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Abstract. Artificial neural networks are brain-like models 
of parallel computations and cognitive phenomena. We sample 
some basic results about neural networks as they relate to 
stochastic and statistical processes. Given the explosivo 
amount of material, only models bearing a stochastic compo­
nent in the function or analysis are presented, such as Hoj^ 
field and feedforward nets, Boltanan machines and some re-
current networks. Basic algorithms for learning such as 
backpropagation and gradient descent are sketched. A handfiíl 
of applications (associative memories, pattem recognition, 
time series forecast) aredescribed. Finally, some current 
trends in the field are discussed. 

1. Introduction. 

Artificial neural networks are brain-like models of par̂  

allel computations and cognitive phenomena. They were intro­

duced in the seminal paper by McCulloch and Fitts (1943), in 
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the 1940% as ways of inq>lementating logical gatea with ab-

stractions of real neurona, and again in the 1960's by Ro-

senblatt 0962), Grossberg (1988), Kohonen (1984), Early negativo 

results by Minsky and Papert (1986), and the unavailability 

of massively parallel machines to riin realistic simulations 

of the power of the model discouraged researchers from ac-

tively pursing further study of their capabilities and ap­

plications. Although several of today's main figures in the 

field (Grossberg, Kohonen, Marr) remained attracted to the 

idea, it wasn't until the piíblication of Hopfield's land-

marks (1982),1986 that the time was right for a rebirth into 

a third period of activity, this time with every indication 

to stay for good. Today, artificial neural networks are not 

only revolutionizing fundamental ideas in computer science 

and informatics, but they are becoming fundamental tools in 

fields as diverse as electrical engineering, optimization, 

medical diagnosis, image processing, robotics, machine learn 

ing, time series prediction, artificial intelligence, cog­

nitive science, neurophysiology, and even music and poetry. 

The Iast few years have seen an explosive growth of 

activity and pubiications in the field of neural networks. 

It is estlmated that the neural network literature contains 

over 10.000 papers as of now (June 1991). IJCNN (The Inter­

national Joint Conference on Neural Networks), the major 

conference in neural networks in North America, by itsel pub̂  

lishes about 2,000 pages of recent research every year, not 

to mention many other pubiications in specialized joumals. 

The Iast four years have seen the formation of least five 

major neural network societies, at least five new journals 

devoted entirely to the subject, and major conferences with 
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over 3,000 attendees in America, Asia and Europa. Therefore 

we feel justified in so drastically oversimplifying and se-

lecting the material in the foliowing aections. These fig­

ures should also give the reader an idea of how short this 

paper falla of being even a modest survey. It is intended as 

a motivation for statisticians and probabilists for the 

study of neural nets and their applications to and from the 

viewpoint of their fields of interest. 

Since their beginning, statistics and probability have 

played an increasingly important role in neural networks , 

either in the form of stochastic components or as analytical 

tools. The literature in stochastic networks, however, is 

fragmented and inaccessible, largely due to the fact that 

they are still in the research stage. A neural network may 

be stochastic ín two rather different ways. 

First, the networks itself may update cells randomly. 

Second, probabilistic and statistical tools are being used 

in the analysis of a deterministic network. The purpose of 

this article is to give an elementary exposition of the most 

prominent models, results and applications of both types of 

stochastic neural networks. No proofs, not even formal state 

ments are given, although many references are given to the 

literature where exact details can be found. 

2. Deflnltions. 

In this section we describe the deterministic models 

prior to the introduction of the stochastic model. There are 

many varieties of networks, but the ones introduced here are 
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building prototypes for virtually every conceivable network. 

Neural networks are artificial models of biological 

brains, and the basic inspiration of their desing foilows 

closely their anatomical structure. A biological brain is 

essentially made up of neurons interconnected in very com­

plex spacio-temporal patterns, the exact significance of 

which is unknown. Thus an artificial neural net consists of 

basic components called neurons, an abstraction of the biol 

ogical entity herein simply referred to as a c e l l or u n l t . 

A cell is characterized by a set of a c t i v a t l o n values from 

a set and an activatlon iunctlon i : A •*• A. Activatlon 
functions are also called t r a n S i e r i u n d i o n S . The activatlon 

is a full description of the state of a cell at any instant 

of time. It can be either a discreto valué (e.g. binary, 

from the set 6 :- {0,1}) or a continuous quaitity (usually a 

valué from the set of real numbers R). Cells change acti-

vation values in time according to their activation func­

tions, which take as argumente weighted sums of few values 

of other cells, called neighboring cells. The pattern cf inter 

connections among the cells, usually referred to as a r c h l -

t e c t u r e or topology of the network, is determined by a di-

rected graph (digraph). The vértices of the digraph corre-

spond to the units of the net and an are (oriented edge) in 

dicates a l i n k or connect lon among the corresponding cells. 

Every are is weighted by the analogue of a s y n a p t l c s t r e n g t h , 

a valué of the same nature as the activations of the cells. 

Weigjhted ares play a role analogous to that of the axons 

and dendrites of real neurons. Links with positive real-val 

ued \reights are called e x d t a t o r j y and negatively weighted 

links are called I n h l b l t o r y . Throughout, we will only con­

sider time flowing discretely. Important networks based on 

file:///reights
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continuous time with continuous updates govemed by differ­

ential equations have been developed, and they will be simima 

rily described in section 5. 

For the sake of future reference we record this disciis 

sion in the foliowing definition. 

DEFINITION 2.1. An activatlon set A ls any set with an ad-
dltlve-rmltlptlcatlve structure, An activatlon iunctlon ls a 
seli-map i:A -»• A that ilxes O, I .e . iiO) - 0. A neural net­
work ls a triple N = <V,A,{iy}> conslstlng oi a digraph V, 
an activatlon set A and a iamlly o i activatlon iunctlons i . , 
one ior each vértex I ln V. The global dynamlcs oi N ls de-
ilned by equatlons ll) below. 

Examples of neural networks are presented in detail in 

the foliowing subsections. Very commonly, examples have bi­

nary activation values, and threshold and sigmoid functions 

for activations functions. Usually all cells are of the same 

type (discrete or continuous activations), and, correspond-

ingly, networks are classif ied as d l S c r e t e or con t lnuous . 

Sometimes networks are also classified by the type of inter-

connection digraph. For instance, if this digraph consists of 

layers of disconnected cells, each layer communicating only 

to cells in the next layer, it is called a ieedion/jord (or 

l a y e r e d ) net. If the diagraph contains cycles, it is called 

a r e c u r r e n t net. If it is a complete graph, i.e. all cells 

are interconnected, it is called a i u l l y r e c u r r e n t net. 

More important than the anatomy of a network is its ev-

olution in time. Typically, a network operetas as foilows. A 

cell I reads the activation valué of all units / having a 
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link into it and makes a weighted sum that integrates all 

these inputs into a single sum, the net-input of cells 1 . It 

then applies its characteristic activation function to find 

a new activation valué. If this actíon is taken simultaneois 

ly by all cells, the update is called p a r a l l e l . Other conmion 

update modes are a synchronous p a r a l l e l i a l l cells update, 

maybe at different times), S e q u e n t i a l (one cell updates at a 

time according to a given s c h e d u l e , e.g. in a fixed cyclic 

order), b l o c k s e q u e n t i a l (like the sequential update but with 

cells partitioned into blocks and the whole block updating 

all at once), s t o c h a s t l c (if the cells update randomly accord^ 

ing to a certain distribution). Stochastic nets will be con^ 

sidered more in detail in the foliowing sections. 

In order to understand the behavior of a net as awhole 

it is convenient to consider the so-called global activation 

of the network. an assignment X:V ->• A of activations to each 

cell .¿ of a neural network is called a t o t a l S t a t e or c o n i l 

g u r a t l o n . A confíguratíon is a snap-shot of the state of the 

cells at a given instant of time. For example, O and 1 are 

configurations consisting of a O and a 1 at every cell, re­

spectively. The set of all configurations is denoted C. The 

local dynamics of a neural network induces a global map given 

by 

T : C ^ C (1) 

T i x ) ^ :- i ^ i l ««^yXy(t)); (2) 

for all cells 1 . 
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2.1. Feedforward nets. 

The simplest example of a feedforward net is the p e r -

cep t ron . Hístorically the first neural (as opposed to Mc­

Culloch & Pits's neuronal) model, it was introduced by Ro-

senblatt (1962)in the late 1950's. The perceptron is a con­

tinuous net with a single layer of disconnected I n p u t cells, 

each of which has a link to an ou tpu t cell. The activation 

function is a threshold function 6 determined by a valué fa 

of the tjrpe 

íl if u^fa 
e(u) ' < 

lo else. 

A particular case of this function is the two valuad 

signum sgn where fa - 0. 

This makes a perceptron very analogous to a single 

brain cell: if the net-input is above a certain valué fa, the 

cell goes into a firing state (activation 1), else it re­

mains idle (valué 0). The net result is a global dynamics of 

the type 

T i x ) ^ ' Oil W^jXj) (3) 

Perceptrons were originally used for pattem recognition. 

The celia in the input layers are actually arranged as a 

rectangular array of sensors to which the inputs X • are fed. 

With the appropriate weights loaded to tye Bynapaea, it can 

provide binary decisions and classify input' patterns into 

two categories corresponding to the binary states of the oi^ 

put neuron. For example, if the objects to be categorized 

are determined by the values of three basic parameters Xĵ , 
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3 
X^í^o' ^^^y *^® represented by points in R . These objects 

are t l m o r l y s e p a r a b l e if one can find a plañe ir of equation 

Wj^X+WjíZ+W^z = fa ín E that separatas them in the sense 

that all points in one category are below TT and the others 

are above it. In this case they are naturally clustered in 

two categories. A perceptron can thus be designed to auto-

mate the process of recognizing objects. The input cells r é -

ceive the characteristic parameters of an object and are con 

nected with weights W. to the output cell which has thres-

hold fa. 

Despite some other interesting applications, percep­

trons have long been known to have a limited recognition a-

bility. For instance, one cannot design a perceptron with 

appropriate real-valued weights to compute an XOR of two bi­

nary input values. Mathematical proofs and argumente by Minŝ  

ky and Papert 0-986) of these an other negativa f acts back in 

the 1960% dissuaded contemporary researchers from studying 

feedforward networks with hidden layers in the 1960% and 

197Cfs. 

If one allows so-called hidden u n l t S , however, they 

can conq>ute logical functions. It is eaay to verify that the 

foliowing 2-layer network would do XORs. Feedforward nets 

can have, in general, an arbitrary number of layers. It can 

be proved that each additional layer provides, in fact, ad-

ditional computational power. 
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Figure 1 
A perceptron for XOR 

The update mode of a feedforward net is block sequen­

tial, with blocks in a layer simultaneously updated succes-

sively starting from the input layers toward the output (tar̂  

get) layer. 

Feedforward nets are now very popular mainly due to the 

fact that a nice training algorithm, baclq>ropagation, exists 

to successfuly train a network to find "by itself" a suitable 

set of weights for a given task, if such a set exists at all. 

Interesting feedforward nets of recent use have so far in­

cluded most of the nets used in applications. However, recur­

rent nets are necessary for other applications. 

2.2. Hopfield nets. 

Hopfield nets are very useful examples of discrete re­

current nets. They were popularizad by Hopfield, a neurobio-

logist and physicist, in a couple of widely read papers (hop­

field, 1982, 1986) that have been very influential in retum-

ing the attention of researchers to the untapped potential 

of neural net models after the perceptron's demise. 

As with the perceptron, the activation functions of the 

Hopfield model are threshold functions. The weights are also 
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real numbers. The activation values are binary values, say 

0,1 (or equivalently, ±1 via the change of variable x -»• 2x-l)t 

The basic difference lies in the connections and the update 

mode. A hopfield network is fully connected and symmetric, i. 

e, every are l j has an opposite are j l with the same weight. 

Originally, Hopfield used the network as an associative mem­

ory, as described below in section 4.1. In this case cells 

are updated at random with the only requirement that each 

cell be updated, on the average, once every n (the number of 

cells) updates. 

In the case of a feedforward net it is easy to decide 

when the network has obtained an answer as a result of its 

computation. One simply looks at the ouput cells after t 

iterations, the number of hidden layers in the net. In the 

case of a fully recurrent network it is no longer clear idiat 

to observe where. Associative memories require retrieval of 
k 

certain binary patterns v associated with an initial con-
k 

figuration u of the network. The most natural for the net 

to return v is to initialize its cells to the values indi­

cated by the binary vector u, and then repeatedly update the 

network in some predetermined fashion until a fixed point is 

reached. Thus the net has found an ^uilibrium state v , 

which is then regarded as the retrieved memory. The success 

of the method, of course, lies in i l n d i n g suitable weights 

and in gua ran t ee ing somehow that, under iteration, the stable 

states arrived at from a pattern u truly corresponds to the 

desired associated valué v , These problems will be examina 

ed in section 4.1 together with the efficiency of networks 

in performing this task. 
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2.3. Stochastlc neural networks. 

The randomness in a Hopfield net lies in the uniform 

choice of cells in an update. Selected cells are updatedwith 

certainty. In a network with stochastic units, the transfer 

function ls actually a probability distribution, a sigmoid 

function 

1 +e 

The networks is usually binary. The new activation of the 

unit is +1 with probability <í («̂ ¿̂̂ yĝ )̂ " ^ ^ l ' ^ t j ^ l ^ *"^ "^ 

otherwise, of course with the complementary probability. The 

update schedule can be randomized over all cells (recurrent 

nets) or just over particular cells in a layer (feedforward 

nets). Some of the units may be designated as input, others 

as output, and the rest as hidden units. Sometimes a so-cal­

led b ias factor is introduced in equation (4), which multi-

plies the net-input before appiying the transfer function. 

The main motivation of a stochastic neural net is to 

provide a mechanism to implement a given probability distri­

bution. Like the Hopfield network, one may want only certain 

output patteims occur with a certain distribution, despite 

the fact that the input patterns are fed randomly with, say, 

a uniform distribution. As with Hopfield network, the basic 

probiem is to find a set of weights and a transfer function 

that allow the network to reach the desire equilibrium 

states with hlgh probabilities, while others are reached 

with very low probability. 
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2.4. Boitzmann machines. 

This model was originally introduced by Hinton and Seĵ  

nowski (Vol.1, 1986),as a continuous model of biological brains. 

It represente a departure from other models in two aspects. 

First, the updates are now made, though randomly, not as a 

function of local changes in neighboring cells, but rather as 

a function of g l o b a l features of the entire network. Second, 

the distribution of updates varíes according to a decreasing 

parameter T called the t&npera ture o í the network. The model 

was inspired by the physical process of metallurgical anneal^ 

ing and introduced for optimization of real-valued functions. 

Currently, the most common Boitzmann machine is basi-

cally a discrete and recurrent Hopfield network with hidden 

units stochastically updated. The weights ttf. • on links l j 
A,J 

between cells I and / are real-valued and symmetric, Wj • -
A,J 

V3-J. The update requires a random ninnber generator and a 

temperature parameter. Initially, the temperature parameter 

is set to a high valué. An update unit overseeing the entire 

network is in charge of the updating schedule. The overall 

goal of the update is to minimize a global quantity H called 

the energy of the network; for instance, 
Hix) : ' - \ l Ŵ y x^ x. . 

For an update, a cell is randomly chosen and a random 

valué C is obtained from the unit interval with a uniform 

probability distribution; the update actually changes the 

activation of a cell (from -1 to +1 or vice versa) in case 

the energy of the new confíguratíon actually decreases (i.e. 

the change in energy is negativa). However, if only this type 

of update is perforined, the distribution of energy over con^ 
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figuration space may lead the net into local mínima of H 

which are not global mínima, it is thus necessatry to intro­

duce anneal ing updates, where the energy is actually allowed 

to increase, more rarely as time (temperature) progresses 

(decreases). The activation of a cell is thus switched in 

valué if Atí ̂  O and given by 

i.e. if the mean energy at temperature r exceeds the random 

parameter ^. 

The foregoing examples are among the most important and 

useful neural networks. By themselves, they have little to of̂  

fer. The most interesting and remarkable properties of neural 

networks derive from their designer's ability to bypass the 

entire process of a n a l y s l s and programming so characteristic 

of ordinary applications in artificial intelligence and sym-

bolic computation. We consider this aspect in the foliowing 

section. 

3. Learning, generalizatlon and degradation. 

Learning in natural and artificial systems refere to 

the change in internal states of a system in order to cope 

with and adapt to changing conditions in the environment. 

Learning has long been considered one of the fundamental 

traite of living organisms. Orthodox AI (Artificial Intelli 

gence) created programa performing high^level tasks that 

when executed by humana appeared to be proof of intelligent 

behavior (chess-players, ping-pong playera, even medical 

diagnosers like MfCIN, expert systems, etc.). The perform-
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anee of these products is optimized by careful adjustements 

of key parameters obtained through analysis and experimenta-

tion with the programa, not typically by t h e programS them-

Se lveS . There are of course interactive programa that can 

change these parameters by themselves on the run, but the 

nature of the changes requires a fixed framework that has to 

be entirely known t o t h e deslgner in advance. 

The internal state of a neural net consist not only of 

the entire patrern of activation of all cells (simetimes cal­

led a short-term memory), but more importantly, of the set of 

weights assigned to the .connections (the long-term memory). 

What the network 'knows' is expressed in thestrength of the syn-

aptic connecions and the activations of its cells. Thus, tomake a net 

work learn just requires to find a way to change its weights. 

To make it learn a significant task, say compute an XOR, re­

quires finding the appropiate weights starting from a state 

of total 'ignorance' (i.e. from an initial set of random 

weights and configuration). This may appear difficult to â  

chieve by a network itself. The remarkable fact, however, 

is that there exists a number of learning algorithms to mod̂  

ify the weights of a network in succesive stages so they 

converge often to the appropriate values for a given task. 

There are various types of learning. The simplest is 

Superv l sed l e a m i n g . The task is represented by a number of 
fe fe 

input/output pairs (x , y ) called exemplars or just data. A 

network learning phase for a neural net goes as foilows. 

1. The weights of the network are initially set tosome 

predetermined values (say O, or small random values); 

2. The first X ls damped on the input nodes. The net 
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is then updated according to the current weigjits \mtil some 

activations z are read at the ouput nodes according to some 

criterion (e.g. in a feedforward net, right after the out­

put layer is updated); 

3. usually this output z differs from what it ou^t 

to be, i.e. y . A predetermined calculation is made (by a 

teacher or supervisor) that will determine what changes are 

to be made to the weights to 'correct' the erronous output; 

4. steps 1-4 are repeated for all remaining exampiars. 

Viewing a net as a vector of weights, a point in some 

high dimensional space, a learning algorithm provides a tra-

jectory in weight-space. Given a particular task, one can 

associate with a specific set of weights some measure of peJí 

iormance (or error off the target). The goal of the algo­

rithm is, ideally, to take the net to a global máximum of 

performance (or equivalently, a global mínimum of the number 

of errors). 

A good learning algorithm will, under a wide variety 

of inputs and initial conditions, make the net's set of 

weights converge to the appropiate values given sufficiently 

many exemplars. The goodness of the algoritm depends onthree 

main factors: how many exemplars are necessary, how general 

are the convergence conditions, and the speed and computa­

tional expense of updating weights. Establishing the conve£ 

gence to appropriate weights is the most diffictilt part in 

designing a leaming algorithm. 

The various learning algorithms are distinguished in 

terms of the precise output criterion and the method to up-

file:///mtil


40 

date weights. There are three basic types: Superv l sed learor-

ing, r e i n i o r c m e n t learning, and se l i -organlzed leaming. 

In supervised leaming, a teacher (or critic, in rein 

forcement leaming) provides immediate feedback and weigihts 

are corrected in proportion to the magnitude of the deviation 

of the net's responso from the 'correct' responso. Usually 

one asstmies that the right set of weights exists, it is a 

matter of zeroing in on them using exemplars , i.e. pairs of 

desired inputs-outputs. For example, with a set of linearly 

separable data, one can start with zero weights for pe rcep-
k fe t r o n l e a m i n g , For each pairs X , y , have the net output 

its valué z , then change the weight from input cell j to 

the output cell I á l a Rosenblatt, i.e. by 

new oíd , oíd k k b 
W.. - Wy. + tMy; ' Wyj + r\iyy Zy)Xy (5) 

^ J A,¡ ^ J A.J A, A, A, 

where n í s a so-called leoimlng-rate . This perceptron lea rn 

Ing r u l e i s very sat isfying because Misdcy and Papert proved 
fe 

a theorem s ta t ing that i f the data X are l inear ly separable, 

then the weights Wj. converge to a net tha t produces the de-
A,J 

sired outputs from arbitrary initial weights. These results, 

however, only apply to perceptrons. The absense of aimilar 

strategies to effect weights changes in more conplicated, 

even just feedforward nets with hidden units, was originally 

an obstada for the advent of neural networks. 

The reason béhind the fascinatíon for feedforward neu­

ral networks is backpropagat lon, the most basic 'general-

purpose* leaming algorithm. As such, it has been reinvented 

several times (Bryson & Ho 1969; Werbos 1974; Parker 1985; 
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Rumelhart, McLelland & Williamfi 1986). It is, in a way, a 

generalization of perceptron leaming. The error function is 

ustially the square error 

i,fe ^ ̂  

where W^ denotes the vector of weigths into cell 1 . Proceed-r 

ing backwards from the output layer, for each output cell I 

the weights from the previous layer Wj. are updated in the 
A.J 

opposite direction of the gradient of the error function by 

neiÁ) o í d ae 
% '""lj ^'^ij'^-'^Wrj (6) 

(which also dependes on w e i g h t s f e e d i n g i n t o ce l l s j 

at the p r e v i o u s l e v e l ) . Th i s g r a d i e n t makes s e n s e 

for a d i f f e r e n t i a b l e t r a n s f e r f u n c t i o n , which i s 

usually a l o g i s t i c f u n c t i o n a p p r o x i m a t i n g the th res -

h i ld function a t node I , A f t e r a l l weigth changes f o r 

a l l c e l l s in a l l the hidden layers are determined, the faocfe-

ward epoch of the process i s completed for the given p a t t e m 
b h 

X , y . In the ionaard phase , all weights are updated. The 

whole process is then repeated for all remaining patterns. 

As the reader may suspect, this is a far more complicated and 

computationally expensive process, one that does not always 

necessarily converge to the rig^t weights, even if they exist. 

Much effort has gone into analyzing convergence conditions 

and generalizing the method to work for recurrent networks, 

which tend to work better for a nuoiber of problems such as 

pattem completion, atereoscopic visión, and robot manipul-

ators. The reader is referred to Hertz, Krogih and Palmer , 

(1991), for analysis and generaliza tions of the algorithm. Note 
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that the nature of the leaming makes it suitable for dis­

crete and continuous networks. 

There are other varíations of the supervised learning 

paradigm. Important exaoq>les are, Hebbian learning (like in 

biology, weigiht changes are proportional to the correlation 

between firing of pre and post-synaptic units), reinforcement 

leaming (only a 'right' or 'wrong', not the 'correct' valué, 

are known for weight change), conq)etitive leaming (only one 

cell will fire at a time), gradient descent/ascent, and máx­

imum likelihood estimation. The reader can find up-to-date 

references on these methods in Buntine (1991) and White 0.989), 

along with a coherent general exposition of bayesi£in back­

propagation in White (1989). 

In unsupervised leaming there is no teacher. The net­

work must discover on its own córrelations in order to cate-

gorize the data and produce outputs that exhibit a degree of 

self-organization. This is possible only where Information 

is encoded as redundant data. For instance, the output may 

end up reflecting deviation from the average pattern (along 

one or several dimensions, like in principal component anal­

ysis), the propotype of a cluster with similar features, a 

trimmed-up encoding of the input (redundancy washed away), 

a feature extracted from the data, or a combination of some 

or all of these features. Unsupervised learning is useful 

with many^hidden layer feedforward networks where backpropa­

gation is very slow and expensive, as a follow-up to super­

vised learning to allow for adaptation of the network. Ihere 

are two basic types of learning rules, depending on how many 

cells are allowed to fire at the time. The exact description 
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of these rules is too technical for this paper to de­

scribe. The reader can find additional detail and references 

in Hertz, Krogh and Palmer (1991). 

Once a network has been tr«áned it offers an advantage 

that gives it an edge over many traditional models. Its weights 

are 'set up', so to spe£Üc, to respond in a coherent, reason-

able way to un io reseen exemplars. This feature is called gen­

e r a l i z a t l o n . As more and more exemplars are presented, con-

tinued learning may, on the other hand, lead to degradation 

of the leamed responsos to accomodate new patterns. Some neu 

ral models, such as Carpenter & Grossberg's ART models have 

the ability to retain previously learned models, a desirable 

feature in many applications,(Grossberg 1988). This degrada­

tion is not to be confused with so-called g r a c e i u l degrada­

t i o n , i.e. the ability of the network to return meaningful 

(but some^at degradad) answers even if some of its cells or 

synaptic links have becomes faulty or nonoperational. 

4. Appllcations. 

In this section we present a selection of some of the 

most notable tises of neural networte to date. 

4.1. Associative memories. 

As mentioned before, associative memories are systems 

in which pairs of patterns iu*',v*') are associated in such a 

way that, when presented a pattem u that reseodiles ( with 

high probability) u^ , the system retrieves pattern \/^ (with 
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high probability). If u - v , the memory is a u t o a s s o c i a t l v e , 

otherwise it Is heteroassociatlve, 

Neural nets can be used to implement associative memo-

rieS;. What is required is that the vectora to be stored be 

fixed points (stable states), which means that the connection 

weigihts must be chosen so as to satisfy the equation 

r M . ' i i y . j x . ) ' x . , 

for all cells 1 . In addition, the stable states must have an 

"attracting property", that is, if an input pattem is suf­

ficiently similar to (e.g. a small Hamming distance away 

from) the stable state, it will end up in the stable state 

after succesive transitions, or at least in a state "near" 

the stable one^ "̂. The former implies that an associative 

memory has an error correction property: if the nunber of 

errors of a given vector is such that the vector lies within 

an "appropriate" distance from a memory (stable vector), then 

total or partial error correction is obtained according to 

whether the vector reaches the memory or a state cióse to it 

after iterations of the system. Thus associative memories 

are very useful in recognition and reconstruction of images 

and in information retrieval when only a partial or degener-

ate input ia given. 

For a fixed network with n cells and discrete activa­

tions only finitely many memories can be stored in the net­

work because there are only finitely loany fixed points of the 

(i) Here ."neamess" is usually measured in terms of the Ham­
ming distance, where the distémce between two vectora is the 
number of different components. 
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network dynamics. The patterns of activation that evolve into 

the same fixed points X are the possible corrupted input ax¿ 

nals that admit error-correction. They form the basin of at­

traction of X. There is therefore a trade-off between the num 

ber of memories to be stored and the robustness with which 

they can be retrieved. Memory will fade as the number of ve£ 

tors to be memorized increases. For instance, some fixed 

points will not correspond to an actiial pattem (a s p u r l o u s 

memory)i or a memory given as an initial condltion will con­

verge to a different fixed point (the pattern is u n s t o b t e ) . 

The natural question arises as to how many vectors can be 

stably recalled with high probability for a given network on 

n cells. 

The first answer to this question was provided by Hop­

field (1982)L It has been confirmed experimentally that when m 

memories are stored in n cells and m xa kept below 0.15n , 

spurious and unstable recall is very rare. Exact analytic re 

sults were later obtained by McEliece and coworkers (1987) for 

random errors. If m < n/4 log n then with very high probabil­

ity all the memories will be stable. For n/41ogn< ni< n/21og n 

stillmost memories will be stable with high probability. The 

question remains whether stable memories can attract all vec­

tora with a positive radios pn (in Hamming distance), for 

some p > 0. Komlos and Paturi (1988) further established con^ 

vergence in at most Oilog log n) steps as well as the existence 

of a poaitive radius of attraction for m < n/4 logn. They also 

established the existence of exponentially many states which 

are stable, although in a weaker sense defined in terms of 

energy. Exact descriptions of these results are beyond the 

acope of this survey - Komlos and Paturi (1988). 
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The associative memory probiem can be regarded as a 

particular case of a more general probiem dealt with in the 

next section. 

4 .2 . Pattern c l a s s i f l e r s . 

Classification is a fundamental idea in many áreas, 

particulary leaming. It usually involves the partition of 

objects in question in a number of categories, usually fin­

ite. The probiem of p a t t e m c l a S S l i l c a t l o n consists in de-

termining, with a mínimum probability of error, to which of 

a finite number of possible categories an input pattern be-

longs. This probiem is central to áreas such as artificial 

intelligence, machine visión, image processing, speech pro­

cessing, automatic malling systems, and many others. 

Traditional classifiers usually perform by finding the 

input with "máximum acore" obtained in matching with an ex-

emplar from the given category. In most cases these classi­

fiers rely on strong assumptions made on the distribution 

of the input patterns so as to estímate the parameters that 

stay fixed during the process. The categorization of data is 

usually performed in such a way that the output will be cías 

sified as "high" upon input of a pattem if it is cióse to 

the corresponding exemplar in the category. Ihe aim is to 

perform the task correctly even if a particular pattem is 

slig^tly distorted. For instance, pattern classifiers can be 

used as associative memories ̂ ere the stable vectors ormem 

oríes correspond to the categories of the network. 

Neural networks are widely used in pattern classifi­

cation. The advantage of neural networks is that, in con­

trast to statistical methods, they are adaptive, non-para-
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metric and more flexible in the specification of underlying 

distributions. 

The simplest pattem classifier is the perceptron men­

tioned in subsection 2.1. It decides if an input is above or 

below an hyperplane (in our case a line) forming two regions 

or categories separated by a decisión boundary. If the data 

is not separable and their density functions overiap, the d£ 

cisión boundaries may oscillate. Approxlmate solutions can be 

found by considering the l e a s t mean Square approach. This pr£ 

cedure minimizes the mean square error between the desired 

and the actual output of the perceptron. Weights are correc_t 

ed according to the difference between the two patterns. The 

procedure works with other neural networks as well. By mini-

mizing the probability of error classification, the network 

acts a bayes ian c l a S S l i l e r . The question now is whether or 

not the network approaches an optimal decisión. Specht 1990 

provea that if the sigmoid activation function, commonly used 

for faocfe p ropaga t lon , xa replaced by an exponential function, 

virtually an optimal Bayesian classification is obtained. 

Another exanq>le is the W l n n e r - t a k e - a l l network. It con 

sists of an input layer of cells connected to a fully inter­

connected aet of binary cells. Weights are set up so that on 

ly one of the output units, called the WlnneA, can fire at 

any time. It is \isually the unit with the largast net input. 

The Hamming n e t , like several other networks, imple-

ments a classical algorithm. The output of the network is the 

vector nearest in Hamming distance to the input vector. The 

result is obtained by actually implementing in neural prim-

itives the optimum mínimum er ror c lass l i l e r . algorithm, used 

file:///isually
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to solve some problems in Communications when binary signáis 

are sent through memoryless channels. The Hamming net consists 

of two subnets, a feedforward net and a winner-take-all net, 

each containing two layers. The conocetions are as foilows: 

In the lower net, input node j connects to next layer node I 

with weight W. •; node I xa this layer connects to a corres-
A.J 

ponding node I xa the first layer of the upper net with weight 

1; node j connects to node in the same layer with weight u.- •; 
A,j 

node j in this layer connect to output node fe with weight v , - . 

The net effect of these two layers is as foilows. The first 

subnet finds the difference between the number of elementos 

of the input pattern and the Hamming distance to the exemplar 

for each class. The winner-take all subnet then selecta the 

máximum valué yielding the corresponding class of the input 

vector. 

The reader is referred to Lippmann (1987), for a more de-

tailed study of patt:em classifiers. 

4.3. Time serles. 

A t ime s e r i e s is a sequence of observations ordered in 

time. The series is continuóos or d i s c r e t e depending on 

whether the observations are made continuously or at discre 

te times. An example of a discrete series is the valué of the 

stock of a certain company through time. The objectives in 

time series analysis include obtaining simple descriptivo m ^ 

sures (if possible) of the main properties by plotting the 

data, validating empirically prior knowledge on its structure, 

and, most importantly, predicting as saccurately as possible 

future values of the series. 
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If the future behavior of a time series can be exactly 

predicted based on some knowledge of the past, then the time 

series is deterministic and no further study is required. 

Otherwise, it is a statistical time series. The series can 

be univariate or multivariate depending on whether the obser 

vations are taken on a single valué or simultaneously on se­

veral values. A time series can be seen as a realization of 

a stochastic process. Unlike many processes handled by sta­

tistical theory, however, the special feature about time se­

ries as a random process is that observations are not inde-

pendet and the temporal order is quite important. Time series 

apply to many fields. Iftich of the behavior encountered in 

social sciences, natural sciences, biology, physics and other 

Sciences can be modeled in the form of time series. The ap-

parently chaotic nature of data in áreas such as economy and 

history has given an increasing interest to time series ana­

lysis. 

Given observations X, .X-,... ,X^, up to time t , we wish 

to predict the valué at time ^++1»• •• «̂í-a».» •*• a positive in-

teger. One of the fundamental problems is the selection of a 

mathematical model to represent the process. Once the form of 

the model is found, it is a matter of using known values of 

the series to determine the unknown parameters in the model. 

For example, one of the most general techniques, the Box-Jen 

kins method assumes that there is a linear relationship be­

tween a number of consecutivo terms of the series, of the 

form 

V i ' ^o'̂ í + '^iVi +• • •+ V í - p -̂  "'^' 

where W^ is some random noise. Other models include ARMA, ARÎ  
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MA, etc. Most of these methods in time series forecasting 

rely on linear relationships among the variables. 

Yet, most of the data obtained from the real world are 

nonlinear. Neural Networks offer an alternative model for 

time series forecast. There are several reasons why they may 

be better models. First, they are nonlinear models. Second, 

learning algorithms like backpropagation, if successful, will 

"discover" the best possible set of weights to fit the given 

data without previous knowledge even of their form. Third, 

they do not inq>ose in advance too particular a restriction 

on the relationship between the various parameters represent 

ed in the hidden layers of the net. They are adaptive in 

the sense that the models change with the structure of the 

data if a training algorithms is in place. 

A feedforward network may be used to predict future 

values for a time series as foilows(Hehrotra, Mohán and Ran 

ka 1990). The Iast n terms of the series can be used as input 

for the cells in the input layer. (The- valué of n requires 

judicious choice). The output layer will contain the valué 

predicted by the network for the next term of the series. 

!nii8 predicted valué can be either ignored (one-lag predic­

tion) or used for further training (multi-lag prediction). 

This method has been used for prediction of sun-spots, Oíela.-

rotra. Mohán and Ranka 1990). Initial aegments of the known 

series can thus be used for training set for the network. 

The remaining values can be used to verify the goodness of 

the network. If the actual valuea of the series are known 

after some time (for instance in the case of sun-spots) they 

can be used for continued training. The network thus becomes 

an adaptive predictor of a series in which the parameters of 
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the series are themselves changing with time. The probiem now 

reduces to determining the most suitable valué of n and the 

architecture of the network that will provide more accurate 

predictions that traditional models. 

Stochastic recurrent networks have also been used to 

predict future values of a multivariate series. For exan^le, 

in Kehagias, CL991) they have been applied to series whose val 

ues can be expressed over a finite alphabet, e.g. quantized 

speech waveforms. It is assumed that an unknown netrwork is 

producing the values of the series. The problems of p r e d i c ­

t i o n and c l a S S l i l c a t l o n are then formulated as foilows. Given 

outputs y » . . . , y at the present time, and the inputs X 

.t+l 
X up to the immediate future, predict the máximum likeli­

hood estimation of the ouput y . In formulas, using the co­

rresponding capital for the corresponding random variables, 

one wants a valué for y that maximizes the function ^ A y ) 

given by the conditional probability 

probíY^'^^ ' y \ y K . . y ^ ' {/^../; X^..X*+^ - x^..x^^b 

t+l 
In the classification probiem, given the same but X , one 

asks for the networks f̂. out of a number of candidatos N . , . . 

.., Ny that has máximum posterior probability of producing 
1 t 

y , - . . , { / . 

Although experimental results show succesful prediction 

of future values, in the sense that they were closer to exact 

values than the ones obtained with the Box-Jenkins method, 

there is not underlying theory that will support these re­

sults. A first step in this direction can be found in Keha­

gias a991). 
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4.4. Computational models of physics. 

Discrete neural networks as given in def in i t ion 2 . 1 . 

are a general izat ion of a model, ce l lu l a r autómata, i n t r o -
( 2 ) 

duced by John von Neumann as discrete computational ver-

sions of partial differential equations in the 1950's. Since 

then, cellular autómata have developed into a very active 

field of research, mainly by physicists and computer scien-

tist CToffoli and Margolus 1987, Wolfram 1987). A cellular au 

tomaton can be defined as a neural network in which the un­

derlying graph is homogeneous (it looks the same from every 

node) and all cells apply the same rule. Typical examples 

are the points of integer coordinates in real euclidean 

spaces connected in the usual grid manner by horizontal and 

vertical edges. Other examples are regular trees, and, more 

generally, Cayley graphs of arbitrary finitely generated 

groups. With binary states, common rules are the sum modulo 

2 of a subset of the states of neighboring cells. Conway's 

game of LIFE is probably the most popular example of a cel­

lular automaton. 

Cellular autómata provide Simply defined d i S c r e t e mod̂  

els of a wide variety of natural and complex phenomena hith 

erto thought to be undescribable by simple classical contin 

uous or discrete systems. Examples include the Greenberg-

Hasting models for the Belusov-Zhabotinsky reaction, the dî  

gital BBM (billiard hall) model for conservativo mechanics, 

the HPP-GAS, Ttt-GAS, and FHP-GAS models of fluid dynamics 

for the Navier-Stokes equation, Ising systems, spin glasses. 

(2) S. Ulam's seems to have made crucial suggestions on the 
type of model. 
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voting models of cooperativa phenomena, and myriad other cel̂  

lular autómata rulés currently under research. They have even 

been used as a primer example of artificial life and related 

issues (l.angton 1991). The reader i» reperred to Gutowitz (1990). 

Toffoli and Margolus (1987) and Wolfram,, 0.987)̂  for a detailed 

description of applications of cellular autómata. Generally 

speaking, they can be regarded as imaginary miniatura uni-

verses where the local rules play th» roles of p h y s i c a l lo­

cal laws and clusters of pixels in temporally stable config­

urations behmre like objets in that universo. 

Most common cellular autómata models have been deter­

ministic. They are closely related to deterministic neural 

networks (Gutowitz 1990pp.431-440)for precise relation­

ships between the two models). However, some recent models 

have been proposed concerning probabilistic models and In-

herently probabilistic phenomena such as quantum mechanical 

effects and even the entire universe itself (Gutowitz 1990). 

For exemple, the d e t e r m i n i s t i c 2-dimensional model of 

sum modulo 2 has been found to possess quantitative pro2. 

erties akin to quantum mechanical properties in Vichniac, 

0-984). Richard Feynman (1982) considera very seriously the idea 

that the evolution of our physical universe may be governed 

by local rules of a cellular automaton type with stochastic 

spatiotemporal update depending not only on the immediate 

past, but also on the immediate future. Rujan (L987)has fur-

thered this consideration to full blown models of quantum 

mechanics. Other probabilistic cellular autómata rules have 

been examined in Bramson and Griffeath C990). 
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5. Other applications. 

The foregoing sections have barely touched upon the va£ 

ious neural models and their applications. They have empha-

sized discrete models. Continuous models have been studied, 

mainly by Grossberg (1988), Kohonen (1984) and Fukushima. The ART 

(Adaptive Resonance Theory) models of Grossberg and his col-

laborators have as activation values real numbers and the 

local evolution is governed by differential equations. They 

have been used with great success in many áreas suchas a pat­

tern classification, adaptive resonance and neural modeling 

of brain functions. 

Neural modeling is an interesting overiap with medici­

ne and neurophysiology. Neural nets can be used as experimen^ 

tal full models of nervous systems of primitive organisms 

(includingtraining and adaptation), models of parts of the 

human brain (hyppocampus, cortical áreas, eye movement con­

trol mechanisms, language functions, etc.), models of learn 

ing and behavior, and so forth. 

Industry has found a great deal of applications for 

neural network as well. We mention just a couple. A neural-

net based systems has been designed and successfully out-

performs other system for airport security in detection of 

plástic explosivos. Neural-based pattern recognizers are in 

use to identity handwritten characters and zip codes for aia 

tomatic sorting of mail in the postal service. This type of 

control system is beginning to find its way into homes in 

appliances, electronic devices, etc. Large companies have 

been founded in Europe, North America and Japan for research 

and development of an industry projected to have a volume of 
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eperations in the multibillion dollar range by 1993. 

Neural models have also been found of interest as sta­

tistical tools, as indicates above. As their properties be-

comes better known, they are likely to become important 

tools in applied statistics as well. In turn, probability 

and statistics can be used to analyze the difficult probiem 

of the longterm behavior of dynamics and leaming by neural 

nets (White 1989). This interrelation is likely to increase 

as the interest in neural nets shifts from experimentation 

to a more systematic and analytical stage of development. 
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