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Abstract

In the case of multicollinearity and outliers in regression analysis, the
researchers are encouraged to deal with two problems simultaneously. Biased
methods based on robust estimators are useful for estimating the regression
coefficients for such cases. In this study we examine some robust biased
estimators on the datasets with outliers in x direction and outliers in both x
and y direction from literature by means of the R package ltsbase. Instead
of a complete data analysis, robust biased estimators are evaluated using
capabilities and features of this package.
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Resumen

En el caso de multicolinealidad y outliers en análisis de regresión, los
investigadores se enfrentan a tener que tratar dos problemas de manera si-
multánea. Métodos sesgados basados en estimadores robustos son útiles para
estimar los coeficientes de regresión en estos casos. En este estudio se exami-
nan algunos estimadores sesgados robustos en conjuntos de datos con outliers
en x y outliers tanto en x como en y por medio del paquete ltsbase de R. En
lugar de un análisis de datos completos, los estimadores sesgados robustos
son evaluados usando las capacidades y características de este paquete.

Palabras clave: estimadores sesgados, mínimos cuadrados recortados,
robusta estimación.
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1. The Least Trimmed Squares

Least Trimmed Squares (LTS) or Least Trimmed Sum of Squares is one of
a number of methods for robust regression (Rousseeuw & Leroy 1987). There
exists several algorithms for calculating the LTS estimates in the literature: Rup-
pert & Carrol (1980), Neykov & Neytchev (1991), Tichavsky (1991), Atkinson
& Weisberg (1991), Ruppert (1992), Stromberg (1993), Hawkins (1994), Hossjer
(1995), Rousseeuw & van Driessen (1999), Agullo (2001), Hawkins & Olive (2002),
Willems & van Aelst (2005), Jung (2005), Li (2005), Cizek (2005), Rousseeuw &
van Driessen (2006).

Peter Rousseeuw introduced several robust estimators including LTS in his
works. LTS is a statistical robust technique for fitting a linear regression model to
a set of n points given a trimming parameter h as it is insensitive due to outliers
(n/2 ≤ h ≤ n). More formally, LTS estimator is defined on an objective function
which is minimized by

min
β̂

h∑
i=1

(e2)i:n (1)

where (e2)i:n is the ith smallest residual or distance when the residuals are ordered
in ascending order. As h is the number of good data points, LTS estimator obtaines
a robust estimate by trimming the (n−h) data points having the largest residuals
from the data set. Note that, when h = n, it is equivalent to the ordinary least
squares estimator. It is also possible to take h close to the number of good points
as the more accurate estimates are rational to the number of good points. For
small sample sizes the existing algorithms are fine, however the computation time
increases with the larger size of data set. Hence other possible ways for fitting are
considered. Rousseeuw & van Driessen (1999) proposed a fast algorithm based on
a random sampling for computing LTS which was finally published as Rousseeuw
& van Driessen (2006). In this study, only the FAST-LTS algorithm proposed by
Rousseeuw and van Driessen will be considered.

The paper unfolds as follows: Section 2 outlines the contributions to LTS in
the presence of multicollinearity. Section 3 explains some robust biased estimators.
The next section introduces the ltsbase package and gives statistical analysis of
the example datasets in subsections. Finally, the last section presents the remark-
able difference between the ltsbase and previous algorithms in R.

2. Contributions to LTS in the Presence of
Multicollinearity

Multicollinearity is a common problem in many areas, i.e., economical, tech-
nical and medical applications. This problem has been examined in literature
from different points of view like estimation and testing the hypothesis of pa-
rameters, removal and diagnostic tools. Several diagnostic tools such as condition
number, condition indices, variance inflation factors, singular value decomposition,
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etc. have been suggested and used for detection of multicollinearity Belsley (1991),
Heumann, Shalabh, Rao & Toutenburg (2008), Wissmann, Toutenburg & Shalabh
(2007). In this study, we focus exclusively on the Variance Inflation Factor for β̂i
with the following form V IF = 1/(1 − R2

i ) and Condition Number, λmax/λmin,
in order to diagnose the multicollinearity. Here, R2

i is the coefficient of determi-
nation and λmax, λmin refer to the maximum and minimum eigenvalues of the
corresponding matrix, respectively.

When multicollinear datasets have also outliers, researchers are forced to deal
with those problems simultaneously. For this purpose, Kan, Alpu & Yazici (2013)
studied the effectiveness of some robust biased estimators via a simulation study
for different types of outliers. Also they provided a dataset with outliers in y
direction to show the performance of biased estimators based on LTS.

In this paper, Kan Kilinc B. and Alpu O. (2013) introduce a new package
ltsbase, implemented in the R System for statistical computing and available
on http:/CRAN.r.project.org/package=ltsbase. It can be used to perform a
biased estimation based on a robust method (Kan Kilinc B. and Alpu O. 2013).

Differently from Kan et al. (2013), we expand on some robust biased estimators
for the datasets with outliers in x direction and outliers both in x and y direction
by means of the ltsbase package. Hence this study will help close the consid-
erable gap in the estimation of the Ridge and Liu parameters in the presence of
multicolinearity and outliers by using the LTS method.

3. Robust Biased Estimators

In standard linear regression, consider the model

yi = β0 + β1x1i + . . .+ βpxpi + εi, i = 1, . . . , n (2)

where β=(β0, β1, . . . , βp)
′ is the unknown parameter vector, X(n×(p+1)) is a fixed

matrix of full rank of observations and εi are iid random variables with mean 0
and variance σ2In. The estimation of the regression coefficients, β̂, is generally
obtained by Ordinary Least Squares (OLS) method. However, large numbers
of regressors in multiple linear regression analysis can cause serious problems in
estimation and prediction.

A serious ill conditioned problem is characterized by the fact that the smallest
eigenvalue of the X

′
X is much smaller than unity. In other words, the matrix X

′
X

has a determinant which is close to zero, which makes it ill conditioned so that the
matrix can not be inverted. Here, the least squares solution is still unbiased but is
plagued by a large variance. Hence thr OLS solution yields a vector β̂ coefficients
which are too large in absolute value (Marquardt & Snee 1975).

For any design matrix X, the quantity X
′
X + kI is always invertible where I

is a (p+ 1)× (p+ 1) identity matrix. Thus, Hoerl & Kennard (1970) suggested a
ridge regression estimator, β̂Ridge = (X

′
X+kI)−1X

′
y where k ≥ 0, and Liu (1993)

proposed another biased estimator, β̂Liu = (X
′
X+ I)−1(X

′
X+ dI)β̂, 0 < d < 1.
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The Ridge and Liu regressions penalize the size of the regression coefficients. Here,
both k and d are tuning (biasing) parameters which control the strength of the
penalty term.

In our study, the biasing parameters klts, dlts and the MSE values of two
robust biased estimators β̂ltsRidge, β̂ltsLiu are examined when outliers and multi-
collinearity exist in the dataset. klts and dlts are considered as the robust choice is
of the biasing parameters k and d. In application we have different robust biased
estimations since the robust biasing parameters change by the user increment.
Thus, we might choose the biasing parameters klts and dlts which minimize MSE
value. To illustrate the performance of the robust biased estimators, the MSE
criterion is used. Here, MSE(β̂•)=trCov(β̂•)+bias(β̂•)

′
bias(β̂•) where tr denotes

the trace and β̂• present is the robust biased estimators (Kan et al. 2013).

4. The ltsbase Package: Features and Functions

The R System has many packages and functions- e.g., MASS:lqs() (Venables
& Ripley 2002), robustbase:ltsReg() (Rousseeuw & van Driessen 1999), and
sparseLTSEigen:RcppEigen() (Alfons, A. 2013), to perform least trimmed squares
regression and related statistical methods. The ltsbase package has a number
of features not available in current R packages and fills the existing gap in the R
statistical environment which is the convenient comparison for biased estimations
based on the LTS method.

The ltsbase package includes centering, scaling, singular value decomposition
(svd) and the least trimmed squares method. Hence centering or scaling the data is
not required by the user. On the other hand, when computing β̂Ridge numerically,
the matrix inversion is avoided because of inverting X

′
X can be computationally

expensive. Rather, the svd is utilized. So that, the regression coefficients of each
model are estimated. The package ltsbase has three functions to serve three
purposes. First, it is the minimum MSE (Mean Squared Error) value which is
extracted by calling ltsbase() function. Then the fitted values and the residuals
of the corresponding model might be extracted as well. To return these values, one
should use the ltsbaseDefault() function. Finally, the biasing parameters and
regression coefficients for the corresponding model at minimum MSE value might
be extracted by using ltsbaseSummary() function. Furthermore, the ltsbase
package was designed especially to create “comparison of MSE” graphics based
on the methods used in the analysis. Hence it allows users to see visual output
without creating each graphic individually.

The ltsbase() function is the main function of the ltsbase package. This
function computes the minimum MSE values for six methods: OLS, Ridge, Ridge
based on LTS, LTS, Liu, and Liu based on LTS for sequences of biasing parame-
ters. It returns a comprehensive output presenting the biasing parameters and the
coefficients for the models at minimum MSE value. Basically, the following code
line executes the main function:

R>ltsbase(xdata,y,print=FALSE,plot=FALSE,alpha=0.50,by=0.001)
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Here, xdata is a data frame including regressors and y is a response variable. The
values of MSE and the comparison of MSE values of the four methods (Ridge,
Ridge based on LTS, Liu, Liu based on LTS) in lines (with different colours and
line type) on a plot obtained by setting plot and print parameters TRUE. The
alpha in the function is the percentage (roughly) of squared residuals whose sum
will be minimized by the LTS regression method. It requires a value between 0.5
and 1. The last argument by is a number giving the increment of the sequence
where the biasing parameters are defined.

In the following two sections the usage of ltsbase package is illustrated by
two examples presenting two different cases of outliers .

4.1. Case Study 1: Outliers in x Direction

An artificial dataset hbk involving outliers with 75 observations for three re-
gressors x1, x2, x3 and one response variable y was created by Hawkins, Bradu &
Kass (1984), the raw data (hereafter refered to as the hbk data) being found in
Appendix A.1. Since hbk is a well-known data set, the analysis of variance and
parameter estimates of OLS will not be shown here. However, some diagnostic
measures for the OLS analysis may be found in Appendix A.2. Of particular in-
terest is the placement of leverage points among the remaining data points. Mason
& Gunst (1985) showed that collinearity can be increased without bound by in-
creasing the leverage of a point (Mason & Gunst 1985). They also showed that a
q-variate leverage point can produce q − 1 independent collinearities (Chatterjee
& Hadi 2006). A closer look at the diagnostics of points are given in Figure 1.

Figure 1: Regression diagnostic plot of hbk data.
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In Figure 1, multiple high leverage points which may cause the multicollinearity
are observed. The figure identifies all 14 leverage points. The four good leverage
points of them have small standardized LTS residuals but a large robust distance,
and the 10 bad leverage points (1, 2, . . . , 10 numbered) have large standardized
LTS residuals and a large robust distance (see Appendix A.3).

4.1.1. ltsbase Function

Let y denote the vector of response values and xdata the regressors. Also
regressors are assumed to be given in a data frame (not in a matrix or in an
array). To fit Ridge and Liu regression models based on LTS, we call the ltsbase
function.

R> model1=ltsbase(xdata,y,print=FALSE,plot=TRUE,alpha=0.875,by=0.001)

Here, when print is TRUE the user can call all the values calculated in the
analysis. Also, when plot is TRUE, the function produces the lines of all MSE
values versus biasing parameters. The alpha is the percentage (roughly) of squared
residuals whose sum will be minimized by 0.875 and by is the increment of the
sequence, by default 0.001. The LTS regression method minimizes the sum of
the h smallest squared residuals, where h > n/2, i.e. at least half the number of
observations must be used. The default value of h (when alpha=1/2) is roughly
n/2, where n is the total number of observations, but by setting alpha, the user
may choose higher values up to n.

As reported in the previous section, hbk data is used to highlight the specific
features of ltsbase and how to interpret the results. The aim of this analysis is
to find the MSE value among some methods such as OLS, Ridge, Ridge based on
LTS, LTS, Liu and Liu based on LTS. After running the code, the outputs are
given in the following:

R> model1
$list.mse

OLS Ridge LTS.Ridge LTS Liu LTS.Liu
1 0.3911056 0.345 0.068 0.1659851 0.3324078 0.067
$list.bias.par

ridge.k lts.k liu.d lts.liu.d
1 0.003 0.008 0.845 0.673
$list.coef.all

OLS LTS Ridge Liu LTS.Ridge LTS.Liu
X1 0.2501 0.1634 -0.4355 -0.4187 -0.6774 -0.4413
X2 -0.7892 0.2507 0.3509 0.3152 -0.1558 -0.0934
X3 1.2885 0.7591 1.2268 1.2048 0.2924 0.3010

The returned output contains three elements: (1) the smallest MSE values
obtained by each method, (2) biasing parameters differ in sequence of [0,1], and
(3) the coefficients of the corresponding regression model at minimum MSE.

Here, the minimum MSE value is obtained as 0.067 by Liu based on the LTS
method. The corresponding biasing parameter dlts at the minimum MSE value
is as 0.673. Hence, the coefficient vector of the regression model is estimated as
β̂? = (−0.4413,−0.0933, 0.3010)′.
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Furthermore, ltsbase produces the MSE values for Ridge, Ridge based on
LTS, Liu and Liu based on LTS methods against the different biasing parameters
(k,klts,d,dlts)=seq(0,1,0.001) when print=TRUE and plots a graph when
plot=TRUE. (See Figure 2).
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Figure 2: Biasing parameters versus MSE values for four methods for outliers in x
direction.

The colors and line types of curves represent the values of the biasing param-
eters versus MSE values. For instance, the black-line curve is obtained by ridge
regression and the blue-dotted curve is from Liu estimation (See top right legend
of the Figure). As the plot argument in ltsbase function supports a layout of
MSE values versus biasing parameters for four methods, one can easily provide
the immediate visual information about the MSE values. Note that each line is
also plotted in different types for print color as gray.

As can be readily seen in Figure 2, the model is identical to the OLS regression
model at (k,klts,d,dlts)=(0,0,0,0). The aim of the plotting is actually an
exploratory tool to show the sensitivity of the MSE values to the methods being
used here. On the figure, each method is traced along its biasing parameter scale
beginning at 0 and ending at 1. As k increases, the MSE values assosciated with
Ridge regression are increasing and then almost horizontal after a certain point of
k. The same pattern is followed by Ridge regression based on LTS. However, the
MSE values obtained by the LTS method are much smaller than those obtained
by Ridge regression as the biasing parameter klts increases. On the other hand,
following the blue-dotted curve which is produced by the Liu estimation, the MSE
values rises at low levels of d and falls steeply as the biasing parameter d increases.
Observing the MSE values of Liu based on the LTS method as dlts increases, note
how the MSE value decreases slightly and then levels out.
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4.1.2. ltsbaseSummary Function

A summary of the analysis produced by the ltsbaseSummary function showing
the biasing parameter at minimum MSE values. The following code runs the
summary of the biased LTS method.

R> ltsbaseSummary(model1)
best mse at lts.liu.d
1 0.67241
corresponding coefficients
[1] -0.44124229 -0.09328311 0.30078153
best mse
[1] 0.067

Here we have three results: (1) the best biasing parameter which gives the
minimum MSE among the others, (2) the regression coefficients of the correspond-
ing regression model at the best biasing parameter, (3) the minimum MSE value.
It is also possible to see in Figure 2 that the MSE value begins to stabilize at
around dlts = 0.65 and shows a slight downward trend at dlts = 0.67 which is
the minimum among the other methods. It also extracts the coefficients of the
corresponding model.

4.1.3. ltsbaseDefault Function

The fitted values and residuals of the corresponding model are also extracted
as one of the returned outputs by ltsbase package (see Appendix A.4).

As seen, there are substantial differences among available packages related to
LTS in R and the ltsbase is currently the only one to offer together: (1) lists
of MSE values, biasing parameters and model coefficients, (2) MSE values versus
biasing parameters (available if plot is set to TRUE), (3) fitted values and residuals.

4.2. Case Study 2: Outliers in Both x and y Direction

Maguna, Nunez, Okulik & Castro (2003) examined the toxicity of carboxylic
acids on the basis of several molecular descriptors in their research. They reported
the results of a QSPR study and obtained quite reasonable estimates compared to
the previous theoretical calculations. The aim of their experiment was to predict
the toxicity of carboxylic acids on the basis of several molecular descriptors.

One of the concerns is how well our method performs when the data have
outliers in both directions. We explore this on a data frame with 38 observations
on the 10 variables used in application and the description of the data set is given
in Table 1. In the table, the toxicity is defined as the response variable and the
remaining variables are considered as regressors.

In Figure 3, the placements of outliers are presented and the points are identi-
fied by numbers. It is seen that while the observations 23, 28, 32, 34, 35, 36, and
37 are identified as outliers in the x direction, the observation 11, 12, and 13 are
identified as outliers in the y direction. The remaining data are all well-behaved
or good leverage points.
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Table 1: Description of the toxicity data.

Abrreviations Variables
toxicity aquatic toxicity, defined as log(IGC50(−1)); typically the response
logKow the partition coefficient
pKa the dissociation constant
ELUMO energy of the lowest unoccupied molecular orbital
Ecarb electrotopological state of the carboxylic group
Emet electrotopological state of the methyl group
RM molar refractivity
IR refraction index
Ts surface tension
P polarizability

Figure 3: Regression diagnostic plot of toxicity data.

Secondly, we use on the data to determine whether there is multicollinear-
ity among regressors or not. The procedure has been used for hbk data and is
repeated for toxicity data in terms of multicollinearity and outliers. To detect
multicollinearity for toxicity data, the same measures given in Appendix A.2 are
used and interpreted in Appendix B.2. Considering all indicators together, there
is severe multicollinearity, therefore it can be said that this is fairly effective on
the results.

Due to the presence of multicollinearity and outliers in the toxicity data, nei-
ther MASS::lqs nor robustbase::ltsReg in R are suitable to cope with those
problems. Currently, the ltsbase package deals with both multicollinearity and
outliers simultaneously and offers a wide array of features including a graphical
comparison for the analysis.

4.2.1. ltsbase Function

This subsection provides illustrations of code ltsbase for toxicity data and re-
turns the following components of the biased estimation based on the LTS method:
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R > model2=ltsbase(xdata,y,plot=TRUE)
$list.mse

OLS Ridge LTS.Ridge LTS Liu LTS.Liu
1 0.8828511 0.561 0.415 0.8883284 0.5370347 0.398
$list.bias.par

ridge.k lts.k liu.d lts.liu.d
1 0.011 0.005 0.593 0.712
$list.coef.all

OLS LTS Ridge Liu LTS.Ridge LTS.Liu
logKow 1.0470 0.5141 -0.2834 -0.2624 -0.2613 -0.2657
pKa 0.0657 0.1348 0.1849 0.1640 0.0851 0.1498
ELUMO -0.4179 -0.3367 -0.5446 -0.4417 -0.4331 -0.4336
Ecarb -0.0449 0.1431 0.2965 0.2242 0.3296 0.2605
Emet 0.0954 0.6359 0.1456 0.1030 -0.0194 0.0221
RM -0.4417 -0.8100 0.1852 0.1283 0.0191 0.0421
IR 0.3364 0.3499 0.0429 0.0334 0.6364 0.4978
Ts -0.3351 -0.3873 -0.5398 -0.4415 -0.2238 -0.2014
P 0.1353 0.1457 -0.4058 -0.4706 -0.6176 -0.6392

The first component returns the smallest MSE values which are estimated for
all methods among the sequence of interval [0,1] of biasing parameters. It can be
seen that the smallest MSE values are obtained by biased estimations based on
LTS. Next component presents the list of the biasing parameters obtained by each
method. Finally, the list of the regression coefficients for the corresponding model
are given in a data frame.

In Figure 4, MSE values versus different biasing parameters for four methods
obtained by ltsbase are presented when there are outliers in both x and y direc-
tions. In the figure, it is possible to see approximately at which method the MSE
value is at its smallest.

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Ridge (k),LTS Ridge (klts), Liu (d),LTS Liu (dlts)

M
S

E

k
klts
d
dlts

Figure 4: MSE values for four methods versus biasing parameters for outliers in both
x and y direction.
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As seen in Figure 4, the minimum MSE value is obtained by the LTS Liu
method. Afterwards the user may have the exact calculation results by calling the
ltsbaseSummary function.

4.2.2. ltsbaseSummary Function

The ltsbaseSummary function is designed to summarize the whole analysis
and gives (1) the biasing parameter at minimum MSE value, (2) the regression
coefficients of the model at minimum MSE, and (3) the value of minimum MSE,
respectively.

R > ltsbaseSummary(model2)
biasing parameter at best mse is lts.liu.d
1 0.712
corresponding coefficients
[1] -0.2657 0.1498 -0.4337 0.2606 0.0221 0.0421 0.4983

-0.2016 -0.6399
best mse
[1] 0.398

From the output, among the whole biasing parameters, the one which gives
the minimum MSE is obtained by LTS Liu as 0.712.

4.2.3. ltsbaseDefault Function

The fitted values and residuals of the model which is summarized by
ltsbaseSummary function are given in Appendix B.4.

5. Conclusions

The package ltsbase fills the existing gap in the R statistical environment
and provides a convenient comparison for biased estimations based on the LTS
method. The package has four important features both for users and package
developers that are not available in at least some of the alternatives: MASS::lqs
(Venables & Ripley 2002) and robustbase:ltsReg (Rousseeuw, P.J. and Croux,
C. and Todorov, C. and Ruckstuhl, A. and Salibian-Barrera, M. and Verbeker, T.
and Koller, M. and Maechler, M. 2012). First, the package provides the estimation
of Ridge and Liu parameters based on the LTS method for the datasets in which
both multicollinearity and outliers exist at the same time. Second, the estimates
of biasing parameters at minimum MSEs are automatically calculated. Third, the
user can easily obtain the MSE values of each model for comparison. Fourth, a
graph of MSE values versus the biasing parameters for four biased methods are
plotted as well.

In this study, all results are obtained using R 3.0.1 (R Development Core
Team 2013) with the packages MASS (version 7.3-26), robustbase (version 0.9-8)
and ltsbase (version 1.0.1).
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Moreover, we introduce not only a program/package which analyses some of
the biased techniques based on the LTS method but also a comparison of analysis
using well-known datasets which are in the literature when outliers are existing in
different directions is thought to be given and interpreted. Hence the analyst will
practice with those datasets and hopefully ltsbase will gain confidence.[
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]
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Appendix A. Appendices

These appendices consist of codes required to run the examples.

Appendix A.1. Illustrations of hbk Data

This section provides raw data, multicollinearity and outlier detection and code
to show particular features of ltsbaseDefault function.

Appendix A.2. Raw Data

Here, we illustrate how to load hbk data and give develop raw data to some
opinion about it:

R > library(robustbase)
R > data(hbk)
R > head(hbk)

X1 X2 X3 Y
1 10.1 19.6 28.3 9.7
2 9.5 20.5 28.9 10.1
3 10.7 20.2 31.0 10.3
4 9.9 21.5 31.7 9.5
5 10.3 21.1 31.1 10.0
6 10.8 20.4 29.2 10.0

Then data are set up as:

R > y=hbk[,4]
R > xdata=data.frame(hbk[,1:3])

Appendix A.3. Detecting Multicollinearity

Detecting multicollinearity via VIFs:
For diagnosing the multicollinearity, the Variance Inflation Factors (VIF) can

be used. These measures are based on the fact that a centered and scaled design
matrix is the correlation matrix of regressors. The intercept term is then excluded
while using this diagnostic. The homoscedastic variance of the estimate of jth
regression coefficient is then a function of multiple correlation from the regression
of the jth column on all other columns of the design matrix. The term around the
multiple correlation is given as the variance inflation factor of the jth regression
coefficient. The following code runs the VIF calculation using the R package car
(Fox & Weisberg 2011).

R > library(car)
R > vif(lm(y~., data=hbk[,-4]))

X1 X2 X3
13.43200 23.85346 33.43249
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As seen, VIF’s are greater than 10 which means there is a multicollinearity
problem.

Detecting multicollinearity via Condition Number:
The degree of multicollinearity can also be calculated using a Condition Num-

ber (CN) that is a ratio of the maximum eigenvalue divided by the minimum
eigenvalue (λmax/λmin). As a rule of thumb, if the CN k is between 100 and 1000
there is moderate multicollinearity and if it exceeds 1000 there is severe multi-
collinearity.

R > xdata=hbk[,1:3]
R > eigen(t(xdata)%*%xdata)
[1] 22982.6676 155.7312 114.1612

Here, CN is calculated as 201.316 which indicates there is moderate multicollinear-
ity.

Appendix A.4. Detecting Outliers via Plotting

The following code from library robustbase is used to detect outliers visually.

R> plot(ltsReg(xdata,y,intercept=TRUE,method="lts"),which=c("rdiag"))

The Figure 1 in Section 4 shows outliers in x direction.

Appendix A.5. Fitted Values and Residuals

The following code runs the ltsbaseDefault function given in Section 4.1.3.
The function provides two structures: (1) the fitted values, (2) residuals. They
are obtained for each method and given in separate columns to compare easily.

R > ltsbaseDefault(xdata,y,alpha=0.875,by=0.001)
$fitted.val

OLS LTS Ridge Liu LTS.Ridge LTS.Liu
[1,] 23.5237 28.0458 37.1980 36.0450 -1.6199 2.2311
[2,] 23.4365 28.6288 38.5111 37.3029 -1.1782 2.5924

...
[74,] 0.3255 1.7660 2.7348 2.6212 0.1251 0.2762
[75,] 3.1095 2.1230 3.1995 3.1329 0.4947 0.6129
$res

OLS LTS Ridge Liu LTS.Ridge LTS.Liu
[1,] -13.8237 -18.3458 -27.4980 -26.3450 11.3199 7.4689
[2,] -13.3365 -18.5288 -28.4111 -27.2029 11.2782 7.5076

...
[74,] -1.2255 -2.6660 -3.6348 -3.5212 -1.0251 -1.1762
[75,] -2.9095 -1.9230 -2.9995 -2.9329 -0.2947 -0.4129

Appendix B. Illustrations of toxicity Data

This section provides tabulated data, multicollinearity detection and code to
show particular features of ltsbaseDefault function.
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Appendix B.1. Tabulated Data

Table 1 describes the response variable and several molecular descriptors with
38 observations (Maguna et al. 2003).

A closer look at the toxicity data is briefly given by head() :

R > head(toxicity)
toxicity logKow pKa ELUMO Ecarb Emet RM IR Ts P

1 -0.15 1.68 1.00 4.81 17.8635 1.4838 31.36 1.425 31.3 12.43
2 -0.33 0.94 0.98 4.68 16.9491 0.0000 22.10 1.408 30.4 8.76
3 -0.34 1.16 0.96 4.86 17.1806 0.2778 26.73 1.418 30.9 10.59
4 0.03 2.75 1.00 4.83 18.4794 3.5836 40.63 1.435 31.8 16.10
5 -0.57 0.79 0.97 4.80 16.8022 1.0232 22.14 1.411 32.5 8.77

Appendix B.2. Detecting Multicollinearity

Detecting multicollinearity via VIFs:
Some authors use the VIF as an indicator of multicollinearity. Hence it is

commonly agreed that if the VIF of a variable exceeds 10, which will happen if
R2
j exceeds 0.90, that variable is said to be highly collinear (Gujarati 2004). The

following code runs the VIFs for toxicity data:

R > vif(lm(toxicity~.,data=toxicity))
logKow pKa ELUMO Ecarb Emet RM IR Ts P

36.949 7.452 2.577 15.095 13.550 52.067 15.773 14.059 9.093

Here the maximum VIF is 52.067. So it is clear that there is strong evidence of
multicollinearity in the data.

Detecting multicollinearity via Condition Number:
The following code runs the eigenvalue analysis for CN:

R > xdata=toxicity[,-1]
R > eigen(t(xdata)%*%xdata)
$values
[1] 1.180085e+05 5.589917e+03 1.592269e+03 2.764111e+02 5.570724e+01
[6] 1.203306e+01 6.371221e+00 9.131830e-01 8.541290e-03

Here, CN is obtained as 13883353 which is fairly large. This that indicates
there is strong multicollinearity in the data.

Appendix B.3. Detecting Outliers via Plotting

The same code given in Appendix A.3 runs the code for detecting outliers via
plotting.

Appendix B.4. Fitted Values and Residuals

The following code runs the example to get fitted values and residuals.
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R > ltsbaseDefault(xdata,y,alpha=0.5)
$fitted.val

OLS LTS Ridge Liu LTS.Ridge LTS.Liu
[1,] -23.02504 -32.33508 -23.75030 -23.75030 -14.225909 -52.170047
[2,] -19.95794 -26.44037 -22.23670 -22.23670 -10.920423 -45.989539

...
[37,] -29.09435 -42.72803 -14.29480 -14.29480 -5.414905 -14.730020
[38,] -21.58501 -26.37637 -17.82639 -17.82639 -5.029148 -27.935130
$res

OLS LTS Ridge Liu LTS.Ridge LTS.Liu
[1,] 22.87504 32.18508 23.60030 23.60030 14.075909 52.020047
[2,] 19.62794 26.11037 21.90670 21.90670 10.590423 45.659539

...
[37,] 29.69435 43.32803 14.89480 14.89480 6.014905 15.330020
[38,] 20.94501 25.73637 17.18639 17.18639 4.389148 27.295130
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