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Abstract

This paper considers the problem of estimating the population propor-
tion of a categorical variable using the calibration framework. Different
situations are explored according to the level of auxiliary information avail-
able and the theoretical properties are investigated. A new class of estimator
based upon the proposed calibration estimators is also defined, and the op-
timal estimator in the class, in the sense of minimal variance, is derived.
Finally, an estimator of the population proportion, under new calibration
conditions, is defined. Simulation studies are considered to evaluate the per-
formance of the proposed calibration estimators via the empirical relative
bias and the empirical relative efficiency, and favourable results are achieved.

Key words: Auxiliary Information, Calibration, Estimators, Finite Popu-
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Resumen

El artículo considera el problema de la estimación de la proporción pobla-
cional de una variable categórica usando como marco de trabajo la cali-
bración. Se exploran diferentes situaciones de acuerdo con la información
auxiliar disponible y se investigan las propiedades teóricas.. Una nueva clase
de estimadores basada en los estimadores de calibración propuestos también
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es definida y el estimador óptimo en la clase, en el sentido de varianza mí-
nima, es obtenido. Finalmente, un estimador de la proporción poblacional,
bajo nuevas condiciones de calibración es también propuesto. Estudios de
simulación para evaluar el comportamiento de los estimadores calibrados
propuestos a través del sesgo relativo empírico y de la eficiencia relativa em-
pírica son incluidos, obteniéndose resultados satisfactorios.

Palabras clave: calibración, diseño muestral, estimadores, información au-
xiliar, población finita.

1. Introduction

In the presence of auxiliary information, various approaches may be used to im-
prove the precision of estimators at the estimation stage. The book of Singh (2003)
contains several examples, including ratio, difference or calibration estimators, fol-
lowing the methodology proposed by Deville & Särndal (1992) and Särndal (2007),
or regression estimators, as the papers of Arnab, Shangodoyin & Singh (2010) and
Singh, Singh & Kozak (2008) show. These techniques are generally more efficient
than other methods not using auxiliary information. Usually social surveys are
focused on categorical variables as sex, race, potential voters, etc.

Efficient insertion of available auxiliary information would improve the preci-
sion the estimations for the proportion of a categorical variable of interest. Con-
ceptually, it is difficult to justify using a regression estimator for estimating pro-
portions. Duchesne (2003) considered estimators of a proportion under different
sampling schemes and presented an estimator which used the logistic regression
estimator. The model calibration technique proposed by Wu & Sitter (2001) can
be also used to estimate a proportion by using a logistic regression model. Based
on logistic models, these estimators efficiently facilitate good modeling of survey
data assuming that unit-specific auxiliary data in the population U are available.
In this case it is assumed that the values of auxiliary variables are known for the
entire finite population (referred to as complete auxiliary information) but the
values of main variable are known only if the unit is selected in the sample.

It is very common for population data associated with auxiliary variables to
be obtained from census results, administrative files, etc., and these sources often
provide different parameters for these auxiliary variables. For example, position
measures (mean, median and other moments) are normally provided, but there
is no access to data for each individual. In the present study, it is assumed that
the only datum known is the proportion of individuals presenting one or more
characteristics related to the study variable.

Under this assumption, Rueda, Muñoz, Arcos, Álvarez & Martínez (2011) de-
fined an estimator and various confidence intervals for a proportion using the ratio
method. The results of their simulation studies show that ratio estimators are more
efficient than traditional estimators. Confidence intervals outperform alternative
methods, especially in terms of interval width.
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Calibration techniques were first employed by Deville & Särndal (1992) to
estimate the total population, but this approach is also applicable to the esti-
mation more complex of parameters than the total population. Relevant papers
estimating population variances are Singh (2001), Singh, Horn, Chowdhury & Yu
(1999) and Farrell & Singh (2005). The estimation of finite population distribution
functions is studied in papers by Harms & Duchesne (2006) or Rueda, Martínez,
Martínez & Arcos (2007) and the estimation of quantiles in Rueda, Martínez-
Puertas, Martínez-Puertas & Arcos (2007). In Section 2 we review a proportion
estimator using the calibration technique. Section 3 describes alternative methods
for deriving the calibration estimator for the proposed parameter. In Section 4 we
extend these methods to the multiple case. A simulation study is performed in
Section 5 and our conclusions are reported in Section 7.

2. Calibration Estimators for the Proportion

2.1. Definition of the Calibration Estimator

Assume a sample s with size n from a finite population U = {1, 2, . . . , N}
with size N , selected by a specific sampling design d, with inclusion probabilities
πk and πkl assumed to be strictly positive. Let A be an attribute of study in
the population U , defining Ak = 1 when a unit k of the population U has the
attribute A and Ak = 0 otherwise. The population proportion of attribute A in
the population U is given by:

PA =
1

N

∑
k∈U

Ak. (1)

To estimate (1), the usual design-weighted Horvitz-Thompson estimator is:

P̂AH =
1

N

∑
k∈s

dkAk (2)

where dk = 1/πk.
If we consider an auxiliary attribute B in which the value Bk is known for every

unit k in the sample s and PB is also known, the above estimator cannot incor-
porate the information provided by the attribute B, in estimating the population
proportion of A. One way of incorporating auxiliary information in the parameter
estimation is via replacing the weights dk by new weights ωk, using calibration
techniques.

Calibration is a highly desirable property for survey weights, as Särndal (2007)
argues, for the following reasons:

• it provides a systematic way of taking auxiliary information into account;

• it is a means of obtaining consistent estimates, with known aggregates;
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• it is used by statistical agencies for estimating different finite population
parameters. Several national statistical agencies have developed software
designed to compute calibration weights based on auxiliary information avail-
able in population registers and other sources. Such agencies include CLAN
(Statistics Sweden) and BASCULA (Central Bureau of Statistics, The Nether-
lands).

Following Deville & Särndal (1992) to obtain a calibration estimator for the
attribute A based on the attribute B, we calculate the weights ωk minimizing the
chi-square distance

χ2 =
∑
k∈s

(ωk − dk)2

dkqk
(3)

subject to the condition

PB =
1

N

∑
k∈U

Bk =
1

N

∑
k∈s

ωkBk (4)

where qk are known positive constants unrelated to dk and 0 < PB < 1.

By minimizing (3) under (4), the new weights ωk are given by:

ωk = dk +
λdkqkBk

N
(5)

where λ is the following Lagrange multiplier

λ =
N2(PB − P̂BH)∑
k∈s

dkqkBk

and P̂BH is the usual Horvitz-Thompson estimator for the attribute B.

With the calibration weights (5), assuming
∑
k∈s

dkqkBk 6= 0, the resulting esti-

mator is:

P̂AW =
1

N

∑
k∈s

ωkAk = P̂AH +
(PB − P̂BH)∑
k∈s

dkqkBk
·
∑
k∈s

dkqkBkAk (6)

By (4), when the estimator is applied to estimate the population proportion of B,
it coincides with PB .

2.2. Properties of the Calibration Estimator

Following Deville & Särndal (1992), it can be shown that the estimator P̂AW is
an asymptotically unbiased estimator for PA and its asymptotic variance is given
by

AV (P̂AW ) =
1

N2

∑
k∈U

∑
l∈U

∆kl(dkEk)(dlEl) (7)
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where ∆kl = πkl − πkπl; Ek = Ak −D ·Bk and D =

∑
k∈U

qkBkAk∑
k∈U

qkBk

An estimator for this variance is

V̂ (P̂AW ) =
∑
k∈U

∑
l∈U

∆kl

πkl
(dkek)(dlel) (8)

with ek = Ak −Bk · D̂ and D̂ =

∑
k∈s

dkqkBkAk∑
k∈s

dkqkBk

Example 1. Under SRSWOR and qk = 1 for all k ∈ U the estimator P̂AW is:

P̂AW = p̂A + (PB − p̂B) · p̂AB
p̂B

where

p̂A =
1

n

∑
k∈s

Ak; p̂B =
1

n

∑
k∈s

Bk and p̂AB =
1

n

∑
k∈s

AkBk

and the asymptotic variance is

AV (P̂AW ) = V (P̂AVW ) = V (p̂A) +D2V (p̂B)− 2DCov(p̂A, p̂B)

=
(1− f)

n

N

N − 1

[
PAQA +

(
PAB
PB

)2

× PBQB − 2

(
PAB
PB

)
(PAB − PAPB)

] (9)

where QA = 1−PA; QB = 1−PB , PAB =
1

N

∑
k∈U

AkBk and f =
n

N
. This variance

can be estimated by

V̂ (P̂AW ) =
1− f
n− 1

[
p̂Aq̂A +

(
p̂AB
p̂B

)2

· p̂B q̂B − 2

(
p̂AB
p̂B

)
(p̂AB − p̂Ap̂B)

]
(10)

with q̂A =
1

n

∑
k∈s

(1−Ak) and q̂B =
1

n

∑
k∈s

(1−Bk)

3. Alternative Calibration Estimators

The usual estimator under SRSWOR, p̂A has the following shift invariance
property

p̂A = 1− q̂A (11)
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Hence p̂A has the same performance in the estimation of PA as the performance
of q̂A in the estimation of QA. In general, this property is not satisfied by P̂AW .
It is easy to see that this property is fulfilled if

1 =
1

N

∑
k∈s

ωk (12)

Thus, we have two ways of obtaining an estimator with the above property:

(i) By considering a calibration estimator Q̂AW for QA based on QB , and deter-
mining when the estimator P̂AW has a smaller variance than the estimator
Q̂AW in order to define a new estimator based on these two.

(ii) By considering a calibration estimator for PA based on PB and QB because
if we derive a calibration estimator that provides perfect estimates for PB
and QB , then:

1 = PB +QB =
1

N

∑
k∈s

ωkBk +
1

N

∑
k∈s

ωk(1−Bk) =
1

N

∑
k∈s

ωk

3.1. An Estimator Based on the Complementary: The P̂AT
Estimator

The first alternative is developed only under SRSWOR, minimizing (3) subject
to

QB = 1− PB =
1

N

∑
k∈U

ωk(1−Bk) (13)

The resulting estimator, assuming q̂B 6= 0, can be expressed by

Q̂AW = q̂A + (QB − q̂B) · q̂AB
q̂B

(14)

with
q̂AB =

1

n

∑
k∈s

(1−Bk)(1−Ak)

In the same way as with the estimator P̂AW in Example 1, the asymptotic variance
of Q̂AW is given by:

AV (Q̂AW ) =
(1− f)

n

N

N − 1

[
PAQA +

(
QAB
QB

)2

· PBQB

− 2

(
QAB
QB

)
(QAB −QAQB)

] (15)

where QAB =
1

N

∑
k∈U

(1−Bk)(1−Ak).
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An estimator V̂ (Q̂AW ) for (15) can be easily defined by

V̂ (Q̂AW ) =
1− f
n− 1

[
p̂Aq̂A +

(
q̂AB
q̂B

)2

· p̂B q̂B − 2

(
q̂AB
q̂B

)
(q̂AB − q̂Aq̂B)

]
(16)

Let us now compare the asymptotic variance of P̂AW with the following esti-
mator of PA, P̂AQ = 1− q̂AB . We have (see Appendix A) AV (P̂AW ) < AV (P̂AQ)
when

PAB
PB

<
QAB
QB

. (17)

Hence, asymptotically, a more efficient estimator for the population proportion
PA is

P̂AT =


P̂AW if

p̂AB
p̂B

<
q̂AB
q̂B

or q̂B = 0

P̂AQ if
p̂AB
p̂B
≥ q̂AB

q̂B
or p̂B = 0

Note that the asymptotic variance of P̂AT is

AV (P̂AT ) =


AV (P̂AW ) if

PAB
PB

<
QAB
QB

AV (P̂AQ) otherwise

(18)

To estimate the asymptotic variance of P̂AT the estimator can be defined by
(10) when the following condition is satisfied

p̂AB
p̂B

<
q̂AB
q̂B

or q̂B = 0 (19)

and it can be defined by (16) if

p̂AB
p̂B
≥ q̂AB

q̂B
or p̂B = 0. (20)

When in condition (20) the equality is satisfied, we have P̂AW = P̂AQ, which
implies that AV (P̂AW ) = AV (P̂AQ) and V̂ (P̂AW ) = V̂ (P̂AQ).

The reason for defining P̂AT is to obtain an estimator with the property P̂AT =
1− Q̂AT . Accordingly, the estimator Q̂AT is defined by

Q̂AT =


Q̂AW if

q̂AB
q̂B

<
p̂AB
p̂B

or p̂B = 0

1− P̂AW f
q̂AB
q̂B
≥ p̂AB

p̂B
or q̂B = 0
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and

1− Q̂AT =


1− Q̂AW if

q̂AB
q̂B

<
p̂AB
p̂B

or p̂B = 0

P̂AW if
q̂AB
q̂B
≥ p̂AB

p̂B
or q̂B = 0

Since P̂AW = 1− Q̂AW when
q̂AB
q̂B

=
p̂AB
p̂B

, we have 1− Q̂AT = P̂AT .

Another important question relative to the estimator P̂AT is: for low pro-
portions, estimators such as P̂AW cannot be calculated when p̂B = 0. The es-
timator P̂AT does not present this problem, because if p̂B = 0 the estimator
P̂AT = 1− Q̂AW and since q̂B = 1 we have

P̂AT = 1− Q̂AW = 1− q̂A + (QB − q̂B) · q̂AB

Then the estimator P̂AT can be obtained for low proportions.

Finally, the estimator P̂AT has the following drawback: by (9); (15) and (18),
its asymptotic behaviour is worse than that of the usual estimator when

PAB − PAPB = QAB −QAQB < 0 (21)

Thus, if condition (21) occurs, we propose to use the attribute B̄ = Bc because

PAB̄ − PAPB̄ =
1

N

∑
k∈U

Ak(1−Bk)− PA(1− PB) =

= PA − PAB − PA + PAPB = −PAB + PAPB > 0

Therefore, with attribute B̄, the above problem, when (21) occurs, is solved.

3.2. An Optimal Estimator: The P̂Aα Estimator

Another way to improve the asymptotic behaviour is as follows: let us define

P̂Aα = α · P̂AW + (1− α)(1− Q̂AW ) (22)

and take the value α that minimizes the variance.
The minimum variance of P̂Aα is given by (see Appendix B)

AV (P̂Aα) = G ·
(
PAQA −

φ2

PBQB

)
with

G =
1− f
n

(
N

N − 1

)
and φ = PAB − PAPB = QAB −QAQB
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and this is achieved where

α =
(PAB − PAPB)− PBQAB

PBQB

(
PAB
PB
− QAB

QB

) =
PAB − PB

PB

(
PAB
PB
− QAB

QB

) . (23)

The estimator P̂Aα has the desirable property

P̂Aα = 1− Q̂Aα

because if we define

Q̂Aα = β · Q̂AW + (1− β)(1− P̂AW )

then

1− Q̂Aα = (1− β) · P̂AW + β · (1− Q̂AW ) = α · P̂AW + (1− α)(1− Q̂AW )

with α = 1 − β. Since AV (1 − Q̂Aα) = AV (Q̂Aα), we find that minimizing the
variance of Q̂Aα with respect to β is equal to minimizing the variance 1 − Q̂Aα
with respect to α, and consequently α is again given by (44) and P̂Aα = 1− Q̂Aα.

The P̂Aα estimator presents the following disadvantages:

• It cannot be calculated if p̂B = 0 or q̂B = 0

• The optimum value α given by (44) depends on theoretical variances and
covariances, which are generally unknown.

With respect to the second question, the value α can be easily estimated when the
sample is drawn by

α̃ =
p̂AB − p̂B

p̂B

(
p̂AB
p̂B
− q̂AB

q̂B

)
Therefore, we obtain the following estimator

P̃Aα = α̃P̂AW + (1− α̃)(1− Q̂AW )

The estimator P̃Aα also has the desired property (11).

3.3. An estimator that Calibrate in PB and QB at the Same
Time: The P̂AR Estimator

When using the population size and the population proportion of B, the aux-
iliary information is the same as in the case of a post-stratified estimator. The
second way (ii) to obtain the property (11), based on an estimator for PA cali-
bration with PB and QB , can be developed in any sampling design. To do so, we
must minimize the distance (3) under the conditions
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
PB =

1

N

∑
k∈s

ωkBk

QB =
1

N

∑
k∈s

ωk(1−Bk)

(24)

The calibration weights with this new calibration process are

ωk = dk +
N(PB − P̂BH)∑
k∈s

dkqkBk
dkqkBk +

N(QB − Q̂BH)∑
k∈s

dkqk(1−Bk)
dkqk(1−Bk) (25)

and the resulting estimator is

P̂AR = P̂AH + (PB − P̂BH) · B̂1 + (QB − Q̂BH) · B̂2 (26)

where

B̂1 =

∑
k∈s

dkqkBkAk∑
k∈s

dkqkBk
and B̂2 =

∑
k∈s

dkqk(1−Bk)Ak∑
k∈s

dkqk(1−Bk)

Therefore, when 

∑
k∈s

dkqkBk = 0

or∑
k∈s

dkqk(1−Bk) = 0

(27)

the estimator (26) cannot be obtained. This problem is solved as follows: since
the two conditions are mutually exclusive, if∑

k∈s

dkqkBk = 0

we can calibrate the estimator using only the attribute B̄. On the other hand, if∑
k∈s

dkqk(1−Bk) = 0

the estimator P̂AR can be developed only with the attribute B. Thus, the estima-
tor P̂AR is well defined.

To prevent this article from becoming excessively long, in the same way as with
the estimator P̂AW , the asymptotic variance of (26) is given by

AV (P̂AR) =
1

N2

∑
k∈U

∑
l∈U

∆kl(dkUk)(dlUl) (28)
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with Uk = Ak −B1 ·BK −B2 · (1−Bk) and

B1 =

∑
k∈U

qkBkAk∑
k∈U

qkBk
; B2 =

∑
k∈U

qk(1−Bk)Ak∑
k∈U

qk(1−Bk)

(28) is determined using the following estimator

V̂ (P̂AR) =
1

N2

∑
k∈s

∑
l∈s

∆kl

πkl
(dkuk)(dlul) (29)

where uk = Ak − B̂1 ·Bk − B̂2 · (1−Bk)

Example 2. Under SRSWOR and qk = 1 for all k ∈ U , the estimator P̂AR can
be expressed by

P̂AR = p̂A + (PB − p̂B)
p̂AB
p̂B

+ (QB − q̂B)
p̂AB̄
qB

(30)

with
p̂AB̄ =

1

n

∑
k∈s

Ak(1−Bk).

In the same way as before with the estimator P̂AW , the asymptotic variance of
P̂AR is (see Appendix C).

AV (P̂AR) =
(1− f)

n

(
N

N − 1

)[
PAQA +

(
PAB − PAPB)2

PBQB
− 2

(
PAB − PAPB)2

PBQB

]

= G ·

[
PAQA −

(
PAB − PAPB)2

PBQB

]
= G ·

(
PAQA −

φ2

PBQB

)
(31)

To estimate (45) the following estimator is defined

V̂ (P̂AR) =
(1− f)

n− 1

[
p̂Aq̂A −

φ̂2

p̂B q̂b

]
(32)

with φ̂ = p̂AB − p̂Ap̂B .

Thus, the estimator P̂AR has the same asymptotic variance as the estimator
P̂Aα. Then, by (45), under SRSWOR the estimator P̂AR is always more efficient
than the estimators p̂A and P̂AT .

Note that the proposed estimator is essentially a post-stratified estimator and,
in this sense, is not new. Here, we look at it from a different point of view.
In a practical situation, the estimator P̂AR is preferred the estimator P̂Aα, since
P̂AR does not need estimation of any unknown population quantity. The case of
estimator P̂Aα requires estimating value α, which is generally unknown.
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4. Extension to Multivariate Auxiliary Information

The previous section considered only an auxiliary attribute B; let us now as-
sume that the study attribute A is related to J auxiliary attributes B1, . . . BJ .

To develop the usual way of incorporating the information provided by J at-
tributes in the estimation of P̂A with calibration techniques, we consider a new
weight ωk subject to the following conditions

Pj =
1

N

∑
k∈U

Bjk =
1

N

∑
k∈s

ωkBjk j = 1, . . . , J. (33)

Next, we denote

P
′

= (P1, . . . , PJ); (P̂H)
′

= (P̂1H , . . . , P̂JH) and (Bk)
′

= (B1k, . . . , BJk)

where
P̂jH =

1

N

∑
k∈s

dkBjk j = 1, . . . , J.

By T we denote the following matrix

T =
∑
k∈s

dkqkBk(Bk)′.

With the minimization of (3) under the P conditions given by (33), the new
weights obtained are:

ωk = dk + dkqkN(P − PH)
′
T−1Bk. (34)

The calibration estimator based on (34) is given by:

P̂AWM = P̂AH + (P − PH)
′
Ĥ (35)

with Ĥ = T−1
∑
k∈s

dkqkBkAk.

Note that the weights (34) and the estimator P̂AWM cannot be obtained if the
matrix T is singular.

Following Rueda et al. (2007a), the asymptotic variance of the estimator
P̂AWM is

AV (P̂AWM ) =
1

N2

∑
k∈U

∑
l∈U

∆kl(dkZk)(dlZl) (36)

with Zk = Ak − (Bk)′H where

H =

(∑
k∈U

qkBk(Bk)
′
)−1(∑

k∈U

qkBkAk

)
.
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The asymptotic variance (36) can be estimated by

V̂ (P̂AWM ) =
1

N2

∑
k∈s

∑
l∈s

∆kl

πkl
(dkzk)(dlzl) (37)

with zk = Ak − (Bk)
′
Ĥ

Example 3. Under SRSWOR and qk = 1, when only the two auxiliary attributes
B and C are considered, the matrix T can be expressed by

T =

(
Np̂B Np̂BC
Np̂BC Np̂C

)
.

Consequently, |T | = N2
(
p̂B · p̂A − (p̂BC)2

)
and

T−1 =

(
Np̂C −Np̂BC
−Np̂BC Np̂B

)
|T |

=

(
p̂C −p̂BC
−p̂BC p̂B

)
N(p̂B · p̂C − (p̂BC)2)

.

Next, we have ∑
k∈s

dkqkBkAk =

(
N · p̂AB
N · p̂AC

)

and

Ĥ = T−1 ·
∑
k∈s

dkqkBkAk =

(
p̂C p̂AB − p̂AB · p̂BC
p̂B p̂AC − p̂AB · p̂BC

)
(p̂B · p̂C − (p̂BC)2)

.

Thus, the estimator P̂AWM , under SRSWOR with two auxiliary attributes, is

P̂AWM = p̂A + (PB − p̂B)

[
p̂C p̂AB − p̂AC p̂BC
(p̂B p̂C − (p̂BC)2)

]

+ (PC − p̂C) ·

[
p̂B p̂AC − p̂AB p̂BC
(p̂B · p̂C − (p̂BC)2)

] (38)

Now, if we denote

A1 =
PCPAB − PACPBC
PBPC − (PBC)2

and A2 =
PBPAC − PABPBC
PBPC − (PBC)2
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The asymptotic variance of the estimator P̂AWM is

AV (P̂AWM ) =
(1− f)

n

(
N

N − 1

)[
PAQA +A2

1 · PBQB +A2
2 · PCQC

+ 2A1A2(PBC − PBPC)− 2A1(PAB − PAPB)

− 2A2(PAC − PAPC)
]

=
(1− f)

n

(
N

N − 1

)[
PAQA

+A2
1 · PB +A2

2 · PC + 2A1A2PBC

− (A1PB +A2PC)2 − 2A1(PAB − PAPB)

− 2A2(PAC − PAPC)
]
.

(39)

To determine (39) we use the following estimator:

V̂ (P̂AWM ) =
(1− f)

n− 1

[
p̂Aq̂A + (Â1)2 · p̂B + (Â2)2 · p̂C + 2(Â1)(Â2)p̂BC

− ((Â1)p̂B + Â2p̂C)2 − 2(Â1)(p̂AB − p̂Ap̂B)− 2(Â2)(p̂AC − p̂Ap̂C)
]
. (40)

5. Simulation study

A limited study was carried out to investigate the design-based finite sample
performance of the proposed estimators in comparison with that of conventional
estimators.

5.1. Simulated data

The estimators were evaluated using 15 simulated populations with a popu-
lation size N = 1000. These populations were generated as a random sample of
1000 units from a Bernoulli distribution with parameter PA = {0.5, 0.75, 0.9}, and
the attributes of interest were thus achieved with the aforementioned population
proportions. Auxiliary attributes were also generated, using the same distribu-
tion, but a given proportion of values were randomly changed so that Cramer’s V
coefficient between the attribute of interest and the auxiliary attribute took the
values 0.5, 0.6, 0.7, 0.8 and 0.9.

For each simulation, 1000 samples with sizes n= 50, 75, 100 and 125, were
selected under SRSWOR to compare the estimators:

(1) the Horvitz-Thompson estimator P̂AH

(2) the ratio estimator P̂Aratio (see Rueda et al., 2011),

(3) P̂AW estimator (W-calibrated),

(4) P̂AT estimator (T-calibrated),
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(5) P̃Aα estimator with α estimated (α-calibrated),

(6) P̂AR estimator (R-calibrated),

(7) the multivariate ratio estimator P̂AratioM (see Rueda et al., 2011) (Multiple
ratio), and

(8) the multivariate calibration estimator P̂AWM (Multiple calibrated).

in terms of relative bias (RB) and relative efficiency with respect to the ratio
estimator (RE), where

RB =
E[p̃A]− PA

PA
, RE =

MSE[p̃A]

MSE[P̂Aratio]
,

p̃A is a given estimator and E[·] and MSE[·] denote, respectively, the empirical
mean and the mean square error. Values of RE less than 1 indicate that p̃A is
more efficient than P̂Aratio.

The results derived from this simulation study gave values of RB within a
reasonable range. All the calibration estimators produced absolute relative bias
values of less than 1% except in case PA=0.9 and φ=0.9. Univariate ratio estimator
produced the highest bias values, especially for small sample sizes.

Figures 1, 2 and 3 show the values of RE for the various populations.
These figures show:

• The ratio estimator performs poorly when there is little association between
the variables. When φ = 0.5 this estimator is worse than the Horvitz-
Thompson estimator. Even when φ = 0.6 as is sometimes the case (PA =
0.75 and PA = 0.9) the ratio estimator has a large MSE. In populations with
a large φ this problem does not arise.

• With large φ values, all the estimators that use auxiliary information produce
good results: for φ ≥ 0.7 all calibration and ratio estimators are better than
the Horvitz-Thompson estimator. It is also seen that as φ increases, all the
estimators achieve greater precision, which is particularly marked for very
high proportions.

• Of all the calibration estimators, the first one proposed P̂AW has the lowest
degree of efficiency. Although it performs better than the Horvitz-Thompson
estimator on most occasions (except when PA=0.9, φ=0.5 and 0.6) the others
produce a smaller MSE.

• The P̂AT , P̃Aα and P̂AR estimators perform very well in all cases. For high
proportions (PA=0.75 and 0.9) the efficiency of the estimators is fairly sim-
ilar; only in the case of PA=0.5 and small values of φ is there a noticeable
difference between them, in terms of efficiency. In these cases, the best re-
sults are achieved by the P̂AR estimators that calibrate in PB and QB at the
same time.
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Figure 1: Empirical relative efficiency (RE) of the different estimators for the simulated
populations when PA = 0.5 and φ = 0.5, 0.6, 0.7, 0.8, 0.9.

• The sample size does not produce a clear effect on the behaviour of the
estimators; in some cases, as the sample size increases, the efficiency of the
estimators increases, while in others, it decreases (as when φ = 0.9 and
PA=0.9).

• Ratio and calibration estimators using two auxiliary variables always have
a lower RE than those using a single auxiliary variable. For PA=0.5 and
0.5 ≤ φ ≤ 0.7 the multiple calibration estimator is slightly more efficient
than the multiple ratio estimator. For PA=0.75 and 0.9 both estimators
have similar levels of efficiency.

Ratio estimation is usually known to work well when the variables (auxiliary
and of interest) are positively correlated. In this case it is applied to 0-1 variables,
so that a positive association is expected for the method to work (higher frequen-
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Figure 2: Empirical relative efficiency (RE) of the different estimators for the simulated
populations when PA=0.75 and φ = 0.5, 0.6, 0.7, 0.8, 0.9.

cies for the A=1; B=1 (A=0; B=0) cases instead of the 0;1 (1;0) cases). From
this study we can conclude that the association between the variables is the most
important factor influencing the behaviour of ratio and also of calibration estima-
tors. As expected, as φ increases the MSE of the calibrated estimators decreases.
Even for moderate values of φ the calibration estimators improve considerably, in
terms of efficiency, on the Horvitz-Thompson estimator. The behaviour of cali-
bration estimators is similar for small proportions, whereas when the proportion
approaches 1 there are larger differences among the proposed calibration estima-
tors. Hovewer, it is not an easy task to quantify how much association is needed
for a good improvement in terms of efficiency, or when too small that it becomes
harmful to introduce extra variables in the calibration constraints.
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Figure 3: Empirical relative efficiency (RE) of the different estimators for the simulated
populations when PA=0.9 and φ = 0.5, 0.6, 0.7, 0.8, 0.9.

5.2. Real Data

In this section we apply some proposed estimators to data obtained in a survey
on perceptions of immigration in a certain region in Spain. A sample of size
n = 1919 was selected from a population with size N = 4982920, using stratified
random sampling.

Among topics of interest in the survey was estimating the percentage of citi-
zens who believe that the authorities should make immigration more difficult by
imposing stricter conditions. The auxiliary variable available is the respondent’s
gender. This variable was observed in the sample and the totals are known for
each province (stratum).
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Three main variables are included in this study, related to “goodness of immi-
gration” and “amount of immigration”. The main variables are the answers to the
following questions:

• in general, do you think that for Andalusia, immigration is . . . ? c1-Very
bad, c2 Bad, c3 Neither good nor bad, c4 Good, c5 Very good,

• and in relation to the number of immigrants currently living in Andalusia,
do you think there are . . . ? c1-Too many, c2-A reasonable number,
c3-Too few.

In this simulation study, we use the sample as population and we draw strati-
fied random samples of size n = 240 with proportional allocation (eight stratum).
Relative efficiency with respect to the ratio estimator is computed, as in the pre-
vious case, for compared estimators over 1000 simulation runs. We computed this
relative efficiency for each category of the main variable (5 categories in the first
case, and 3 in the second case) and the average over categories is also computed.
At the same time, confidence intervals based on a normal distribution and using
proposed estimated variances are computed for each proportion. Table 1 shows the
average length of the 1000 simulation runs for each category and the average over
categories. In a similar way, the empirical coverage of the confidence estimation
is computed.

Tables 1 and 2 show that, from an efficiency standpoint P̂Aα is best. Looking
the average length of confidence intervals for the proportion in each category, and
the average over categories, the best estimator is P̂AR, but the optimal P̂Aα has
very similar results. However, the empirical coverage of confidence intervals is
closer to the nominal level when the optimal estimator is used.

6. Application

IESA, the Institute for Advanced Social Studies conducted a survey between
January 14th and February 13th, 2011 on the perception of culture in the Spanish
region of Andalusia (Barometer of Culture of Andalusia - BACU). It is based on
a sample drawn from a landline phone frame (N = 5,064,304).

From this frame a stratified random sample without replacement of dimen-
sion n = 641 was selected, where strata were made up by eight geographical
regions. Strata population sizes are Nh = (274128, 919124, 463008, 502450,
237183, 441936, 856392, 1370083) and the corresponding strata sample sizes are
nh = (53, 99, 66, 62, 38, 49, 131, 143).

Among several topics of interest in the survey, is the interest to estimate per-
ception of their culture in relation to European citizens. An auxiliary variable
available is gender which totals are known for each strata. From Table 3 we ob-
serve that the P̂Aα estimator produces the best confidence intervals.
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Table 1: Relative efficiency with respect to the ratio estimator; length and empirical
coverage of 95% confidence level estimation of proportions. Main variable:
“goodness of immigration”. Stratified random sampling.

Estimator c1 c2 c3 c4 c5 avg

Relative Efficiency

P̂AW 0.915 0.607 0.921 0.786 0.986 0.843
P̂AT 0.917 0.590 0.923 0.795 1.003 0.846
P̂Aα 0.911 0.490 0.901 0.711 0.986 0.800
P̂AR 0.945 0.650 0.894 0.742 1.021 0.850

Length

P̂AW 0.082 0.131 0.053 0.112 0.037 0.083
P̂AT 0.081 0.128 0.053 0.112 0.037 0.082
P̂Aα 0.080 0.118 0.053 0.108 0.037 0.079
P̂AR 0.078 0.115 0.051 0.105 0.036 0.077

Coverage

P̂AW 0.935 0.950 0.941 0.946 0.921 0.938
P̂AT 0.940 0.947 0.935 0.948 0.913 0.936
P̂Aα 0.936 0.952 0.938 0.948 0.920 0.939
P̂AR 0.923 0.938 0.937 0.931 0.900 0.925

Table 2: Relative efficiency with respect to the ratio estimator; length and empirical
coverage of 95% confidence level estimation of proportions. Main variable:
“amount of immigration”. Stratified random sampling.

Estimator c1 c2 c3 avg

Relative Efficiency

P̂AW 0.644 0.628 0.972 0.748
P̂AT 0.638 0.614 0.981 0.744
P̂Aα 0.547 0.522 0.974 0.681
P̂AR 0.566 0.830 0.988 0.795

Length

P̂AW 0.125 0.132 0.052 0.103
P̂AT 0.123 0.128 0.052 0.101
P̂Aα 0.116 0.118 0.052 0.095
P̂AR 0.113 0.116 0.050 0.093

Coverage

P̂AW 0.952 0.945 0.930 0.942
P̂AT 0.949 0.938 0.924 0.937
P̂Aα 0.953 0.947 0.928 0.943
P̂AR 0.940 0.925 0.909 0.924
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Table 3: Estimated proportion (p̂), lower bound (lb), upper bound (ub) and length (l)
of a 95% confidence interval under stratified random sampling.

Do you think that in Andalusia the cultural level,

compared to the European Union, is...?

Estimator prop lb ub len

Much lower

P̂AW 12.899 11.342 14.456 3.114
P̂AT 12.899 11.342 14.456 3.114
P̂AR 12.913 11.380 14.447 3.067
P̂Aα 13.235 11.726 14.744 3.018

lower

P̂AW 46.126 43.563 48.689 5.126
P̂AT 46.126 43.563 48.689 5.126
P̂AR 46.182 43.881 48.483 4.602
P̂Aα 45.241 43.030 47.452 4.422

Equal

P̂AW 5.085 4.074 6.095 2.021
P̂AT 5.085 4.074 6.095 2.021
P̂AR 5.092 4.092 6.093 2.001
P̂Aα 5.268 4.274 6.262 1.988

Higher

P̂AW 29.838 27.649 32.027 4.378
P̂AT 29.838 27.649 32.027 4.378
P̂AR 29.867 27.756 31.978 4.222
P̂Aα 29.899 27.864 31.934 4.070

Much higher

P̂AW 2.372 1.702 3.042 1.340
P̂AT 2.372 1.702 3.042 1.340
P̂AR 2.374 1.704 3.043 1.339
P̂Aα 2.603 1.936 3.270 1.334

7. Conclusions

In practice, it is important to make the best possible use of available auxiliary
information so as to obtain the most efficient estimator possible.

When a proportion can be estimated in the case of complete auxiliary informa-
tion (i.e., when auxiliary information is available at the population level for each
unit) it is possible to consider estimators that use the logistic regression model
(Duchesne, 2003, Wu and Sitter, 2001), as an improvement on the simple esti-
mator. When there is merely a rearrangement of the population proportion of
an attribute with respect to the study variable, then traditional indirect methods
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such as the ratio by Rueda et al. (2011) or the calibration studied in this work
can be applied.

We have studied four calibration estimators for the proportion which are simple
to calculate from standard calibration packages and can give rise to considerable
increases in the precision achieved, as illustrated by the theoretical results re-
ported here and by the simulation performed. The proposed estimators P̂AW and
P̂AR can be obtained from any arbitrary sampling design, whereas P̂Aα and P̂AT
estimators are defined under SRSWOR. However, the extension to a stratified
random sampling is straightforward.

Confidence intervals based on the estimated variances of the studied calibration
estimators is also investigated through a limited simulation study, under a more
realistic survey (stratified random sampling) using real data. P̂Aα and P̂AR have
good properties in confidence estimation, and in some sense (a balance between
length and coverage) the optimal estimator P̂Aα provides the best results.
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Appendix A. Comparison between AV (P̂AW ) and
AV (P̂AQ)

Because AV (P̂AQ) = AV (q̂AB) we have AV (P̂AW ) < AV (P̂AQ) when

[
PAQA +

(
PAB
PB

)2

PBQB − 2

(
PAB
PB

)
(PAB − PAPB)

]

<

[
PAQA +

(
QAB
QB

)2

PBQB − 2

(
QAB
QB

)
(QAB −QAQB)

]

or equivalently

P 2
AB

PB
QB − 2

(
PAB
PB

)
(PAB − PAPB) <

Q2
AB

QB
PB − 2

(
QAB
QB

)
(QAB −QAQB).
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Now, we have

QAB −QAQB =
1

N

∑
k∈U

(1−Ak)(1−Bk)− (1− PA)(1− PB) = PAB − PAPB .

Then AV (P̂AW ) < AV (P̂AQ) when(
PAB
PB

)2

PBQB −
(
QAB
QB

)2

PBQB − 2

(
PAB
PB
− QAB

QB

)
(PAB − PAPB) < 0

therefore(
PAB
PB
− QAB

QB

)[(
PAB
PB

+
QAB
QB

)
PBQB − 2(PAB − PAPB)

]
= K1K2 < 0.

Since
K2 = PB − PAB + PB(PA − PB) = PĀBQB + PBPAB̄ ≥ 0

where

PĀB =
1

N

∑
k∈U

(1−Ak)Bk and PAB̄ =
1

N

∑
k∈U

Ak(1−Bk),

we deduce that AV (P̂AW ) < AV (P̂AQ) when k1 < 0, that is

PAB
PB

<
QAB
QB

. (41)

Appendix B. Obtaining the minimum variance of P̂Aα

If we denote V1 = AV (P̂AW ); V2 = AV (Q̂AW ) and C = Cov(P̂AW , Q̂AW ) the
minimum variance of P̂Aα is

V2 × V1 − C2

V1 + V2 + 2C
(42)

and this is achieved when

α =
(V2 + C)

(V1 + V2 + 2C)
(43)

It is easy to see that

C = Cov(P̂AW , Q̂AW ) =
(1− f)

n

(
N

N − 1

)[
− PAQA −

(
PAB
PB

)(
QAB
QB

)
PBQB

+

(
PAB
PB

+
QAB
QB

)
(PAB − PAPB)

]
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Therefore, we have:

V2 + C =
1− f
n

(
N

N − 1

)[
(PAB − PAPB)

(
PAB
PB
− QAB

QB

)

+ PBQB

((
QAB
QB

)2

−
(
PAB
PB

)(
QAB
QB

))]

=
1− f
n

(
N

N − 1

)(
PAB
PB
− QAB

QB

)[
(PAB − PAPB)− PBQAB

]

Similarly

V1 + V2 + 2C =
1− f
n

(
N

N − 1

)
× PBQB

[(
PAB
PB

)2

+

(
QAB
QB

)2

− 2

(
PAB
PB

)(
QAB
QB

)]

=
1− f
n

(
N

N − 1

)
PBQB

(
PAB
PB
− QAB

QB

)2

By substituting the values V2 +C and V1 +V2−2C in (43), the value of α is found
to be:

α =
(PAB − PAPB)− PBQAB

PBQB

(
PAB
PB
− QAB

QB

) =
PAB − PB

PB

(
PAB
PB
− QAB

QB

) . (44)

V1V2 = G2

[(
PAQA

)2
+

[(
PAB
PB
− QAB

QB

)2

+ 2

(
PAB
PB

)(
QAB
QB

)]
PAQAPBQB

+

(
PAB
PB

)2(
QAB
QB

)2(
PBQB

)2
+ 4

(
PAB
PB

)(
QAB
QB

)
φ2

− 2φ

(
PAB
PB

+
QAB
QB

)(
PAQA + PABQAB

)]

= G2

[(
PAQA − φ

(
PAB
PB

+
QAB
QB

))2

− φ2

(
PAB
PB
− QAB

QB

)2

+

(
PAB
PB

)2(
QAB
QB

)2(
PBQB

)2
+

[(
PAB
PB
− QAB

QB

)2

+ 2

(
PAB
PB

)(
QAB
QB

)]
PAQAPBQB − 2φ

(
PAB
PB

+
QAB
QB

)(
PABQAB

)]
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= G2

[(
PAQA − φ

(
PAB
PB

+
QAB
QB

))2

+ PBQB

(
PAQA −

φ2

PBQB

)(
PAB
PB
− QAB

QB

)2

+ 2(PABQAB)

(
PAQA − φ

(
PAB
PB

+
QAB
QB

))
+

(
PAB
PB

)2(
QAB
QB

)2(
PBQB

)2]

= G2PBQB

(
PAQA −

φ2

PBQB

)(
PAB
PB
− QAB

QB

)2

+G2 ×K

where

K =

(
PAQA − φ

(
PAB
PB

+
QAB
QB

))2

+ 2(PABQAB)

(
PAQA − φ

(
PAB
PB

+
QAB
QB

))
+

(
PAB
PB

)2(
QAB
QB

)2(
PBQB

)2
.

On the other hand

C2 = G2

[
φ

(
PAB
PB

+
QAB
QB

)
− PAQA −

(
PAB
PB

)(
QAB
QB

)
PBQB

]2

= −G2 ×K

Thus, by substituting the values C2; V1×V2 and V1 +V2 +2C in (42), we have:

AV (P̂Aα) = G

(
PAQA −

φ2

PBQB

)

Appendix C. Obtaining AV (P̂AR)

AV (P̂AR) =
(1− f)

n

(
N

N − 1

)[
PAQA +

(
PAB
PB
− PAB̄

QB

)2

PBQB

− 2

(
PAB
PB

)
(PAB − PAPB)− 2

(
PAB̄
QB

)
(PAB̄ − PAQB)

]

with
PAB̄ =

1

N

∑
k∈U

Ak(1−Bk).
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Now, taking into account that

PAB̄ − PAQB = PA − PAB − PA + PAPB = PAPB − PAB

the asymptotic variance is

AV (P̂AR) =
(1− f)

n

(
N

N − 1

)[
PAQA +

(
PAB
PB
− PAB̄

QB

)2

PBQB

+ 2(PAB − PAPB)

(
PAB̄
QB

− PAB
PB

)]
.

Since
PAB̄
QB

− PAB
PB

=
PAB̄PB + PABPB − PAB

PBQB
=
PAPB − PAB

PBQB

we have

AV (P̂AR) =
(1− f)

n

(
N

N − 1

)[
PAQA +

(
PAB − PAPB)

2

PBQB
− 2

(
PAB − PAPB)

2

PBQB

]

= G

[
PAQA −

(
PAB − PAPB)

2

PBQB

]
= G

(
PAQA − φ2

PBQB

) (45)
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