dQ/dV 
presented in [26, 30] to construct the permissible operating 
region on a power plane under the conditions of a static 
stability limit as in Figure 5. In Figure 5, M1 is a certain 
operating point of the load considered belonging to stable 
region, while M2 belongs to unstable region of the system (see 
Figure 1). Suppose that the system is operating at M1, its 
stability and the dangerous level of increasing load can be 
evaluated according to the distance from M1 to the stability 
boundary. When random factors, as discussed in Section III, 
are considered, stability boundary is not represented by a single 
curve but by a set of curves as shown in Figure 6. Uncertainties 
in the system, related to load, renewable sources, random 
outages of lines, generating units, etc., can be represented by 
probability functions and set of random samples representing 
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