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Abstract

Accurate estimation of parameters of a probability distribution is of im-
mense importance in statistics. Biased and imprecise estimation of param-
eters can lead to erroneous results. Our focus is to estimate the parameter
of Power function distribution accurately because this density is now widely
used for modelling various types of data. In this study, L-moments, TL-
moments, LL-moments and LH-moments of Power function distribution are
derived. In addition, the coefficient of variation, skewness and kurtosis are
obtained by method of moments, L-moments and TL-moments. Parame-
ters of the density are estimated using linear moments and compared with
method of moments and MLE on the basis of bias, root mean square error
and coefficients through simulation study. L-moments proved to be superior
for the parameter estimation and this conclusion is equally true for different
parametric values and sample size.
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Resumen

La distribución de función de potencias es ampliamente usada. Dada
su importancia, es necesario estimar sus parámetros de manera precisa. En
este artículo, los momentos TL de la distribución de función de potencias
son derivados así como sus casos especiales tales como los momentos L, LL
y LH. Los coeficientes de variación, sesgo y curtosis son obtenidos a partir
de los momentos L y TL. Los parámetros desconocidos son estimados y los
momentos lineales son comparados con el método de momentos y estimadores
máximo verosímiles en la base del sesgo, raíz del error cuadrático medio
a través de un estudio de simulación. Los momentos L permiten obtener
estimaciones más precisas y esta conclusión es verdad para diferentes valores
paramétricos y tamaño de muestra.

Palabras clave: distribución de función de potencias, estadísticas de orden,
estimación de parámetros, momentos, simulación de Monte Carlo.

1. Introduction

The Power Function Distribution (PFD) is a flexible distribution as it is able to
model the various types of data. It is usually used for the reliability analysis, life
time and income distribution data. Meniconi & Barry (1996) compare the PFD
with Exponential, Lognormal and Weibull distribution to measure the reliability
of electrical components. They conclude that the PFD is the best distribution to
model such types of data. Similarly many probability models are also used to assess
the pattern of the income distribution but these models are mathematically more
complex to handle. The PFD on the other hand is quite handy in this regard. Ah-
sanullah & Kabir (1974), Meniconi & Barry (1996), Ali, Woo & Nadarajah (2005),
Chang (2007), Sinha, Singh, Singh & Singh (2008) and Tavangar (2011) define the
characteristics of the PFD. Saran & Pandey (2004) estimate the parameters of
PFD and they also characterize this distribution. Rahman, Roy & Baizid (2012)
applied the Bayesian estimation method to estimate the parameters of PFD.

TL-moments are frequently used for modelling a variety of data set partic-
ularly in hydrologic research and especially to model the flood frequency data.
L-moments derived by Hosking (1990) and TL-moments, LL-moments and LH-
moments introduced by Elamir & Seheult (2003), Bayazit & Onoz (2002) and
Wang (1997) respectively. LL-moments have been used in hydrology for the distri-
bution of low flows and LH-moments for the distribution of peak flood discharges.
Recently Shahzad & Asghar (2013), Shabri, Ahmad & Zakaria (2009), Abdul-
Moniem (2009), Abdul-Moniem & Selim (2009), Asquith (2007), Abdul-Moniem
(2007) and Karvanen (2006) are those who had worked on these moments. Lin-
ear moments of PFD are not discussed before in the literature according to our
knowledge. We have derived these moments and compared their performance with
traditional methods.

The rest of the paper is organised as follows. In Section 2 have discuss the
method of moments (MM), L-moments (LM), Trimmed L- moments (TLM), LL-
moments (LLM) and LH-moments (LHM). Section 3 is about PFD. The first four
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moments by LM, TLM, LLM and LHM of the PFD are derived in Section 4.
In Section 5, the expression of coefficient of variation, coefficient of skewness and
coefficient of kurtosis by MM, LM and TLM are derived. In Section 6, Monte Carlo
simulation study is carried out to estimate the parameter of PFD by MM, LM,
TLM and Maximum likelihood estimation (MLE). To find out the most suitable
method of estimation we evaluate all the above methods on the basis of bias,
RMSEs, coefficient of variation, coefficient of skewness and coefficient of kurtosis.
Finally this study is concluded in Section 7.

2. Generalized TL-Moments

Let Y1, Y2, . . . , Yn. be a random sample of size n having density function f(y)
and further let Y(1:n), Y(2:n), . . . , Y(n:n) denote the order statistics. Elamir & Se-
heult (2003) defined the rth generalized TLM with t1 smallest and t2 largest trim-
ming as follows

L(t1,t2)
r =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Yr−k+t1:r+t1+t2) , (1)

t1, t2 = 0, 1, 2, . . . ; r = 1, 2 . . . The expression of the expected value of the (r+ t1−
k)th order statistics of the random sample of size (r + t1 + t2) is as

E
(
Yr−k+t1:r+t1+t2

)
=

(r + t1 + t2)!

(r − k + t1 − 1)!(t2 + k)!

∫ 1

0
y(F )r−k+t1−1[1− F (y)]t2+kdF

=
(r + t1 + t2)!

(r − k + t1 − 1)!(t2 + k)!

∫ ∞
−∞

yf(y)[F (y)]r−k+t1−1[1− F (y)]t2+kdy

(2)

Where y(F ) is the quantile function of random variable Y with distribution func-
tion F (y).

The generalized TLM ratio such as coefficient of variation, coefficient of skew-
ness and coefficient of kurtosis computed from the first four generalized TL-
moments. These ratios are defined as τ1 = L

(t1,t2)
2 /L

(t1,t2)
1 , τ3 = L

(t1,t2)
3 /L

(t1,t2)
2

and τ4 = L
(t1,t2)
4 /L

(t1,t2)
2 respectively.

2.1. L-Moments

Hosking (1990) introduced LM and derived these moments for well-known dis-
tributions. He also proved many theoretical advantages of LM over ordinary mo-
ments. LM can be defined for any random variable whose mean exists. This
method is used as a summary statistic, estimation of parameters and hypothesis
testing for probability distributions. LM also provides better identification of the
parent distribution than the conventional moments. Furthermore, LM are less
sensitive in the case of outliers in data (Vogel & Fennessey 1993). The rth LM is
defined by (1), when t1 = t2 = 0.
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Lr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Yr−k:r) , r = 1, 2, 3 . . . (3)

Substituting r = 1 and r = 2 in (3) provides measure of location and dispersion
respectively. The LM ratios are denoted by τLM−1, τLM−3 and τLM−4.

According to Hosking (1990), LM are linear combinations of probability weighted
moments (PWM) and the unbiased sample estimators of the PWMs are defined
by the Hosking & Wallis (1995). The rth sample estimators of the PWMs are as
follows:

br =
1

n

r−1∑
k=0

(j − 1)(j − 2) · · · (j − r)
(n− 1)(n− 2) · · · (n− r)

yj:n

Using the above PWMs sample estimators one can find the sample LM(lr) esti-
mators. The first four sample LM estimators are defined as l1 = b0, l2 = 2b1 − b0,
l3 = 6b2 − 6b1 + b0 and l4 = 20b3 − 30b2 + 12b1 + b0. Sample estimates for LM
ratios can be computed as ttm−1 = l2/l1, ttm−3 = l3/l2 and ttm−4 = l4/l2.

2.2. TL-Moments

Elamir & Seheult (2003) introduced TLM which are more robust than LM.
In the TLM a predetermined percentage of data is trimmed by assigning zero
weight before estimating the moments. These moments are possible even if the
mean of the distribution does not exist. Elamir & Seheult (2003) derived TLM
for Cauchy distribution, as its mean does not exist. These moments are also
used to obtain the most fitted distribution and to estimate the parameters of
probability distributions. Elamir & Seheult (2003) defined rth population TLM,
when t1 = t2 = t in (1)

L(t)
r =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Yr−k+t:r+2t) , r = 1, 2, 3 . . . (4)

The rth sample TLM is as

l
(t)
r =

1

r

n−1∑
j=t+1


r−1∑
k=0

(
r − 1

k

)(
j − 1

r + t− k − 1

)(
n− j
t+ k

)

(−1)−k

(
n

r + 2t

) E (Yr−k+t:r+2t)

Yj:n. (5)

2.3. LL-Moments

LLM are the linear functions of the expectations of the lowest order statistic
(El-Magd & Noura 2010) and introduced by Bayazit & Onoz (2002). These mo-
ments assign more weight to the smaller observations and use only some portion
of data to model the lower part instead of complete data. Therefore, the estimates
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from these moments provide a better fit of the lower part of the data. For the
derivation of rth LLM, Bayazit & Onoz (2002) proposed the following relationship
that is also obtained by (1) when t1 = 0 and t2 = m

L
(m)
Lr =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Yr−k:r+m) , r = 1, 2, 3 . . . (6)

LLM can be estimated for various orders and the preferable order is from one to
four (m = 1, 2, 3, 4).

2.4. LH-Moments

LHM are due to the Wang (1997), these moments are based on linear com-
binations of higher-order statistics. These moments are the modified versions of
L-moments and defined only for the upper part of the data. So, LHM are rec-
ommended for defining the characteristics of the larger observations. The general
expression of rth LHM given by Wang (1997) is as follows:

L
(s)
Hr =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Yr+s−k:r+s) , r = 1, 2, 3 . . . (7)

Equation (7) is obtained by replacing t1 = s and t2 = 0 in (1). Wang (1997)
suggested the order of the s up to only four. All the coefficients of different orders
are expressed in a usual way.

3. Power Function Distribution

PFD is one of the members of the Beta distributions family, commonly used to
model the income distribution. The probability density function of PFD type-II
(PFD-II) with shape parameter θ and scale parameter β is given as below:

f(y) = θy(θ−1)/βθ, 0 ≤ y ≤ β (8)

If the scale parameter takes the value 1.0 in (8) then PFD-II becomes PFD
type-I (PFD-I) with only shape parameter as

f(y) = θy(θ−1), 0 ≤ y ≤ 1 (9)

The cumulative distribution function, mean and rth moment about origin are
yθ/βθ, θβ/(θ+1) and θβr/(θ+r) for PFD-II yθ, θ/(θ+1) and θ/(θ+r) for PFD-I
respectively.

4. Linear Moments of PFD

In this section, diversity of linear moments (LM, TLM, LLM and LHM) are
derived for PFD using the general form given in (1). To obtain moments for PFD-I
simply substitute β = 1 in equations of the following sub-section.
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4.1. L-Moments for PFD

Let the continuous random variable Y have a probability density function of
PFD-II and Y1:n ≤ Y2:n ≤ Y3:n ≤ · · ·Yn:n be a sample of n order statistics. The
general expression of LLM is given in (6), and by using it the LLMs for PFD-II
are derived as follows:

E(Yj:n) =
n!θβ

(j − 1)!(n− j)!

n−j∑
k=0

(
n− j
i

)
(−1)i

jθ + iθ + 1
(10)

First four LM of PFD-II are derived using (3) and (10)

L1 =
θβ

(θ + 1)

L2 =
θβ

(θ + 1)(2θ + 1)

L3 =
θ(1− θ)β

(θ + 1)(2θ + 1)(3θ + 1)

L4 =
θ(2θ2 − 3θ + 1)β

(θ + 1)(2θ + 1)(3θ + 1)(4θ + 1)

4.2. TL-Moments for PFD

To derive the first four TLM for PFD-II the expression (4) and (10) are used
and finally obtain the moments as given below

L
(1)
1 =

6θ2β

(2θ + 1)(3θ + 1)

L
(1)
2 =

6θ2β

(2θ + 1)(3θ + 1)(4θ + 1)

L
(1)
3 =

20θ2β(1− θ)
3(2θ + 1)(3θ + 1)(4θ + 1)(5θ + 1)

L
(1)
4 =

30θ2β(2θ2 − 3θ + 1)

4(2θ + 1)(3θ + 1)(4θ + 1)(5θ + 1)(6θ + 1)

4.3. LL-Moments for PFD

LLM are the alternates of LM, it gives more weight to lower values of the data
(Bayazit & Onoz 2002). The general expression of LLM given in (6), using the
PFD-II are found as
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L
(m)
L1 = θβ

{
m∑
i=0

(
m

i

)
(m+ 1) (−1)i

(iθ + θ + 1)

}

L
(m)
L2 = θβ

{
1∑
p=0

m+p∑
i=0

(
1

p

)(
m+ p

i

)
(m+ 2)! (−1)p+i

2 (m+ p)! (2θ − pθ + iθ + 1)

}

L
(m)
L3 = θβ

{
2∑
p=0

m+p∑
i=0

(
2

p

)(
m+ p

i

)
(m+ 3)! (−1)p+i

3 (2− p)! (m+ p)! (3θ − pθ + iθ + 1)

}

L
(m)
L4 = θβ

{
3∑
p=0

m+p∑
i=0

(
3

p

)(
m+ p

i

)
(m+ 4)! (−1)p+i

4 (3− p)! (m+ p)! (4θ − pθ + iθ + 1)

}

4.4. LH-Moments for PFD

According to Wang (1997) the LHM assigns more weight to larger values of
the data. By using (7) the LHM of PFD-II are defined as

L
(s)
H1 =

(s+ 1)θβ

θ(s+ 1) + 1

L
(s)
H2 =

(s+ 2)!θβ

2

 1

(s+ 1)! (θ(s+ 2) + 1)
−

1

s!


1∑

p=0

(
1

p

)
(−1)p

θ (s+ p+ 1) + 1




L
(s)
H3 =

(s+ 3)!θβ

3

[
1

(s+ 2)! (θ(s+ 3) + 1)
−

2

(s+ 1)!


1∑

p=0

(
1

p

)
(−1)p

θ (s+ p+ 2) + 1


+

1

2(s!)


2∑

p=0

(
2

p

)
(−1)p

θ (s+ p+ 1) + 1


]

L
(s)
H4 =

(s+ 4)!θβ

4

[
1

(s+ 3)! (θ(s+ 4) + 1)
−

3

(s+ 2)!


1∑

p=0

(
1

p

)
(−1)p

θ (s+ p+ 3) + 1


+

3

2(s+ 1)!


2∑

p=0

(
2

p

)
(−1)p

θ (s+ p+ 2) + 1

− 1

6(s!)


3∑

p=0

(
3

p

)
(−1)p

θ (s+ p+ 1) + 1


]

5. Coefficients of Power Function Distribution

The coefficient of variation (CV), coefficient of skewness (Sk) and coefficient
of kurtosis (Kr) are considered important characteristics of a data set. Abdul-
Moniem (2012) and Hosking (1990) proved that the sample moments ratios are
the form of the CV, Sk and Kr and are more accurate than the MM coefficients.
These coefficients are derived for PFD using MM, LM and TLM and compiled in
Table 1.
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Table 1: CV, Sk and Kr by MM, LM and TLM of Power Function distribution.
Moments CV Sk Kr

PFD-I

MM
1√

θ(θ + 2)

2(1− θ)
√
θ + 2

(θ + 3)
√
θ

3(2 + θ)(3θ2 − θ + 2

θ(θ + 3)(θ + 4)

LM
1

2θ + 1

1− θ
3θ + 1)

(2θ − 1)(θ − 1)

(3θ + 1)(4θ + 1)

TLM
1

4θ + 1

10(1− θ)
9(3θ + 1))

5(2θ − 1)(θ − 1)

4(5θ + 1)(6θ + 1)

PFD-II

MM
1√

θ(θ + 2)

2(1− θ)
√
θ + 2

(θ + 3)
√
θ

3(2 + θ)(3θ2 − θ + 2

θ(θ + 3)(θ + 4)

LM
1

2θ + 1

1− θ
3θ + 1)

(2θ − 1)(θ − 1)

(3θ + 1)(4θ + 1)

TLM
1

4θ + 1

10(1− θ)
9(3θ + 1))

5(2θ − 1)(θ − 1)

4(5θ + 1)(6θ + 1)

6. Monte Carlo Simulation Study

In this section, a simulation study is carried out to compare the properties of
the MM Estimators, LM Estimators and TLM Estimators for PFD-I and PFD-II
distributions. Our results are similar to those of Hirano & Porter (2003) about
the MLE. As the support of the PFD-II depend on the parameter of interest, so
standard asymptotic distribution theory does not apply it. So far MLE estimates
are compared with the moments estimates only in the case of PFD-I because its
support does not depend on the parameter. This comparison is based on Biases,
Root Mean Square Errors (RMSEs), CV, Sk and Kr. MATLAB-7 software is used
for this analysis.

In simulation experiment different sample sizes n ∈ (10; 25; 50; 100; 250;
500; 1,000; 5,000) for the different values of each parameter θ ∈ (0.5, 1.0, 3.0,
7.0, 10, 15) and β ∈ (1.5, 5.0, 7.0) are considered. The estimates are calculated
from 10,000 repeated samples. LL-moments and LH-moments estimators are not
evaluated numerically because both of these moments do not use the full data.

In Figure 1, the first six sub figures show a pattern of bias in estimated pa-
rameter θ for different methods. Each sub figure is drawn for different values of θ
and sample sizes n = 10, 25, 50, 100. Figure 1, shows that the bias increases as
the value of the parameter increases. When θ = 0.5 maximum bias is 0.06, and
for θ = 1 maximum bias is 0.12. So doubling the parameter value, bias increases
tremendously. The same increasing trends for the remaining higher values of the
parameters are also observed, even when θ = 15 the bias increases up to 9 times.
It is also observed that, as the sample size increases the bias reduces to zero. The
same pattern was observed in the last sub figure in which the sample size is n =
250; 500; 1,000; 5,000. In all the cases for different parameter value and sample
size the MLE estimator produces more biased results as compared to the MM,
LM and TLM estimator. MM and LM estimator are equally good and provide
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more unbiased results than TLM estimator, because these two moments produce
the same estimator and estimates for the parameter.
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Figure 1: Biasness of the MLE, MM, LM and TLM estimator for the parameter θ of
PFD-I with different sample size.

Figure 2 shows that the RMSE increases as increase the parametric value but
decreases with the sample size increment. These results also indicate that the least
preferable method for the parameter estimation is MLE for the PFD-I. The MME
and LME estimator are equally more preferable than the TLM estimator because
they have small RMSEs for all sample sizes from 10 to 5,000.

In Figure 3, the pattern of the Sk and Kr are displayed for PFD-I. The Sk
and Kr for both the LM and TLM are approximately zero and the Kr is as usual
greater than the Sk of the MM.

In the simulation study of PFD-II, the samples of sizes n ∈ (10; 25; 50; 100;
250; 500; 1,000; 5,000) are considered. We have considered all the combinations
of θ ∈ (0.5, 1.0, 3.0, 7.0, 10, 15) and β ∈ (1.5, 5.0, 7.0) to generate the data
and then use all the considered moments to evaluate the best moments for the
parameter estimation. So the analysis is done for all combinations of parametric
value for all the sample sizes and some of these results are presented in Figure
4, while the remaining results almost show the same pattern. It is observed that
when the parameter values and sample sizes are small than only at that time TLM
estimators provide comparatively more biased results, as the first sub figure shows.
For remaining all pairs of parameters bias of LM estimators < TLM estimators
< MM estimators. So LMEs are the most preferable for all sample sizes as they
produce the least biased results.

Figure 5 presents the trend of the RMSEs, skewness and kurtosis of selected
results among all calculated results. RMSEs of the parameter β with all methods
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Figure 2: RMSE of the MLE, MM, LM and TLM estimator for the parameter θ of
PFD-I with different sample size.
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Figure 3: Skewness and kurtosis of the MM, LM and TLM of PFD-I with different
sample size.

are less but LM estimators produce the most minimum value. And for the param-
eter θ MM estimators produce most biased results and LM estimators produce
minimum biased results as compared to all considered moments. The skewness
and kurtosis of MM is greater than LM and TLM as is indicated by the 2nd sub
figure in Figure 5.
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Figure 4: Biasness of the MM, LM and TLM estimators for the parameters (θ, β) of
PFD-II with different sample size.
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Figure 5: RMSE, skewness and kurtosis of the MM, LM and TLM estimators of PFD-II
with different sample size.

7. Conclusion

In this study, expressions of the first four linear moments, CV, Sk and Kr are
derived for PFD (type I and II). Parameters are estimated by MM, LM, TLM
and MLE and following interesting results have been observed from the simulation
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study. The parameter estimates of MM and LM are the same for the PFD-I be-
cause these moments have produced the same estimators. The results of the TLM
estimator are slightly higher than the MM and LM estimator while MLE results
are more biased among all moments. Higher values of parameter produce more
biased results but biasedness gets reduced with higher sample size. The RMSEs
also support the MM and LM estimators as compared to the TLM and MLE esti-
mators. Both the shape and scale parameter of PFD-II are over estimated by the
MM estimators with high RMSEs but as the sample size increased the estimates
become closer to the parameters and bias reduces to zero. The TLM estimator
provides better results than the MM estimator but not as efficient as the LM esti-
mator. Similarly MM and TLM estimators are overestimated for higher values of
parameters in small sample sizes. The estimates are close to the parametric values
by LM even in small sample size. On the basis of RMSEs criteria LM emerges as
the best procedure. The coefficients of skewness and kurtosis are more consistent
for LMEs than MMEs and TLMEs for all considered sample sizes and parameter
values. So keeping in mind all of the above the description method of LM is the
best in all aspects. We suggest its use while estimating the parameter of PFD.
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