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THE SPACE D0, 1)?

MyYRIAM MuRoz pE OzAK

Profesora Asociada Universidad Nacional de Colombia

ABSTRACT. It is well known that the space D[0,1]? with the metric defined by k(z,y) =
inf{e € Rt :3)\ € A?, sup, |z(t) —y(\(t))| < ¢ and sup, |\(t)—1t| < €} is a separable
space (Bickel- Wichura 1971) but this is not a topological complete space like they
claim, in this notes I give a counterexample of this fact and I define a metric that makes
this space a separable and complete metric space.

0. INTRODUCTION

In [0,1]? we can define a partial order relation by (s,t) < (s,¢') iff s < s’ and
¢ < 1'; in a natural way we can also define the open, closed and closed from left open

from right intervals.

Let A? be the set of all mappings A : [0,1]2 — [0,1)2 such that
A(ty,12) = (A1(t1), A2(t2)), where X; is a strictly increasing function from [0, 1] onto
(0,1] with A;(0) = 0, A\;(1) = 1 and X; and (};)~! satisfice a Lipschitz condition of
order 1, that is

i) = Ai(s)| < Mt — s

I(Aa) 1) = (M)~ H ()] < Mt — s

for 7 = 1,2. Each mapping in A? is called a deformation of [0,1]%. For A € A? we

define two measures of the amount of the deformation

(1) IAll = sup_[|A(2) -2l
te[0,1]2
(2) d(A) = di(X) + d2(})
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where
di(A) = sup logL)- for i=1,2
r#s s
From these definitions it is clear that |[A~}|| = ||A|| and d(A-1) = d()), moreover if

A, p € A? then [[A o p|| < [IA]l + |lpll and d(A 0 p) < d(2) + d(p)-

Remark. When s > —1, log(1+s) < sand if 0 < s < 1/2, s < log(1 + 2s), then for
a,bye e R, 0 < e < 1/4,0 <b < 1 we have: if |log(a/b)| < ¢, then log(l — 2¢) <
log(l — €) < —e < log(a/b) < ¢ < log(1 + 2¢), that is —2¢ < a/b—1 < 2¢, and so
—2¢e<a—-b<2ie |la-b| < 2.
Lemma 1.

Let p € A%, if d(p) < ¢, then ||p|| < 4¢. That means: when lim,_ o d(pn) = 0 then

limp, .00 pn(r) = r uniformly.

Proof. If d(p) < €, then d;(p) < €, i = 1,2. Since p(0,0) = (0,0), then

vre0,1], ‘log@|<c for i=1,2

< ¢ then Vr € [0,1],

and from the remark we have, since Ilogﬁrt2
|pi(r) — r| < 2¢ and finally

V(S,t) € [Oa 1]21 “P(sit) - (S,i)” < lpl(s) - SI + |p2(t) - tl < 4e

It is also clear that this relation between these two measures holds only for 0 < € <
1/2. O

Note that we can find deformations that send segments parallel to the axes into
segments parallel to the axes, these deformations can be defined by taking the com-
ponents linear in each subinterval of a partition of [0, 1].

1. THE SKOROHOD SPACE D[o, 1)*

Let z : [0,1]> — R be a function, for each (s,,%,) € [0,1]? we can consider the

following limits when they exist:

2(st,1t) = lim z(s,) z(st 1) = lim_z(s,?)
l—" ‘—"
t—.t*’ 1=t
z(s;,t3) = lim z(s,1) z(s;,t;) = lim z(s,1)
s—s8, 5=,
t—t} 1=ty

We call this limits the quadrantal limits.
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Definition 2. Let a bounded function z : [0,1]? — R, we say that the function is
a regular path (cad-lag) if:
1) for this function the four quadrantal limits exist in each point in (0, 1)?
i1) for (s,1) € (0,1)2, z(s,t) = z(st,t%), that means z is ++ continuous.
iii) For the boundary points there exist the corresponding quadrantal limits and
the function is ++, +—, —+ or —— continuous depending of the location of

the point on the boundary.

We denote by D0, 1] the set of regular paths.

For r = (s,t) € (0,1)? we can consider for each limit a corresponding admissible

neighborhood as in the followi;xg figure.

Figure 1

e
t+¢6 | { | 1—N(6,)=((s—6,t——6),(s,t))
l4=NQ) | 2=N() | 2=N()=((s,1),(s + 6,1 +8))
tl-=le oo b o) 3o NGE) = (et - (1)
l1-NO | 3=NO) | 4-N(E)=(s=61),(s,t+6))

t—46 __:___%___J

L.‘1—6 s s+6J

For boundary points there is one or two of these neighborhoods. We denote these
admissible neighborhoods by ¢ = N(§.), for ¢ = 1,2,3,4 and they are admissible
neighborhoods for the limits ——, 44, 4+—, —+ respectively.

Let z € D[0,1]? and T C [0, 1]?, we define the oscilation of z in T by
wz(T) = sup{|z(r) — z(s)| : r,s € T'}
When 0 < 6 < 1, put

w;(8) = sup wz ([(r,8), (r+ 6,5+ 8)])
(r,2)€[(0,0),(1-6,1-6)]


file:///l-NO

20 MYRIAM MUNOZ DE OZAK

A continuous function on [0, 1]? is uniformly continuous, so that with the above
definition we can caracterize the continuous functions in [0,1]? ( z is continuous if
and only if lims_o we(8) = 0 ). If z € D[0, 1]?, in general is not continuous but for
this function it follows:

Lemma 3. For each z € D[0,1])? and ¢ > 0, ¢ € RY, there exist real numbers
S0,81,""" ,8p and to,1;, -,y such that 0 = s < 51 < -+ - <spand 0 =15 <t <
R G

wt([(si—lytj—l))(siytj)))<61 1=1)2) y T j=112)’.'17n

Proof. Lete > 0, forr = (ry,r2) € [(0,0), (1, 1)), there exists a 2— N (6, ) neighborhood
admissible for the ++ limit; for » = (1,t), there exists 4 — N(6,) neighborhood
admissible for the —+ limit; for » = (s,1) there exists a 3 — N(§,) neighborhood
admissible for the +— limit; for 0 < s,¢ < 1 and for r = (1, 1) there exists a 1 — N (§;)
neighborhood admissible for the —— limit, so that if u = (u1, uz) belongs to one of
these neighborhoods, |z(r) — z(s)| < €/4.

The collection of all such neighborhoods is an open covering of [0, 1]2, since [0, 1]? is
a compact set, a finite number of these neighborhoods cover [0, 1]2, these finite number
of admissible neighborhoods determine a finite number of relative open rectangles, so
that when s and u belong to one of them, then |z(s) — z(u)| < €/2, since the function

is ++ continuous, so for each of these rectangles R;; = ((si-1,t;-1),(si,1;)) we have

We ([(si‘l’tj—l)»(si1tj))) < 6/2 <e€

fori=1,2,---,n;j=12---,m O

From lemma it follows inmediatly that for € > 0 there exist at most a finite number

of horizontal and vertical segments, where the jumps of their points
{|1t(s, t) - .'C(S— !t)lv IIC(S,t_) - I(S_,t—)l, |13(5,t) - x(s’t_)ll |1.‘(8_,i) - I(S_ » t_)l}
exceed €. In particular, the set of discontinuities of = is at most a countable union of
horizontal and vertical segments in [0,1)2. We have also that z is bounded.

Same as in Billingsley (1968) we introduce a new modulus that characterizes

D[0,1]%. For 0 < 6 < 1 let

/ — 1 . . 3 .
wh(6) = {(ﬂfj 3 5K, e [(si=1,t5-1), (si,5))
0<j<m
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where the infimum runs over the sets of points {(si,¢;):0 =8, < 81 <:--< 8, =1,
0=1t, <t < - <ty and §; —si_1 > 6, t;j —tj_; > 6,i=12...,n; j =
1,2,...,m}.

It is easy to see that lemma 3 holds iff lims_ows(8) = 0 for every z in D0, 1]2.
In fact, if the lemma holds, given € > 0, there exists a partition 0 = 5, < 53 < --- <
sn=1, 0=t,<t; < - -<tm=1such that

Wy ([(Si_l,tj_l),(Si,tj))) < €, V‘ = 112,"' y .7= 112:"' y

then maxy; j} wz ([(si-1,%-1),(si,1;))) < €. Taking §' = min{s; — 8j-1,tj — tj_q,i=
1,2,---,n; j=1,2,---,m}, if 6§ < &, wl(é) < ¢ that means lims_o w,(6) =0. On
the other side when wi () = 0, Ve > 0, 38’ > 0 such that (Vé < §') (w}(6) < €). From
the definition of w.(8) there exists a partition 0 = 5, < 51 < --- < s, =1, 0=
t, < 1) < +++ <ty = 1 such that maxy; jj wz ([(si-1,tj-1),(8i,2))) —€ < wy < €
with s; — s;—1 > 6 and ¢; — tj—1 > 6, then w; ([(si-1,%j-1),(5:,1;))) < 2¢ for i =
Wi gy 3= 1,250,100,

Definition 4. Let z,y € D[0, 1)?, we define two pseudometrics in the set D[0, 1]%
k(z,y) = inf{e € R* : (3p € A%)(sup[z(r) —y(p(r)) <€ A ol <€}
kofz,y) = inf{e € RY : (3p £ A)(sup Ja(r) — y(p(r)l < ¢ A d(p) < e}

We will not distinguish between two functions # and y for which k(z,y) = 0 or
ko(z,y) = 0 and we will work with the metric space of equivalent classes without
making a difference in the notation. It is easy to see that these two functions are

pseudometrics, we will prove it for one of them.
Lemma 5. (D[0,1)? k,) is a pseudometric space.

Proof.
1) ko(z,y) > 0, Vz,y € D[0,1]? because the inf in the definition of k, is taken

over a nonempty nonnegative set, othersides k,(z, y) < oo because sup, |z(t)—
y(t)| < sup, |z(t)| + sup, |y(t)| and taking A(t) = ¢ in the definition we have
the result.

i) ko(z,y) = ko(y, ) because d(p) = d(p~!) and
subrepo, e 19(t) — 2O (E)] = sup, epo u [2(r) — A

i) ko(z,y) < ko(z,2)+ ko(z,y) - Let
€1 € {e € R* : (3p € A?)(sup, |z(r) — z(p(r))] < € A d(p) < €} and



22 MYRIAM MUNOZ DE OZAK

€2 € {e € R* : (3p € A%)(sup, |z(r) — y(p(r))| < € A d(p) < €}. For ¢, and
€ there exist py, ps such that
sup_|z(r) = 2((m(M)| < &1 A d(p) < &1
ref0,1)?
suplzlzf(px(r)) = y(p2(p (M) < €2 A d(p) < €2

refo,1

therefore
sup J2(m) = ylp2(pa(M))] <

r€[0,1]

sup |z(r) — z(p1(r))| + sup_|z(p1(r)) — y(p2(p1(r)))| < €1 + €2
relo,1) ref0,1)?

Othersides, d(p2 0 p1) < d(p2) + d(p1) < €1 + €2. So given €1, €3, there exists
€3 = €1 + €5 such that

es€{c€ERT:(Ip€ Az)(sgp |z(r) —z(p(r))l <€ A d(p) <€}

and so k,(z,y) < ko(z, 2) + ko(2,y)
O

Theorem 6. (D[0,1]%, k) is a separable metric space.

Proof. Let’s take z € D[0,1]? and ¢ > 0, there exist elements 0 = s, < 5; < -+~ <
sp=land0=t,<t; < -+ <1, =1 and

we[(si-1,tj-1), (i, t)) < €/4, i=1,2,---,n j=12,--- 'm

We consider now the segments L,, = {(si,t) : 0 < t < 1} and
; ={(s,8;) :0<s<1}. Forn €N, n large enough, each one of the rectan-
g]es Rpy = [ (2,2), (&L 21)] p g =0,1,2,--- ,n — 1 intersect at most one of these

vertical segments L,, and at most one of the horizontal segments L, ;.

We define now a deformation p € A? that maps {£} x [0, 1] onto L,, and [0, 1] x {£}
in Ly, when %1 <s <E 9;—1 <tj<if pg¢=12--,n—1 If there are no
segments L, or L., inside the rectangle, we let the value constant. We can define
this deformation linearly by subintervals and by components, so that ||p|| < V/2/n.

Define Z(s,t) = z(p(s,1)), z has jumps greater than ¢ only on the segments {£} x
[0,1] and [0,1] x {2}. k(z,%) < V2/n. Let 7°(s,t) = Z([ps]/n, [gt]/n)), ( [r] is

the greatest integer less than or equal r), T~ takes constant value on the rectangles
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[(B,2), (&2, 1)) p,¢=1,2,---,n—1 and has discontinuities on the segments
{5} x [0)1] and [O)HX {*},P,q= 1,2,---,n

sup |Z(s,t) —F(s,t)] <sup sup |Z(s,t) — Z(p/n,q/n)| < /4
(s,2)€f0,1]2 P9 (3,0)ER,q

Taking p(s,t) = (s,t), k(Z,T°) < ¢/4. Finally let {y1,y2,y3, -} be a enumeration
for the set of rational numbers, we define z*(s,t) = ym when m is the smallest index
such that |Z*(s,t) — ym| < €/4, we have then k(z*,7°) < ¢/4 and so k(z,z*) <
k(z, %)+ k(Z,F*) + k(Z*,2*) < ¢/4 + ¢/4+ V/2/n, for n > 2y/2/¢ we have finally that
k(z,z*) < e

Let H, = {y € D[O, 1P : y isconstant on the rectangles [(2},%L2),

(5,4)), p,g = 1,2,:-- ,n and with valuesin Q}. H, is a countable set, if H =
U2, Hn, H is also a countable set and since H is dense in D[0,1]?, D[0,1]% is a
separable metric space. [

I1. THE SPACE (DJ[0,1]2,k) IS NOT A COMPLET METRIC SPACE

Define z, = X[1/2,1/241/n)x[1/2,1/241/n) where

(1, ifze4
XA= Vo, ifcgA

If n,m € N, we can find a deformation p, in A2, that maps the segment {}+ %}_x [0,1]
onto {1 + 1} x [0,1] and the segment [0,1] x {} + L} onto [0,1] x {3 + %} and let
the segments {1} x [0,1] and [0,1] x {3} constant, as we can see in the figure 2. We

define
8, 0<s< i

(P)ils) = ¢ o+ 3(1- ), 1<s<itg
{—.‘,)L"s+2(—2)n, l4lcscd
fori=1,2.
llen|l = 21/2|L — 1| and for all r € [0,1]2, |zm(r) —2a(pn(r))| = 0 s0 that k(zn,zm) =
2!/2|L — 1| and the sequence {z,} is a Cauchy sequence, but it does not converge
in D[0,1)? because its limit function is x{(1/2,1/2)} and this is not a function in
D[0,1]2. The sequence is not a Cauchy sequence with respect to the metric k,,

because ko(Zn,Zm) > |log 2|, m,n > 3.

From lemma 1, when 0 < k.(z,y) < 1/4, then k(z,y) < 4k,(z,y). But in general
we don’t have the other inequality. However we have that k,(z,y) can be small if
k(z,y) and w.(6) are both small.
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Figure 2
1.1 1.1
2+m 2+n
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2 2
O R 1 141
2 2+m 2 2+n

Lemma 7. If k(z,y) < 62,0 < 6 < 1/4, then k,(z, y) < 86 + w’.().

Proof. Let 0 < § < 1/4, there exist points (sistj) so that 0 = 5, < 8, < -+ <
sp =1, 0=t < 1) < -~ < tm =1, 5§ —s5i_1 > 6, tj—tj_l > & and
wy [(8i-1,t-1),(s:,1;)) < wh(8) + 6 for all 4, j in the index set.

Following the proof of lemma 2, page 112 in Billingsley (1968), we obtain that
there exists a y in A2, such that

sup l2(s,t) — y(u(s, 1)) = sup (=" (5,1)) — u(s, )| < 6
s,t 5,1

and sup(, g llu(s,2) — (s, )] < 6.

We can choose now A € A? to agree with g at the points (si,t;), near p but with
linear component functions and p~! o A(si, 1) = (s4,t;) so that p='oA(s,t) and (s,t)
are in the same rectangle [(si_1,2j-1), (si,?;)) and therefore

[2(5,) = y(A(s, )] < wh(6) + 8+ 67 < w(6) + 46

Now we can see that d(A) < 86, in fact, following Billingsley (1968) we have for each
component function that

Ai(r) = X(r!
log(1 — 26) < log %—) < log(1 + 26)
fori =1,2,since 6 < 1/4,log(1-26) > —46 and log(14-26) < 46 andso d(X) < 85. O
As in Billingsley (1968) we have also that the metrics &(z,y) and k,(z,y) are
equivalent: inside of each B(z,¢) (sphere respect to k), there is a B,(z,6) (sphere
respect to k,), here the choice of the new radius does not depends on the center z.

Now if 0 < 6 < 1/4 and 88 + w.(6) < ¢, B(z,6%) C Bo(z,¢€), but in this time the new
radius depends on the center.
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Theorem 8. The metric space (D[0, 1]%, k,) is a complet metric space.

Proof. The proof is analogous like in Billingsley (1968), the difference is only that
here we must make the proof for each component. O
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