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Abstract

In this paper, we consider to evaluate the e�ciency of volleyball players
according to your performance of attack, block and serve, considering the
compositional structure of the data related to the fundaments of this sport.
In this way, we consider a �nite mixture of regression model to compositional
data. The maximum likelihood estimation of this model was obtained via an
EM algorithm. A simulation study reveals that the parameters are correctly
recovery. In addition, the estimators are asymptotically unbiased. By con-
sidering real dataset of Brazilian volleyball competition, we show that the
model proposed presents best �t than the usual regression model.

Key words: Compositional Data; Finite Mixture Regression; EM Algo-
rithm.

Resumen

En este estudio evaluamos la e�ciencia de los jugadores de voleibol de
acuerdo con su desempeño de ataque, bloqueo y servicio, teniendo en cuenta
la estructura composicional de los datos relacionados con los fundamentos
de este deporte. Así, consideramos un modelo de regresión de mixtura �nita
para datos composicionales. La estimación de máxima verosimilitud fue
obtenida via un Algoritmo EM. Un estudio de simulación revela que los
parámetros son correctamente recuperados. Adicionalmente, los estimadores
son asintóticamente insesgados. Considerando dados reales del campeonato
de voleyball brasileño nosotros mostramos que el modelo propuesto presenta
mejor ajuste que el modelo de regresión usual.
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1. Introduction

The performance of highlevel volleyball teams is considered fundamental for
guarantee success at championships. Such performance may be related to e�ciency
of the players at the game. The knowledge about the main factors (for instance, the
e�ciency of the players) that a�ect the result of a game helps the decision-making
of coaches, providing advantages for improving the skills of the teams. Hence, this
is an important issue that must be analysed to contribute to the development of
tactical and technical strategies.

Some studies about the e�ciency of the volleyball players have been devel-
oped recently. For example, Bozhkova (2013) analyzed the e�ciency of the best
volleyball players based on the scoring winning points and the assisting actions,
concluding that the attack is the most points-winning skill within the best volley-
ball players in the world. Pena, Guerra, Busca & Serra (2013) evaluated skills and
factors that better predicted the outcomes of a regular seasons volleyball matches
based on the logistic regression.

The points scored of the players like attack, block and serve have structure
of compositional data which represent positive components, i.e., proportions of a
whole. Compositional parts can be expressed in any scale without loss of informa-
tion: accordingly, the sample space of representation of compositional data with
a constant sum constraint is the simplex de�ned by SD = {(x1, . . . , xD) : xj > 0

for j = 1, . . . , D and
∑D
j=1 xj = k}, where k > 0 and D is the number of variables

(components).

Three essential principles of compositional data analysis are scale invariance,
permutation invariance and subcompositional coherence (Aitchison 1986, Pawlow-
sky Glahn, Egozcue & Tolosana-Delgado 2015). Scale invariance means that a
composition has information only about relative values. According to Aitchison &
Egozcue (2005), such concept is easily formalized into a statement that all mean-
ingful functions of a composition can be expressed in terms of a set of component
ratios. The concept of permutation invariance is that if it provides same results
when the components in the composition is changed. Finally, the subcomposi-
tional coherence can be summarized as: if we have two compositions, being one
full compositions and another one a subcomposition of these full compositions, the
inference about the relations within the common parts should be the same results
(Aitchison & Egozcue 2005).

Aitchison & Shen (1980) and Aitchison (1986) introduced an appropriate the-
ory for compositional data. The methodology involves transformations from re-
stricted sample space simplex to well-de�ned real sample space R. The general idea
consists in the constraints that are removed, then standard statistical methods can
be applied to the transformed observations. Such transformations were named by
the additive logratio transformation (alr) and the centered logratio transformation
(clr). Indeed, both alr and clr transformation represent coordinates with relation
to the Aitchison geometry (Pawlowsky Glahn et al. 2015).
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The use of multivariate normal distribution to compositional data can be found
in Hron, Filzmoser & Thompson (2012), Egozcue, Daunis-I-Estadella, Pawlowsky-
Glahn, Hron & Filzmoser (2011), among others.

Thus, our main motivation is to study the e�ciency of the volleyball players
through of the performance of attack, block and serve that result in point scoring
in a game. The methodology of compositional data was applied in the points
scored of the players during all the League: attack (x1), block (x2) and serve (x3).
Beyond that, it was considered a compositional regression model to study the
relation between the fundaments and the associated covariates: z1 is the percent
of the team's e�ciency in the reception and z2 is the ratio of wins sets under losers
sets, i.e., the higher the value of such ratio, the more likely the number of wins
sets of the teams.

Preliminary, it was �tted a bivariate normal regression modelling for y1 and y2
independent random variables. Figure 1 shows the qq-plots of the �tting. More-
over, it was calculated the Shapiro-Wilks (SW) test, Kolmogorov-Smirnov (KS)
test and Anderson-Darling (AD) test to verify the normality assumption of the
data. The SW, KS and AD tests for y1 presented p-value equal to 0.000 for all
tests, rejected the null hypothesis that the sample came from an univariate normal
distribution. On the other hand, the SW, KS and AD tests showed that y2 follows
an univariate normal distribution with p-values: 0.855, 0.902, 0.678, respectively.

According to the tests on the normality assumption for y1 and y2, a new ap-
proach for this data must have be considered, mainly for y1. In this case, the
mixture analysis is conducted to investigate the better �t for the the e�ciency in
points scoring by volleyball players.
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Figure 1: QQ-plots for y1 (left) and y2 (right) assuming residuals with normal distri-
bution.

The aim of the paper is to introduce a Gaussian mixture regression model for
compositional data with alr transformation, considering the multivariate structure
of the data.

The methodology of �nite mixture models has been much discussed in the
literature. Quandt & Ramsey (1978) proposed such methodology in general form
of switching regression. One of its advantages is to identify and relate populations
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with two or more subpopulations. According to Miljkovic, Shaik & Miljkovic
(2016), the variability of the variable may be explained better through by the
investigation in a mixture of two or more distributions than a single distribution.

The paper is organized as follows. Section 2 introduces some preliminaries for
compositional data and the methodology of Gaussian mixture regression model
applied through the alr-coordinates, Sections 3 and 4 provide the results of the
simulation study and application to a real data set related to the Brazilian Men's
Volleyball Super League 2014/2015 and Section 5 ends the paper with some �nal
remarks.

2. Methodology

First of all, the de�nition of compositional data is given below. Consider
x = (x1, x2, . . . , xD)

> a compositional vector, xi a positive value, for i = 1, . . . , D
and x1 + x2 + · · ·+ xD = 1.

The operation closure assigns a constant sum representative to a composition.
It divides each component of a vector by the sum of the components, rescaling of
the initial vector to the constant sum 1. In mathematical terms, the de�nition is
given by

De�nition 1 (Closure). For any vector of D strictly positive real components,
x = [x1, . . . , xD] ∈ RD

+, xi > 0 for all i = 1, . . . , D, the closure of x to k > 0 is
de�ned as

C(x) =

[
k.x1∑D
i=1 zi

, . . . ,
k.xD∑D
i=1 zi

]
.

The family of the logratio coordinates is an alternative to lead with the con-
straints of compositional data, applying them before the statistical analysis. One
of them was introduced by Aitchison (1986) called alr-coordinates. It is de�ned as

alr : SD → RD−1

y = alr(x) =

[
ln
x1
xD

, . . . , ln
xD−1
xD

]
= ζ.

The inverse alr-coordinates is given by

x = alr−1(ζ) = C[exp(ζ1), . . . , exp(ζD−1), 1].

The alr-coordinates are not symmetric in the components, because the part xD
is in the denominator of the component logratios. Such coordinates ζi = ln(xi/xD)
are simple logratios and easily interpretable (Pawlowsky Glahn et al. 2015).

The regression model assuming alr-coordinates for the response variable is given
by

yi = β0 + ziβ1 + εi, (1)
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where yi = (yi1, . . . , yid) is a vector (1× d) of response variables where d = D− 1
and D number of the components; zi is a vector (1 × p) of covariates associated
to the i-th sample; β0 is a vector (1 × d) intercepts; β1 is a matrix (p × d) of
regression coe�cients and εi are random errors with distribution N(0, σ2), for
j = 1, . . . , D − 1 and i = 1, . . . , n.

In order to obtain the mixture structure for y1 and univariate normal regression
for y2, the likelihood L = L1 + L2 for θ = (π1, . . . , πK , β01, . . . , β0K , β11, . . . , β1K ,
σ2
1 , . . . , σ

2
K) is

L1(θ) =

n∏
i=1

K∑
k=1

πkφk(yi1|µk, σ2
k)

L2(θ) =

n∏
i=1

φ(yi2|µ′2, σ2′

2 ) (2)

where φ(y|µk, σ2
k) is the normal distribution with mean µk = β0k − β1kzi and

variance σ2, for k = 1, . . . ,K and i = 1, . . . , n.

The standard tool for estimate the parameters of mixture models is the EM al-
gorithm, known for its applications in clustering and classi�cations models (McLachlan
& Peel 2000). The simulation studies and statistical analysis of application were
perfomed using R software (R Development Core Team 2013) through of the pack-
ages mixtools, maxLik and compositions.

2.1. EM Algorithm for Regression Model

The standard methods for �nding maximum likelihood solution fail to solve
the present setup. A powerful tool is to apply the EM algorithm proposed by
Dempster, Laird & Rubin (1977).

The EM algorithm is an iterative method and the process of iterations is based
on two steps, E (for expectation) and M (for maximization).

Following Faria & Soromenho (2010), the E-step calculates the Q-function
which the expected value of the log likelihood function conditional on the param-
eter estimates and the observed data on the (t+ 1)th iteration,

Q(θ, θ(t)) =

n∑
i=1

K∑
k=1

w
(t)
ik φk(yi1|µk, σ

2
k), (3)

where for i = 1, . . . , n and k = 1, . . . ,K

w
(t)
ik =

π
(t)
k φk(yi1|µk, σ2

k)∑K
k=1 π

(t)
k φk(yi1|µk, σ2

k)
, (4)

represents the posterior probability that the ith observation belongs to the kth
component of the mixture.

Revista Colombiana de Estadística 41 (2018) 75�86



80 Taciana Shimizu, Francisco Louzada & Adriano Suzuki

In the M -step, the function (3) is maximized to obtain the updated estimates
θ(t+1). It follows that theM -step involves solving the following explicity equations
expressed by,

π̂
(t+1)
k =

∑n
i=1 w

(t)
ik

n
,

β̂
(t+1)
k = (Z>WkZ)

−1Z>WkY and

σ̂
(t+1)
k =

∑n
i=1 w

(t)
ij (y1i − z>i β̂

(t+1)
k )2∑n

i=1 w
(t)
ik

,

where Z is a n× (d+ 1) matrix of predictors, Wk is a n× n diagonal matrix with

diagonal entries w
(t)
ik and Y is a n× 1 vector of response variable for k = 1, . . . ,K

(Faria & Soromenho 2010).

According to Migon, Gamerman & Louzada (2014), approximate (1−α) 100%
con�dence intervals for the parameters β0j , β1j , σj , βj are given by β̂0j ±

ξδ/2

√
V ar(β̂0j), β̂1j±ξδ/2

√
V ar(β̂1j), σ̂j±ξδ/2

√
V ar(σ̂j) and β̂j±ξδ/2

√
V ar(β̂j),

where ξδ/2 is the upper δ/2 percentile of standard normal distribution and j = 1, 2.

We considered the discrimination criterion method based on log-likelihood
function evaluated at the MLEs. Let m be the number of parameters to be �tted
and θ̂ the MLE's of θ, the discrimination criterion method is Akaike information
criterion (AIC) computed through AIC = −2l(θ̂;x) + 2m.

3. Simulation Study

A simulation study via Monte Carlo methods was performed in order to study
the asymptotic properties of the MLEs. It was simulated 1,000 samples of size n =
100, 200, 300 and 400 considering models with two components of mixture �xed in
two types of cases πA = (0.5, 0.5) and πB = (0.2, 0.8). The true parameter values
to perform this procedure were β01 = −2, β02 = 5, β11 = 0.5, β12 = 0.5, σ1 = 2 and
σ2 = 3.

The data was generated randomly by the following scheme. A uniform random
number u ∈ (0, 1) was generated and the respective value was used to select a
speci�c component k from mixture of regression models. Moreover, the associated
covariate was generated through by z1 ∼ Bernoulli (0.5) and a normal random εik
with mean 0 and variance σ2

k, for k = 1, 2. Lastly, the value y1i was calculated
based on the values of z1, εik.

The criteria used to verify the performance of the algorithm were bias, stan-
dard deviation (SD), the mean square error (MSE) and coverage probability (CP).
The coverage probability of con�dence interval was computed through by boot-
strapping, whereas the standard errors are not provided by the EM algorithm used
in parameter estimation.
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Tables 1 and 2 display the averages of the maximum likelihood estimates
(Mean), standard deviation (SD), bias, mean square error (MSE) and coverage
probability (CP) of the asymptotic 95% con�dence intervals for the parameters
considering two cases when πA = (0.5, 0.5) and πB = (0.2, 0.8). We can observe
that the estimates are closer to the real value, besides the estimators are asymp-
totically unbiased for the parameters. According to the increase of the sample size,
the MSE values decrease. Moreover, the coverage probabilities were stable.

Table 1: Simulated data. Mean, SD, bias, MSE and CP for estimates based on 1,000
generated samples of the two-component mixtures regression models.

Sample Parameter β01 β02 β11 β12 σ1 σ2 π1 π2

Size Fixed value −2 5 0.5 0.5 3 2 0.5 0.5

Mean −1.944 4.989 0.509 0.505 1.900 2.861 0.492 0.508

SD 0.872 1.442 0.799 1.219 0.539 0.701 0.143 0.143

n = 100 Bias 0.055 −0.011 0.009 0.005 −0.100 −0.138 −0.008 0.008

MSE 0.764 2.079 0.638 1.487 0.301 0.511 0.020 0.020

CP 0.866 0.829 0.922 0.905 0.836 0.822 0.823 0.823

Mean −2.006 4.940 0.499 0.504 1.929 2.963 0.489 0.510

SD 0.539 1.051 0.562 0.841 0.346 0.503 0.099 0.099

n = 200 Bias −0.006 −0.060 −0.001 0.004 −0.070 −0.037 −0.010 −0.010

MSE 0.290 1.107 0.315 0.707 0.125 0.254 0.010 0.010

CP 0.920 0.883 0.928 0.924 0.903 0.857 0.885 0.885

Mean −2.009 4.915 0.521 0.500 1.947 2.998 0.490 0.510

SD 0.424 0.799 0.434 0.655 0.269 0.428 0.082 0.082

n = 300 Bias −0.009 −0.085 0.021 0.000 −0.053 −0.002 −0.009 0.009

MSE 0.180 0.647 0.189 0.429 0.075 0.183 0.007 0.007

CP 0.928 0.895 0.934 0.935 0.926 0.865 0.903 0.903

Mean −1.987 4.994 0.482 0.466 1.983 2.979 0.498 0.502

SD 0.346 0.645 0.373 0.554 0.202 0.346 0.063 0.063

n = 400 Bias 0.013 −0.005 −0.018 −0.034 −0.017 −0.021 −0.002 0.002

MSE 0.120 0.416 0.140 0.308 0.041 0.120 0.004 0.004

CP 0.919 0.923 0.957 0.927 0.943 0.907 0.917 0.917
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Table 2: Simulated data. Mean, SD, bias, MSE and CP for estimates based on 1,000
generated samples of the two-component mixtures regression models.

Sample Parameter β01 β02 β11 β12 σ1 σ2 π1 π2

Size Fixed value −2 5 0.5 0.5 3 2 0.2 0.8

Mean −0.847 5.594 0.567 0.468 2.196 2.502 0.352 0.648

SD 2.318 1.433 1.605 1.366 1.087 0.819 0.247 0.247

n = 100 Bias 1.153 0.594 0.067 −0.032 0.196 −0.498 0.152 −0.152

MSE 6.704 2.406 2.581 1.868 1.220 0.918 0.084 0.084

CP 0.679 0.808 0.862 0.885 0.636 0.773 0.694 0.694

Mean −1.205 5.312 0.434 0.538 2.159 2.734 0.294 0.706

SD 1.913 0.888 0.960 0.897 0.890 0.615 0.203 0.203

n = 200 Bias 0.794 0.312 −0.066 0.038 0.159 −0.265 0.094 −0.094

MSE 4.291 0.885 0.927 0.806 0.817 0.448 0.050 0.050

CP 0.765 0.871 0.921 0.924 0.750 0.842 0.794 0.794

Mean −1.352 5.212 0.452 0.489 2.160 2.798 0.277 0.723

SD 1.747 0.750 0.785 0.648 0.800 0.539 0.188 0.188

n = 300 Bias 0.648 0.212 −0.048 −0.011 0.161 −0.202 0.077 −0.077

MSE 3.473 0.607 0.619 0.420 0.665 0.332 0.041 0.041

CP 0.800 0.891 0.932 0.938 0.788 0.862 0.826 0.826

Mean −1.480 5.151 0.480 0.506 2.139 2.856 0.260 0.740

SD 1.590 0.638 0.701 0.500 0.728 0.472 0.171 0.171

n = 400 Bias 0.520 0.151 −0.020 0.006 0.139 −0.144 0.060 −0.060

MSE 2.798 0.429 0.492 0.250 0.549 0.243 0.033 0.033

CP 0.815 0.895 0.921 0.934 0.801 0.866 0.834 0.834

4. Application

We applied the proposed methodology a real data set where the sample corre-
sponds to 127 players extracted from (Brazilian Volleyball Confederation (CBV)
2016). The data related to proportions of the volleyball players who participated of
Brazilian Men's Volleyball Super League 2014/2015. The methodology of compo-
sitional data was applied in the points scored of the players during all the League
which are considered components: attack (x1), block (x2) and serve (x3). The
associated covariates to the model are: z1 is the percent of the team's e�ciency
in the reception and z2 is the ratio of wins sets under losers sets, i.e., the higher
the value of such ratio, the more likely the number of wins sets of the teams.
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The main goal is to verify individually whether the fundaments (attack, block and
serve) have relation to the associated covariates.

The ternary diagram (Figure 2) presents the three fundaments attack, block
and serve. Such type of graphic represents a 3-part composition using a 2-dimensional
plot (Van Den Boogaart & Tolosana-Delgado 2013). There is a concentration of
points in direction to the attack component. Only some points are directed for
block and serve components.
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Figure 2: Ternary diagram for the components: attack, block and serve.

For sake of comparison, the discrimination criterion method was analysed based
on log-likelihood function evaluated at the MLEs. Table 3 presents the maximum
likelihood estimates and the result of AIC criteria for �tted models. Gaussian
mixture model with 2 components has smallest value AIC indicating the best �t
among the other models considered. We can observe that the mixing proportions
by component of the 2-GM model are 0.118 and 0.882 re�ecting how the data
is distributed within each subpopulation. The model with 2-GM �tted better
than others regressions for y1 and based on the preliminary test of normality, the
�t of the linear regression is adequate for y2 (Figure 1). Such conclusions are
corroborated by the behaviour of the �tting for the residuals of the 2-GM model
in the Figure 3.
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Table 3: Summary of the Maximum Likelihood Estimates for the parameters and com-
parison through the discrimination criterion of the bivariate normal (BN),
2-component Gaussian mixture (2-GM) and 3-component Gaussian mixture
(3-GM) regressions for y1 and y2.

BN 2-GM 3-GM

β01 1.094 β01 −2.670 β01 −2.933

β′
02 −0.165 β02 1.938 β02 1.785

β11 0.046 β11 0.091 β03 4.629

β′
12 0.037 β12 0.028 β11 0.101

β21 −0.415 β21 −0.534 β12 0.029

β′
22 −0.344 β22 −0.283 β13 −0.024

σ1 1.054 σ1 0.479 β21 −0.586

σ′
2 0.802 σ2 0.736 β22 −0.243

π1 0.118 β23 0.771

π2 0.882 σ1 0.517

σ2 0.616

σ3 0.156

π1 0.131

π2 0.816

π3 0.053

LogLik −339.083 −327.405 −322.754

AIC 694.166 682.811 683.509
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Figure 3: QQ-plot for the residuals of the 2-GM model.
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5. Conclusions

This study provides a mixture compositional regression model to study the ef-
�ciency volleyball players. Based on the preliminary results, one of the variables,
namely y1, did not show good �t for a regression model with normal errors accord-
ing to the tests of normality and the Figure 1. The Gaussian mixture compositional
regression model was then developed and �tted to our dataset, corroborating with
the preliminary results. Two approaches were considered, two and three compo-
nents mixture regressions for the data of e�ciency of volleyball players, according
to the performance of the fundaments: attack, block and serve. Furthermore, the
estimates of simulation study and the application for real dataset were obtained
via an EM algorithm. The results pointed out that the fundaments of volleyball
players are better described by using the compositional mixture model with two
components, according to the discrimination criteria. Such approach considers the
heterogeneous characteristics of the data.

Finally, the study's conclusions identi�ed points in the attack as fundamental to
highlight the e�ective teams through the estimates of proportions. As future work,
following Egozcue & Pawlowsky-Glahn (2005) and Egozcue, Pawlowsky-Glahn,
Mateu-Figueras & Barceló-Vidal (2003), the orthonormal coordinates (isometric
logratio) can be incorporated in the �nite mixture compositional model, instead
of alr-coordinates, probable leading to some improvement.
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