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Abstract

For multivariate time series modelling, it is essential to know the number
of common factors that define the behaviour. The traditional approach to
this problem is investigating the number of cointegration relations among
the data by determining the trace and the maximum eigenvalue and obtain-
ing the number of stationary long-run relations. Alternatively, this problem
can be analyzed using dynamic factor models, which involves estimating the
number of common factors, both stationary and not, that describe the be-
haviour of the data. In this context, we empirically analyze the power of
such alternative approaches by applying them to time series that are simu-
lated using known factorial models and to financial market data. The results
show that when there are stationary common factors, when the number of
observations is reduced and/or when the variables are part of more than one
cointegration relation, the common factors test is more powerful than the
usually applied cointegration tests. These results, together with the greater
flexibility to identify the loading matrix of the data generating process, ren-
der dynamic factor models more suitable for use in multivariate time series
analysis.
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Resumen

Para la modelización multivariante de series temporales no estacionarias
es imprescindible conocer el número de factores comunes que definen el com-
portamiento de las series. La forma tradicional de abordar este problema
es el estudio de las relaciones de cointegración entre los datos a través de
las pruebas de la traza y el máximo valor propio, obteniendo el número de
relaciones de largo plazo estacionarias. Como alternativa, se pueden emplear
modelos factoriales dinámicos que estiman el número de factores comunes,
estacionarios o no, que describen el comportamiento de los datos. En este
contexto, analizamos empíricamente el resultado de aplicar tales métodos
a series simuladas mediante modelos factoriales conocidos, y a datos reales
de los mercados financieros. Los resultados muestran que cuando hay fac-
tores comunes estacionarios, cuando el número de observaciones se reduce
y/o cuando las variables participan en más de una relación de cointegración,
la prueba de factores comunes es más potente que las pruebas habituales de
cointegración. Estos resultados, junto con la mayor flexibilidad para iden-
tificar la matriz de cargas del proceso generador de datos, hacen que los
modelos de factores dinámicos sean más adecuados para su utilización en el
análisis multivariante.

Palabras clave: cointegración, estacionariedad, factores comunes, modelo
factorial dinámico.

1. Introduction

The identification of the common factors of a set of variables and their reduced
representation is an open research area within the social sciences (Zhang 2009).
The usual multivariate techniques used for this include Common Factor Analy-
sis (CFA) and Principal Component Analysis (PCA). CFA is used to obtain a
reduced-dimensional representation of variance shared among a set of observed
variables, whereas PCA is used to obtain a reduced-dimensional representation of
the total variance of the observed variables. As Widaman (1993) noted, the choice
between CFA and PCA as the model for representing the dependence among a set
of variables involves different loading matrices. Furthermore, Independent Compo-
nent Analysis (ICA) complements PCA and extracts independent factors from the
non-correlated factors of PCA for non-Gaussian variables (González & Nave 2010).

An important issue in CFA and PCA is the number of factors necessary to
represent the set of observed variables. Lorenzo-Seva, Timmerman & Kiers (2011)
reviewed the procedures to select this number of factors in a cross-section frame-
work and proposed the use of the Hull method, but this heuristic methodology
does not inform us about the number of possible factors, its results depend on
the function used as a measure of error and cannot be used to obtain the loading
matrix. Furthermore, this method has not been extended to time series analysis.

Additionally, when some of the observed variables are not stationary, PCA
can extract factors with similar loadings for all variables. This lack of sparseness
makes the interpretation of the results more difficult. Lansangan & Barrios (2009)
suggest using Sparse Principal Component Analysis, but it requires finding a sparse
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approximation of the loading vectors. Thus, when the set of observed variables
contains non-stationary variables, the following two are the approaches usually
used in dynamic multivariate analysis: cointegration analysis (CA) and dynamic
factorial analysis (DFA).

CA identifies the long-run relationships among variables, while DFA determines
the number of uncorrelated and unobservable common dynamic factors that de-
scribe the behaviour of the variables. In the long run, the solutions of both prob-
lems are complementary because for a set of variables, the number of common
factors is the difference between the number of variables and the number of coin-
tegration relationships. However, in Economics papers, CA is more widely used
in the dynamic multivariate context, perhaps because it is more popular and is
included in standard econometrics software packages (PcGive, Gretl and JMulti,
among others). Beyond focus on the long run, other shortcomings may arise when
we apply CA, especially when the model errors are serially dependent and/or are
non-Gaussian (Gonzalo 1994, Gonzalo & Lee 1998). Thus, alternative approaches
become necessary (Li, Pan & Yao 2009).

Most of the research on cointegration has focused on tests to estimate the coin-
tegration relationships, including different issues such as the sample size (Banerjee,
Dolado & Mestre 1998, Pesavento 2007, Bayer & Hanck 2013), structural breaks
(Cavaliere & Taylor 2006, Westerlund & Egderton 2006, Jing & Junsoo 2010),
decomposition matrix (Doornik & O’Brien 2002), common cycles (Cubadda 2007)
and fractional cointegration (Dittmann 2000, Trenkler, Saikkonen & Lütkepohl
2007, Davidson & Monticini 2007). However, none of these studies are concerned
with estimating the parameters that define cointegration relationships, and in most
cases, they only consider a single relationship between two variables, where the
relationship is well defined. In this case, normalizing based on one of the vari-
ables yields the parameters. In others cases, as that described by Park, Ahn &
Cho (2011), an alternative estimation method is proposed. When the number of
variables involved increases, to achieve an identified system, we must use a set
of restrictions based on relationships among variables known a priori, which are
not always available. Finally, when we analyze finite samples, the distribution of
the cointegration rank test is not approximated well by the limiting distribution
(Ahlgren & Antell 2008).

In this context, DFA becomes increasingly useful. Peña & Box (1987) showed
how to identify common factors for time series and how to build a simple transfor-
mation to recover the factors as linear combinations of the original series. Stock &
Watson (1988) were the first to connect CA and CFA. They showed that multiple
cointegrated time series must have at least one common trend or factor. Then,
Escribano & Peña (1994) proposed a new normalization technique, which builds
common trend representations with moving-average polynomials and, under cer-
tain circumstances, with uncorrelated shocks, that allow us to see the connection
between CA and CFA. Hu & Chou (2003) studied DFA to simplify multiple time
series, and Hu & Chou (2004) derived a procedure to identify the Peña & Box
(1987) model. Subsequently, Kapetanios & Marcellino (2009) showed, in Monte
Carlo experiments, the advantages of using a parametric estimation of dynamic
factor models. Correal & Peña (2008) introduced a threshold dynamic factor
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model for the analysis of vector time series, that includes the non-linear threshold-
type behaviour. More recently, Lopes, Gamerman & Salazar (2011) proposed the
generalized spatial dynamic factor models. Some papers on CA, such as that by
Miller (2010), suggest using DFA to estimate the parameters when there are more
than two time series because the cointegration representation is not unique in this
case.

The main objective of this paper is to analyze these two (a priori) alternative
approaches to show whether they can yield the true number of hidden common
factors in the data-generating processes of a set of variables. To do so, we apply
to series of simulated and real data, the test developed in the DFA framework by
Peña & Poncela (2006), and a traditional cointegration test, i.e., the trace test.
We choose the Peña & Poncela (2006) test as the representative test among a set
of similar tests (Forni, Hallin, Lippi & Reichlin 2005, Hallin & Liska 2007, Chen,
Huang & Tu 2010) developed in the DFA framework due to its superior robustness
(Park, Mammen, Hardle & Borak 2009) and lower computational cost compared
with other tests, such as that described in Pan & Yao (2010).

The rest of the paper is structured as follows. In section 2, we formulate
the problem and describe the Peña & Poncela (2006) methodology. In section
3, we perform a comparative analysis of the two methodologies, CA and DFA,
using simulated time series. In section 4, we apply the methods to real data from
financial markets. Finally, we summarize the main conclusions.

2. Cointegration vs. Peña and Poncela Factorial
Model

In multivariate cases, when the observed variables are non-stationary, by using
a stationary transformation of the series, we may not be using all of the infor-
mation about the relationships among the variables (Peña & Sanchez 2007). To
compensate for this, we can use two complementary perspectives as follows:

• Considering the long-run stable and stationary relationships among variables
and using different techniques related to cointegration. Thus, if X is the vec-
tor of N non-stationary variables and ∆X is its stationary transformation,
the Vector Error Correction Model or VECM (Engle & Granger 1987) is
usually used in the literature:

∆Xt = Π ·Xt−1 +

P∑
i=1

γi ·∆Xt−i + εt (1)

where t = 1, . . . ,M ; P is the number of lags required to correct the auto-
correlation and other characteristics of the data series (∆X), usually deter-
mined using the Akaike Information Criterion (AIC); ε is an (N × 1) vector
of stationary errors; and Π denotes an (N ×m) matrix of the cointegration
relationship. Through the well-known cointegration tests, i.e., the maximum
eigenvalue and the trace test, we can estimate the cointegration rank, or rank
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of the matrix Π in (1). Thus, if there are N variables and m cointegration
relationships, we obtain r = N −m non-stationary common factors.

• Directly obtaining the number of common factors (Escribano & Peña 1994,
Gonzalo & Granger 1995). In this case, the formulation depends on the
factors (f) and their loading matrix (λ):

Xt = λ · ft + ω · εt
ft = ρ · ft−1 + ut

(2)

where λ denotes an (N × r) loading matrix; f is an (r× 1) vector of factors;
ω shows the structure of the covariance matrix; and ε and u are stationary
residuals. We note that if |ρ| is less than 1, the factor is I(0) or stationary;
it is only non-stationary if |ρ| is equal to 1.

The relationship between these approaches can be explained using the decom-
position of the matrix Π,

Π = α · βT (3)

where β is the weight matrix of the cointegration relationships for each variable
and α is the coefficient matrix of the cointegration relations.

Using (3), the factorial model,(2) can be expressed as

Xt = β⊥ · (αT⊥ · β⊥) · αT⊥ ·Xt + α · (βT · α) · βT ·Xt (4)

Escribano & Peña (1994) showed the relationship between the two approaches
using expressions (1) and (4), both in terms of α and β.

We can solve the multivariate problem using CA with the relevant restrictions,
which, as we note above, becomes intractable as the number of variables increase1;
alternatively, we can analyze the dynamic common factors involved. This is where
the Peña & Poncela (2006) test can be used to further investigate the problem.
Peña & Poncela (2006) express the factorial model (2) as follows:

Xt = µ+ [λ1 λ2] · [f1,t f2,t]
T + εt (5)

That is, there are N observed variables with the corresponding mean vector
µ. The common factors may belong to the subset f1 of non-stationary factors or
to the subset f2 of stationary common factors, and λ1 and λ2 are their respective
loading matrices. Thus, if the first group is made up of r1 factors and the second
of r2, then there must be N − (r1 + r2) cointegration relationships.

The advantage of this approach is that regardless of whether the observed series
are stationary, we can identify stationary and non-stationary common factors. It

1Additionally, from the work of Cheung & Lay (1993), we know that the log-likelihood ratio
for cointegration (trace test and maximal eigenvalue) are robust for autoregressive processes
because standard lag selection criteria such as the AIC and SIC can be useful for choosing the
right lag order for these tests. In contrast, when the processes show moving-average dependence,
these information criteria perform poorly in selecting the proper lag of ∆X. LR − tests for
cointegration are rather sensitive to under-parameterization in the lag length, though not to
over-parameterization.
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also allows us to test whether the cointegration test correctly discriminates between
cointegration relations and stationary factors. The test is implemented as follows:

Yt = Xt − µ

Ĉk = [

M∑
t=k+1

(Yt ·YT
t−k)]−1 · [

M∑
t=k+1

(Yt ·YT
t−k)]

× [

M∑
t=k+1

(Yt−k ·YT
t−k)]−1 · [

M∑
t=k+1

(Yt−k ·YT
t )]

(6)

According to Theorem 3 in Peña & Poncela (2006), the matrix Ĉk has N −
(r1 + r2) eigenvalues that converge in probability to zero as the sample size (M)
tends to infinity and the number of lags, k, increases from 0 to K, such that K

M

tends to zero. In this way, the test sorts the eigenvalues (hj) of the matrix Ĉk
and obtains their sum, which tends asymptotically to a χ(N−r)2 distribution, as
follows:

Sr=r1+r2 = (N − k) ·
M−r∑
j=1

log (1− hj) (7)

The cumulative explanatory power (cep) of the factors with k-lags can be ex-
pressed as

cepk =

∑M−r−k
j=1 hj∑M−r
i=1 hi

(8)

Once we have estimated the number of common factors, based on Peña &
Poncela (2006), we can use an EM algorithm to determine the loading matrix of
the expression (5), using as initial values the eigenvectors (Vj) of the following
matrix:

C1 = N−(2d+d
∗) ·

N∑
t=2

(Yt−1 ·YtT ) (9)

As shown, (9) operates with one lag, d is the order of integration of the observed
series, and d∗ is equal to 0 if d is greater than zero or 1 if d is equal to zero. Thus,
once we order the eigenvalues in decreasing order, the initial value of the loading
matrix would be the eigenvectors associated with the first r non-zero eigenvalues.
Similarly, the initial values of the factors can be obtained from these eigenvectors
and the observed variables as follows:

λ̂0 = Vr

f̂0 = VT
r ·Y

(10)

Once we recover the initial values of the factors (f̂0), then Peña & Poncela
(2006) use a contrast of stationarity (e.g., Augmented Dickey-Fuller test or ADF )
to determine which factors are stationary or not.
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From the initial values, the final results are estimated by applying the Kalman
filter on the following state space representation because, as Bauer & Wagner
(2009) show, this method yields better cointegration parameters:

∀t = 1, . . . ,M

Measurement Equation:x1,t...
xN,t

 =

β1,1 . . . β1,K
...

. . .
...

βN,1 . . . βN,K

 ·
f1,t...
fK,t

+

 ε1,t...
εN,t


 ε1,t...
εN,t

 ∼ N(0,Σ) Σ =

σ
2
1 . . . 0
...

. . .
...

0 . . . σ2
N


Transition Equation:f1,t+1

...
fK,t+1

 =

ρ1 . . . 0
...

. . .
...

0 . . . ρK

 ·
f1,t...
fK,t

+

u1,t...
uK,t


u1,t...
uK,t

 ∼ N(0, I)

(11)

where βi,j is the load of factor j on variable i; σ2
i is the residual variance of variable

i; and the parameter ρ is 1 when the stationary test shows that the factors are
non-stationary.

3. Comparative analysis of the Cointegration and
Factorial Dynamic Models: Experimental Study

3.1. Design of the Experimental Study

To measure the power of the Peña & Poncela (2006) test related to CA, we
apply the tests in four different scenarios with a maximum of 100 time series
(max(N) = 100) with maximum sizes of 5,000 data points each (max(M) = 5, 000),
computed from simulated factors and known loading matrices. Then, we compare
the test results with the actual values used in the simulated data generating pro-
cesses. We use the trace test from CA because it is more robust to moving average
and non-Gaussian innovations than the maximal eigenvalue test due to its greater
robustness to the skewness and excess kurtosis of the innovations, as Cheung & Lay
(1993) showed. We use Ox packages to simulate factors and build non-stationary
variables as follows:
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• Scenario I: one common factor I(1), integrated of order one, for each set of
two variables, i.e., there are 50 common factors in 100 time series.

• Scenario II: one common factor I(1) for each set of four variables, i.e., there
are 25 common factors in 100 time series.

• Scenario III: one factor I(1) and another I(0), or stationary, for each set of
four variables, i.e., there are 50 common factors in 100 time series.

• Scenario IV: two factors I(1) for each set of four variables, i.e., there are 50
common factors in 100 time series.

The processes simulated from the loading matrices, i.e., the variables grouped by
common factors and scenarios, are as follows:

• Scenario I: [
Z1,t

Z2,t

]
=

[
0.5

1

]
· ft +

[
ε1,t
ε2,t

]
ft =

t∑
j=1

uj

(ε1,t, ε2,t, uj) ∼ N(0, 1)i.i.d.

(12)

• Scenario II: 
Z1,t

Z2,t

Z3,t

Z4,t

 =


1

0.25

0.50

0.75

 · ft +


ε1,t
ε2,t
ε3,t
ε4,t


ft =

t∑
j=1

uj

(ε1,t, ε2,t, ε3,t, ε4,t, uj) ∼ N(0, 1)i.i.d.

(13)

• Scenario III: 
Z1,t

Z2,t

Z3,t

Z4,t

 =


1 0.25

0.75 0.50

0.50 0.75

0.25 1

 · [f1,tf2,t

]
+


ε1,t
ε2,t
ε3,t
ε4,t


f1,t = f1,t−1 + u1,t

f2,t = 0.8 · f2,t−1 + u2,t

(ε1,t, ε2,t, ε3,t, ε4,t, u1,t, u2,t) ∼ N(0, 1)i.i.d.

(14)
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• Scenario IV: 
Z1,t

Z2,t

Z3,t

Z4,t

 =


1 0.25

0.75 0.50

0.50 0.75

0.25 1

 · [f1,tf2,t

]
+


ε1,t
ε2,t
ε3,t
ε4,t


f1,t = f1,t−1 + u1,t

f2,t = f2,t−1 + u2,t

(ε1,t, ε2,t, ε3,t, ε4,t, u1,t, u2,t) ∼ N(0, 1)i.i.d.

(15)

In Table 1, we show a statistical summary of the simulated values for each of
the four scenarios. As we can see, the variables and the factors are not neither
normal nor stationary, except factor I(0) of Scenario-III. It also highlights that
the variables have a minimum in the ADF test for stationarity nearest to being
accepted; that is, though the generating factors are I(1), in some cases, the vari-
ables constructed from these may seem I(0), at least when 95 percent confidence
intervals are considered.

From the results shown in Table 2, when we use the trace test, we can see that
if there is one common factor and sufficient degrees of freedom, the trace tests
determine the correct number of factors without errors. However, when the series
are two-cointegrated as in Scenario-IV, the performance of this test declines. Thus,
this result suggests that if the variables have more than one common factor, this
test does not discriminate them correctly. Moreover, if one of them is I(0), as in
Scenario-III, this test does not detect it. Another drawback is that this technique
does not permit estimation of the loading matrix associated with each common
factor.

However, from the results shown in Table 2, when we use the Peña & Poncela
(2006) test, we can see that when the number of observations for each variable (M)
is higher than the number of variables (N), the test converges quickly to the correct
number of factors. Therefore, the test is valid for samples where the number of
observations by variables is greater than the number of variables. Additionally,
in Scenario-III, there is one common factor I(0) that is not detected by the trace
test, but the Peña & Poncela (2006) test detects it.

3.2. Results

We apply the trace test and Peña & Poncela (2006) test on different samples,
i.e., we analyze the results of the tests in samples with different numbers of vari-
ables (N) and different numbers of observations by variable (M) in each of the four
scenarios described. The sample data range from 8 observations of 25 variables to
5,000 observations of 100 variables. In Table 2, we show the errors of these tests,
i.e., the difference between the number of real factors and the number of factors
estimated.
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Table 1: Statistical Summary of simulated data.
Scenario-I

Data Factor I(1) Variables
Statistics min. mean max. min. mean max.
Mean -81.33 -3.82 83.76 -81.33 -2.69 83.76
Std. Dev. 12.84 23.80 48.53 6.49 18.39 48.56
Skewness -1.16 -0.01 1.09 -1.16 -0.01 1.09
Excess Kurtosis -1.39 -0.75 1.07 -1.39 -0.73 1.06
Min. -143.74 -48.38 1.78 -144.02 -38.87 2.69
Max. 2.67 41.98 157.12 3.19 30.23 156.95
Normality 139.04 560.37 4,824.90 100.69 438.16 2,997.01
ADF -2.74 -1.69 0.12 -3.19(*) -1.76 -0.01

Scenario-II
Data Factor I(1) Variables
Statistics min. mean max. min. mean max.
Mean -111.85 9.02 67.44 -111.83 3.34 67.43
Std. Dev. 11.298 18.66 50.98 2.98 12.53 50.99
Skewness -1.52 0.22 1.25 -1.51 0.21 1.24
Excess Kurtosis -1.45 -0.53 2.81 -1.45 -0.52 2.77
Min. -183.62 -40.41 -0.03 -184.87 -20.51 0.21
Max. 3.57 52.86 159.79 2.29 28.81 160.15
Normality 42.77 295.19 4,706.60 34.39 279.60 4,679.50
ADF -2.53 -2.00 -0.34 -3.09(*) -1.93 -0.29

Scenario-III
Data Factor I(1) Factor I(0) Variables
Statistics min. mean max. min. mean max. min. mean max.
Mean -81.32 -3.82 83.76 -0.03 -0.01 0.06 -81.33 -2.69 83.75
Std. Dev. 12.84 23.80 48.53 0.98 0.99 1.02 6.56 18.41 48.56
Skewness -1.16 -0.01 1.09 -0.06 0.01 0.07 -1.16 -0.01 1.09
Excess Kurtosis -1.40 -0.75 1.07 -0.26 -0.03 0.12 -1.39 -0.72 1.06
Min. -143.74 -48.38 1.78 -4.55 -3.54 -3.10 -144.15 -40.04 1.98
Max. 2.67 41.98 157.12 3.09 3.56 4.49 3.28 31.49 157.15
Normality 52.19 379.68 4,824.90 0.02(**) 1.12(**) 16.31(*) 39.21 366.54 4,786.30
ADF -2.67 -1.78 0.11 -71.76(**) -29.53(**) -24.06(**) -3.39(*) -1.80 0.04

Scenario-IV
Data Factor I(1) Factor I(1) Variables
Statistics min. mean max. min. mean max. min. mean max.
Mean -111.85 9.02 67.44 -68.99 -8.12 98.83 -123.94 1.65 114.54
Std. Dev. 11.30 18.66 50.98 11.81 22.94 50.62 11.72 23.47 53.69
Skewness -1.52 0.22 1.24 -0.99 -0.18 0.86 -1.27 -0.06 1.25
Excess Kurtosis -1.45 -0.53 2.81 -1.18 -0.51 0.86 -1.63 -0.71 1.47
Min. -183.62 -40.41 -0.03 -164.28 -54.02 -0.71 -194.71 -46.84 0.44
Max. 3.57 52.86 159.79 -0.77 27.20 162.75 -1.05 48.08 189.18
Normality 42.77 295.19 4706.60 33.11 375.76 2,948.40 18.74 320.73 4,943.80
ADF -2.43 -2.00 -0.34 -2.56 -1.76 0.36 -3.09(*) -1.71 0.24
Note: Normality is tested using the Jarque-Bera test with a Chi22 distribution. The ADF is the
Augmented Dickey-Fuller test on unit roots with a constant and without a trend. Significance at
95 and 99 per cent levels are indicated by (*) and (**), respectively.

Now, we analyze the impact on the results of the two tests of the level of
confidence required and the number of lags used. We apply the tests to the same
samples used in Table 2 but vary, in increments of one, the lag number from 2
to 100 and the confidence level from 0.5 to 0.9999 in increments of 0.1 to 0.9 and
then in increments of 0.01 to 0.99, and so on. The results2, which confirm in all
cases those in Table 2, can be summarized as follows.

2Available upon request to the authors
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Table 2: Errors in the number of factors extracted by cointegration and factorial tests.

Errors cointegration test Errors factorial test
Scenario-I

M
N

8 20 40 80 100 M
N

8 20 40 80 100

25 -3 ndf ndf ndf ndf 25 2 -7 1 23 41
50 0 -1 ndf ndf ndf 50 1 0 -12 0 3
100 0 1 -6 ndf ndf 100 0 0 2 -25 -29
250 0 0 -2 -6 2 250 0 0 1 3 1
500 0 0 0 -1 0 500 0 0 0 1 1
1, 000 0 0 0 0 0 1, 000 0 0 0 0 1
2, 500 0 0 0 0 0 2, 500 0 0 0 0 0
5, 000 0 0 0 0 0 5, 000 0 0 0 0 0

Scenario-II
M
N

8 20 40 80 100 M
N

8 20 40 80 100

25 -1 ndf ndf ndf ndf 25 1 -1 0 3 16
50 0 1 ndf ndf ndf 50 0 -1 0 0 -1
100 0 0 -15 25 ndf 100 0 -1 0 0 -1
250 0 0 0 0 -8 250 0 0 -1 -5 -13
500 0 0 0 -1 3 500 0 0 0 0 0
1, 000 0 0 0 0 0 1, 000 0 0 0 0 0
2, 500 0 0 0 0 0 2, 500 0 0 0 0 0
5, 000 0 0 0 0 0 5, 000 0 0 0 0 0

Scenario-III
M
N

8 20 40 80 100 M
N

8 20 40 80 100

25 0 ndf ndf ndf ndf 25 3 -7 4 23 41
50 1 -2 ndf ndf ndf 50 2 3 1 0 3
100 1 -2 -3 ndf ndf 100 1 2 4 0 2
250 2 0 -1 0 -8 250 0 1 2 6 3
500 2 5 5 0 -3 500 0 0 1 3 6
1, 000 2 5 10 15 14 1, 000 0 0 0 0 1
2, 500 2 5 10 20 25 2, 500 0 0 0 0 0
5, 000 2 5 10 20 25 5, 000 0 0 0 0 0

Scenario-IV
M
N

8 20 40 80 100 M
N

8 20 40 80 100

25 1 ndf ndf ndf ndf 25 3 -6 1 23 41
50 1 -3 ndf ndf ndf 50 1 3 -11 0 3
100 0 -2 -3 ndf ndf 100 0 0 2 0 -1
250 0 0 2 -3 -8 250 0 0 1 4 2
500 0 0 0 0 -4 500 0 0 0 0 4
1, 000 0 0 0 1 2 1, 000 0 0 0 0 0
2, 500 0 0 0 0 2 2, 500 0 0 0 0 0
5, 000 0 0 1 0 0 5, 000 0 0 0 0 0
Note: ndf denotes that there were not sufficient degrees of freedom.

For the trace test, the results primarily depend on the degrees of freedom: by
increasing the number of lags, the cointegrating rank converges to the right value,
provided that the number of observations and variables are large enough. In
contrast, when the number of observations decreases, the best results are achieved
with lower lags, as this way, the degrees of freedom are higher. Therefore, the
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trace test results depend on the lag number used, which in turn depends on the
number of observations.

For the Peña & Poncela (2006) test, the results show that as M approaches
N , we can reduce the error by increasing the number of lags. Nevertheless, if N is
greater than M , we achieve the correct value only when the number of variables
N is not much higher than M . Again, this is due to the number of degrees of
freedom. However, the Peña & Poncela (2006) test is less sensitive to the degrees
of freedom than the trace test, as the errors are smaller.

Finally, we analyze whether the methodology proposed by Peña & Poncela
(2006) allows us recover the true common factors, by determining if they are
stationary or not and by determining the corresponding loading matrices. To
do so, we apply the two tests to six variables (Z), two of Scenario-I and four of
Scenario-IV. In Table 3, we present the results of the trace test, which, as expected
based on the previous results, correctly identify the number of common factors but
do not inform us about the two groups of variables. Because the cointegration rank
is three, we could assume that there are three sets of two cointegrated variables.

Table 3: Cointegration test in the subset Z.

Variable Lag Fact Trace test Prob. Max. eigen. test Prob.
6 1 3 34.12 0.064 25.81 0.013(*)
6 2 3 27.18 0.284 20.18 0.097
6 3 3 28.89 0.121 22.12 0.051

Similarly, the Peña & Poncela (2006) test identifies three factors with one lag,
a t-value of 11.62 and a p-value of 0.236. In addition, the ADF test of the 3 factors
recovered by the product of the matrix transpose of the eigenvectors associated
with the three largest eigenvalues and the observed variables resulted in three
factors being I(1), as we can see in Table 4. Thus, both methods yield the number
of factors, but it is interesting to note how the methodology proposed by Peña &
Poncela (2006) recovers and groups the factors.

Table 4: Testing ADF on common factors.

Statistics f1 f2 f3
ADF -1.506 -1.913 -2.763
Lags 2 2 2
AIC 0.0000 0.0000 0.0343
Note: The Augmented Dickey Fuller model is estimated with a constant. The
null hypothesis is that the variable is integrated with order 1. This hypothesis
is rejected at a value of -2.86 and -3.43 at 5 and 1 per cent significance levels,
respectively.

The parameters σ and β of the loading matrix are shown in Table 5.
The Start, the EM algorithm estimate and the True factors are shown in Figure

1, Figure 2 and Figure 3, respectively, for each factor. As we can see, the factors
estimated after the maximization are quite similar to the true values.

Finally, we show, for the Start factors and estimated factors, as suggested by
Peña & Poncela (2006), the mean absolute error (MAE) and root mean square
error (RMSE) in Table 6 to measure the efficiency of the EM algorithm.
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Table 5: Estimated parameters and statistics.

Concept V ar1 V ar2 V ar3 V ar4 V ar5 V ar6
σ 1.5222 0.8391 1.4767 1.4590 1.3841 1.3459
t-value 9.67(**) 2.97(*) 13.71(**) 12.99(**) 11.49(**) 10.58(**)
β(·, 1) -0.035 -0.006 0.348 0.546 0.739 0.942
t-value -0.32 -0.05 3.47(**) 2.84(*) 5.84(**) 5.10(**)
β(·, 2) 0.053 0.035 0.886 0.638 0.385 0.130
t-value 0.31 0.27 5.71(**) 4.49(**) 2.38(*) 1.95
β(·, 3) 0.888 0.476 0.074 0.062 0.026 0.004
t-value 6.35(**) 3.22(**) 0.60 0.50 0.16 0.03
Start f1 -0.328 -0.165 0.068 0.375 0.684 1
Start f2 0.076 0.038 1 0.555 0.112 -0.339
Start f3 1 0.506 -0.052 0.063 0.165 0.268
True f1 0 0 0.25 0.5 0.75 1
True f2 0 0 1 0.75 0.5 0.25
True f3 1 0.5 0 0 0 0
Note: To facilitate the comparison, we present the initial weights (resulting from the eigenvectors
of the autocovariance matrix with one lag) or START, the estimates after the EM algorithm or
Loading, with the TRUE weights that generated the series. (∗∗) and (∗) show significance at the
99 and 95 percent confidence intervals, respectively. The average computation time for the test
was 1:03 (min:sec), while the average EM estimation time was 6:17 (min:sec). We used a DELL
Precision M 6500 mobile workstation with 32 GB (RAM), Intel Core i7 (processor) and two HDDs
of 465 GB each.
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Figure 1: Start, estimated EM and true factor-1.

Table 6: Mean Absolute Error and Root Mean Square Error of the estimates.

Factors f1 f2 f3
Estimations MAE RMSE MAE RMSE MAE RMSE
Start 16.1086 19.3675 11.1100 12.9020 6.8305 7.9816
EM algorithm 14.6399 16.2678 4.3636 5.4261 1.143 1.4386

In summary, the Peña & Poncela (2006) test is a perfect complement to CA
because it is more consistent when the variables are involved in more than one
cointegration relationship and/or when there are common stationary factors. Ad-
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Figure 2: Start, estimated EM and true factor-2.
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Figure 3: Start, estimated EM and true factor-3.

ditionally, the Peña & Poncela (2006) test is less sensitive to a low number of
degrees of freedom and allows us to estimate the loading matrix associated with
each common factor.

4. Financial Market Data Analysis

Several works, such as those by Baillie & Bollerslev (1994) and Diebold, Gardea-
zabal & Yilmaz (1994), have tested the market efficiency hypothesis for the spot
exchange rate through the triangular arbitrage relation using the CA. The cross
exchange rate, or exchange rate of triangular arbitrage, is defined as follows:

ci,t = sj,t · sh,t (16)
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In (16), for day t and three currencies (i, j and h), c is the cross exchange rate
and s is the spot exchange market rate. In addition, each exchange market rate
has an offer price (bid) and a demand price (ask). The difference between these
two prices (spread) indicates the transaction costs. Taking logarithms in (16) to
obtain a linear triangular arbitrage relationship and including the bid-ask spread,
we obtain:

ln ci,t,ψ = ln sj,t,ψ + ln sh,t,ψ

ln si,t,b = δi + ln sj,t,a

ψ = {a, b}
(17)

Where a is the ask price, b is the bid price and δi is the transaction cost
for the currency i. When we operate with three currencies and their respective
bid and ask prices, there are six possible triangular relations among them: three
relationships of the ask type and three of the bid type. Thus, the problem is to
determine the true number of relations of long-term equilibrium among the three
currencies. For this, the general expression for arbitrage strategies (17) becomes
the following econometric model:

ln si,t,ψ = δi,ψ + δi,j,ψ · ln sj,t,ψ + δi,h,ψ · ln sh,t,ψ + ui,t,ψ

i 6= j 6= h ψ = {a, b} ui,t,ψ ∼ i.i.d.(0, $2)
(18)

where δi,ψ is the long-run result of triangular arbitrage for currency i with price
ψ and the parameters δi,j,ψ and δi,h,ψ are the weights in an arbitrage portfolio
of currencies j and h, respectively, whose expected values according to (17) are
|δi,•,ψ| = 1. In this context, we could estimate long-run relationships with the CA
or the DFA, but from a financial perspective, only two relationships are possible.

For our analysis, we use daily data on the Bid and Ask close prices of the
exchange rate of the JPY (Japan yen) against USD (US dollar) and EUR (EMU
euro), from 1-july-2002 to 30-december-2011: 2,478 observations from the Reuters
platform of inter-dealer markets. We first test univariate evidence of unit roots in
the sample (logarithms of the exchange rate and first difference of the log-exchange
rate) and reject the stationary hypothesis for all exchange rates in the data. Table7
shows that the logarithms of the exchange rates are non-stationary, while the first
difference of log (returns) is stationary; therefore, all the series, in logarithms, have
a unit root.

Then, we estimate the number of long-run relationships using the trace test and
Peña & Poncela (2006) test. The results are presented in Table-8. The CA results
show four long-run relationships among the six spot exchange market rates (bid
and ask price of JPY against USD and EUR), while the DFA indicates only two
cointegration relations (or equivalently, four common factors). Therefore, to test
whether triangular arbitrage opportunities exist, while the factorial analysis result
is correct, the trace test is inconsistent with two market cointegration relations, one
for the bid price and the other for the ask price, here due to the selection criteria
used performing poorly in selecting the proper lag, as Cheung & Lay (1993) note.
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Table 7: Stationarity test of the spot exchange rate.

ADF test of LN(exchange rate)
Currency AskUSD BidUSD AskEUR BidEUR

EUR -2.5583 [0] -2.5601 [0] – –
JPY -0.1143 [16] -0.1145 [16] -0.6834 [30] -0.6844 [30]

ADF test first difference of LN(exchange rate)
Currency AskUSD BidUSD AskEUR BidEUR

EUR -50.0916 [0] -50.1425 [0] – –
JPY -13.0692 [15] -13.0736 [15] -9.4456 [29] -9.4431 [29]
Note: The ADF test is estimated with a constant, and the [number of lags] is
estimated using the AIC. Critical values of rejection of non-stationarity are -2.86
and -3.44 at significance levels of 5 and 1 per cent, respectively.

Table 8: Cointegration rank with ask and bid prices.

Currency AIC lags rank trace test p-value common factors test value p-value
JPY 11 4 10.549 [0.593] 4 8.459 [0.489]
Note: Columns 2-5 show the results (using AIC criteria to select lags) of traditional cointegration
analyses (trace test). Columns 6-8 show the results of the dynamic factorial test, that is, the num-
ber of variables (six exchange rates) minus the number of common dynamic factors indicates the
cointegration rank.

5. Conclusions

When, in a univariate time series framework, the variable involved turns out
to be non-stationary, we transform it. However, when the problem is multivariate,
doing so may involve a loss of relevant information for modelling the data. In
this case, the cointegration analysis and the determination of the cointegration
relations allow us to model the relationships of long-run equilibrium among the
variables involved.

However, when variables are involved in more than one cointegration relation-
ship, estimating the parameters of the cointegration relations is conditioned upon
known constrains that define the problem. Furthermore, estimating the correct
number of non-correlated factors when one of them is stationary is also difficult
because the tests that are commonly used cannot distinguish between relationships
of cointegration and stationary factors. In this paper, we have analyzed simulated
series with known data-generating processes, the power of the cointegration test
of the trace and the common factors test proposed by Peña & Poncela (2006).

The results for both methodologies are similar, with high numbers of degrees of
freedom, except when there are stationary common factors, where the cointegra-
tion tests do not identify the correct number of factors. Moreover, when the data
sample sizes decrease, and/or the cointegration relationships involve more than
two variables, the Peña & Poncela (2006) methodology results overcome the coin-
tegration results. An added advantage of the Peña & Poncela (2006) methodology
compared with the cointegration analysis is that it allows for a better approxi-
mation to the data-generating process. In short, whereas the trace test presented
drawbacks for the stationary factors, a low number of observations and a high-
order autocorrelation of the series, Peña & Poncela (2006) test results showed
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more consistency. These conclusions were also confirmed when real market data
on spot exchange rates were used.
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