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Abstract

Estimating a variance component in the model of analysis of variance
with random effects and testing the hypothesis that the variance vanishes
are important issues in many applications. Such inferences are beyond the
confines of the standard (asymptotic) theory because a zero variance is on
the boundary of the parameter space and the maximum likelihood or an-
other reasonable estimator of variance has a non-trivial probability of zero
in many settings. We derive decision rules regarding the variance ratio in
balanced one-way analysis of variance, in both the frequentist and Bayesian
perspectives. We argue that this approach is superior to hypothesis testing
because it incorporates the consequences of the two kinds of error (incorrect
choice) that may be committed. An application to a track athlete’s training
performance is presented.

Key words: Analysis of Variance with Random Effects, Decision, Equilib-
rium, Expected Loss, Variance Ratio.

Resumen

La estimación de una de las varianzas en el modelo de análisis de la var-
ianza con efectos aleatorios y la prueba de hipótesis de que la varianza se
anula, son temas importantes en muchas aplicaciones. Tales inferencias es-
tán fuera de los confines de la teoría asintótica estándar porque una varianza
cero está en la frontera del espacio paramétrico y la máxima verosimilitud u
otro estimador razonable de una varianza tiene una probabilidad no trivial de
cero en muchos contextos. Nosotros derivamos una regla de decisión sobre la
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razón de varianzas en un análisis de varianza de un factor balanceado tanto
para la perspectiva frecuentista como la Bayesiana. Argumentamos que este
enfoque es superior a la prueba de hipótesis porque incorpora las consecuen-
cias de los dos tipos de error (elección incorrecta) que pueden cometerse. Se
presenta una aplicación sobre los rendimientos de los entrenamientos de un
atleta de pista.

Palabras clave: análisis de varianza con efectos aleatorios, decisión, equi-
librio, pérdida esperada, razón de la varianza.

1. Introduction

Testing the hypothesis that between-cluster variance vanishes in the mixed
model of one-way analysis of variance (ANOVA) and its extensions has received
considerable attention recently (Crainiceanu & Ruppert 2004, Greven, Crainiceanu,
Küchenhoff & Peters 2008, Giampaoli & Singer 2009, Andrade, Longford & Tovar
2014). The principal findings in these references are that asymptotic theory, or
its adaptation for the non-standard nature of the inferential problem, provides a
poor approximation for small and moderately large samples, and that the likeli-
hood ratio test statistic has a distribution well approximated by a mixture of the
constant zero and one or several χ2 distributions. The mixture probabilities are
specific to the setting (design).

We regard hypothesis testing as problematic in general, because it has no means
of incorporating the consequences of the two kinds of error (bad choice) that may
be committed (Longford 2005, 2012b). We follow up on this criticism by solving
the decision-theoretical version of the problem, in which we choose whether to act
as if the ratio of between- and within-cluster variances, ω = σ2

B/σ
2
W , were smaller

or greater than a given positive constant ω0 , called the threshold. We specify a
loss function (and later a set of loss functions) which quantify the consequences
(ramifications) of two kinds of bad decision. We choose the course of action, that
is, one of the two verdicts, ω ≤ ω0 and ω > ω0 , for which the expected loss is
smaller. We use asymmetric loss functions that reflect the dependence of the loss
on both the size of the error |ω−ω0 | and its sign, when the inappropriate action is
chosen. Choosing the appropriate action is associated with no loss. The outcome
of our analysis is the preferred action. In contrast, the outcome of a hypothesis
has to be interpreted, and the consequences of the two kinds of error considered
ad hoc.

We address the uncertainty about the loss function by considering a range
of plausible loss functions and, in effect, solving the problem for every one of
them. Owing to some monotonicity properties, it suffices to solve the problem
for the loss functions that delimit the plausible set. This can be regarded as a
form of sensitivity analysis. The outcome may be an inferential impasse, but its
threat is an incentive for more detailed elicitation and declaration of a narrower
range of loss functions. Solutions are developed in the Bayesian paradigm, using
prior densities with analytically convenient functional forms. They have a natural
frequentist interpretation in terms of additional observations (degrees of freedom).
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Decision Theory for One-Way ANOVA 183

For background to decision theory we refer to DeGroot (1970, Part 3), Berger
(1985) and Lindley (1985) , and for a new perspective to Longford (2013). An
application of our approach to compare two normally distributed random samples
is presented in Longford (2012a).

The next section presents a condensed background to one-way ANOVA with
random effects. For a comprehensive treatment of the topic, including numerous
generalisations, see Searle, Casella & McCulloch (2006). The following section
deals with decisions about the variance ratio, namely whether it is greater or
smaller than a given positive constant. The decision is based on the comparison
of the expected losses associated with the contemplated courses of action. Central
to our approach is the evaluation of configurations of values of estimates of the
variance ratio and of a parameter involved in the loss function for which the
two expected losses coincide. These configurations (equilibria), described by a
function, divide the space of loss functions to two subsets corresponding to the
preference for either action. Section 4 extends the results to unbalanced one-way
designs by approximations. An example from athletics training is presented in
Section 5. Apart from addressing a substantive issue, we use it to highlight the
inappropriateness of hypothesis testing as a basis for decision-making. Technical
derivations and related details are collected in a set of appendices.

2. Variance Ratio in One-Way ANOVA

In this section, we derive the ML estimator of ω and show that its distribution
is a linear transformation of an F distribution. This simplifies the discussion of
the properties of ω̂ and prepares the main development in Section 3.

We consider the balanced one-way ANOVA design

yik = µ+ δk + εik , (1)

with clusters k = 1, . . . ,K of m observations each; δk and εik , i = 1, . . . ,m, are
two mutually independent random samples from centred normal distributions with
respective variances σ2

B and σ2
W . Denote the variance ratio ω = σ2

B/σ
2
W and the

overall sample size n = Km.
By setting the partial derivatives of the loglikelihood for the model in (1) to

zero, we obtain the estimator µ̂ =
∑

k

∑
i yik/n and the equations

nσ̂2
W = e>e− m2ω̂

1 +mω̂

K∑
k=1

ē2k

n

1 +mω̂
=

1

σ̂2
W

m2

(1 +mω̂)2

K∑
k=1

ē2k , (2)

where e is the (n× 1) vector of residuals eik = yik− µ̂, composed of the K within-
cluster subvectors ek = (e1k , . . . , emk)>; ēk is the within-cluster average residual,
ēk = 1

me>k 1m , where 1m is the vector of unities of length m. See Appendix A for
the derivation of (2).
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We decompose e>e into the within- and between-cluster sum of squares,

e>e = SW + SB ,

where SW =
∑K

k=1(ek − ēk1m)>(ek − ēk1m) and SB = m
∑K

k=1 ē
2
k . For the

balanced design, these two statistics are independent and have scaled χ2 distribu-
tions with n−K and K − 1 degrees of freedom and respective scaling by σ2

W and
mσ2

B + σ2
W :

SW

σ2
W

∼ χ2
n−K

SB

mσ2
B + σ2

W

∼ χ2
K−1 .

By simple manipulation of (2) we obtain the identity

ω̂ =
m− 1

m

SB

SW
− 1

m
. (3)

Therefore ω̂ > 0 when SW < (m − 1)SB . When SW > (m − 1)SB , we truncate
ω̂ at zero, to conform with ω ≥ 0. To avoid any ambiguity, we denote by ω̂0 the
version of ω̂ given by (3), but truncated at zero. The random variable

X =
1

1 +mω

n−K
K − 1

SB

SW

has F distribution with K−1 and n−K degrees of freedom, and (3) is equivalent
to

ω̂ =
X − u
mu

, (4)

where u = K/(K − 1)/(1 +mω). Hence P(ω̂0 = 0) = P(ω̂ ≤ 0) = P(X ≤ u), but
this probability depends on ω.

Denote by fk1,k2
and Fk1,k2

the respective density and distribution function of
the F distribution with k1 and k2 degrees of freedom. To establish the properties
of the estimators ω̂ and ω̂0 , we use the identities

yfk1,k2(y) =
k1

k1 + 2
fk1 +2,k2−2(h1y) ,

y2fk1,k2(y) =
k1

h1(k1 + 4)
fk1 +4,k2−4(h2y) , (5)

where

hj =
k1
k2

k2 − 2j

k1 + 2j
, (6)

j = 1, 2. The identities are derived in Appendix B.
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3. Decision Theory for ω

In this section, we derive the posterior distributions of ω for a range of prior
distributions and use them to formulate a decision rule for choosing between the ac-
tions (options) A and B. Although the derivations refer to the Bayesian paradigm,
they retain a frequentist interpretation by equating informative priors to specific
data alterations. The decision rule is based on the balance of the expected losses
for the two options; we prefer the option for which the expected loss is smaller.

Suppose two courses of action, A and B, are contemplated. They are comple-
mentary (one of the actions has to be taken) and exclusive (both actions cannot
be taken). Suppose further that A is appropriate when ω ≤ ω0 and B when
ω > ω0 ; ω0 is a given scalar, but ω is not known, and all the information about it
is contained in the vector of outcomes y and a prior distribution for ω.

The inverse of the identity in (4) is

ω =
v̂

X
− 1

m
, (7)

where v̂ = K(ω̂ + 1/m)/(K − 1). This operation is associated with the so called
fiducial argument, originating from Fisher (1935, 1956). Its validity has been
extensively discussed (Lindley 1985, Seidenfeld 1992, Hannig 2009) . In fact, (7) is
an example of failure of the argument, because the solution ω as a random variable
has a positive probability of being negative.

We consider the non-informative improper prior g(y) = 1, y ≥ 0, and a para-
metric class of proper priors for ω, and base our choice of option (the course of
action) on the posterior distribution of ω. The proper prior densities are

g(y) =
m(q − 1)

(1 +my)q
, (8)

for y > 0 and a parameter q > 1. A selection of these densities is drawn in Figure 1
for m = 10, with the value of the parameter q printed at the left-hand margin. For
large q, the densities are highly informative and have large values in the vicinity
of ω = 0. We acknowledge that the presence of m in the prior densities may be
seen as problematic.

The posterior densities of ω for these priors as well as the (improper) constant
prior are derived in Appendix C. They are given by the expression

gq(y; ω̂) =
Hqm

1 +mω̂

fk1(q),k2(q){Hqz(y; ω̂)}
1− Fk1(q),k2(q){Hqz(0; ω̂)}

, (9)

where z(y; ω̂) = (1+my)/(1+mω̂), k1(q) = n−K−2q+2 and k2(q) = K+2q−3
and

Hq =
n−K
K

k2(q)

k1(q)
.

The non-informative prior corresponds to q = 0. For q = 1, when the prior is not
defined, the ‘posterior’ density in (9) is well defined as

g1(y; ω̂) =
H1m

1 +mω̂

fn−K,K−1{H1z(y; ω̂)}
1− Fn−K,K−1{H1/(1 +mω̂)}

,
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and H1 = (K − 1)/K. This is the conditional distribution of ω in (7) given that
ω > 0. The posterior distribution for q > 1 can be interpreted as an addition
of 2q clusters to the data, with the corresponding reduction of the cluster size m
to n/(K + 2q), to keep the overall sample size n unchanged. The estimator ω̂ is
also changed, multiplied by H1/Hq . Thus, a prior in (8) is equivalent to altering
the dataset, and the posterior distribution of ω can be treated as the sampling
distribution of this altered dataset. Of course, we have to permit fractional within-
cluster sample sizes and numbers of clusters. In what follows, we drop q in the
arguments of k1 and k2 and in the subscript of H.

0.0 0.2 0.4

0
5

10
15

20

ω

g(
ω

)

1.2

1.5

2.0

3.0

q  

Figure 1: A set of prior densities given by (8) for cluster size m = 10.

We assume that the appropriate course of action results in no loss. However,
when B is chosen (claiming that ω > ω0), even though ω ≤ ω0 , we incur unit loss,
and when A is chosen even though ω > ω0 , the loss is equal to R. We refer to
R as the penalty ratio. We want to choose the action for which the expected loss
is smaller. The choice is based solely on the posterior distribution of ω. Table 1
illustrates the loss function, with values of 0, 1 and R for the subsets of the space
of pairs (ω̂, ω). It represents the client’s perspective, and is therefore subjective.
This perspective may be difficult to establish and quantify by specifying the value
of R. We address this issue in Section 3.2 by considering a range of plausible
values of R, and later we introduce classes of loss functions other than piecewise
constant.

Table 1: Piecewise constant loss function.
Reality

ω ≤ ω0 ω > ω0

Decision
A (ω ≤ ω0) 0 R

B (ω > ω0) 1 0
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The expected loss associated with action B is

LB =

∫ ω0

0

gq(y; ω̂) dy

=
Hm

1 +mω̂

1

1− Fk1,k2
{Hz(0; ω̂)}

∫ ω0

0

fk1,k2{Hz(y; ω̂)}dy

=
Fk1,k2{Hz(ω0; ω̂)} − Fk1,k2{Hz(0; ω̂)}

1− Fk1,k2
{Hz(0; ω̂)}

.

Further, LA = R(1− LB). We define the balance function as ∆L = LA − LB ;

∆L(ω̂;R,ω0) = R− (R+ 1)LB . (10)

We choose action A when ∆L < 0 and action B when ∆L > 0. For greater values
of ω̂ we should be more inclined toward choosing action B, implying that ∆L, as
a function of ω̂, is increasing. We have no analytical proof of this conjecture. The
respective limits of ∆L as ω̂ → −1/m and ω̂ → +∞ are −1 and R. Therefore
there is an equilibrium value ω∗q , for which ∆L(ω∗q ;R,ω0) = 0. In an exhaustive
(empirical) search, we have found this equilibrium to be unique. When ω̂ < ω∗q
we choose A and when ω̂ > ω∗q we choose B. Note that the equilibrium may be
negative; in fact, ω∗q < 0 when

∆L(0) =
Fk1,k2

{H(1 +mω0)} − Fk1,k2
(H)

1− Fk1,k2(H)
>

R

R+ 1
.

This is equivalent to either of the following conditions

R >
Fk1,k2

{H(1 +mω0)} − Fk1,k2
(H)

1− Fk1,k2
{H(1 +mω0)}

ω0 <
1

Hm
F−1k1,k2

{
R+ Fk1,k2(H)

R+ 1

}
− 1

m
,

that is, when the consequences of choosing action B incorrectly are sufficiently
serious (large R) or we are very strict about what we regard as small (small
ω0). The equilibrium value is found by the Newton method or a similar algorithm.
Methods that use the derivatives ∂∆L/∂ω̂ are not practical because the expressions
involved are quite lengthy.

The decision rule based on the sign of ∆L is substantially different from the
outcome of a hypothesis test based on an F distribution. As an aside, we note
the complications with ω possibly being at the boundary of the parameter space.
The hypothesis in a test is often that ω = 0. However, in such a case we would
be satisfied if the hypothesis were not rejected even when ω is positive but small.
The value of ω0 for the decision rule is comparable to the largest value of ω that
we would still call ‘small’ (the largest unimportant value). In this perspective,
ω0 = 0 is not appropriate. For a decision, we always choose ω0 > 0. In decision
theory, the two alternatives, ω ≤ ω0 and ω > ω0 , have equal status, whereas in
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hypothesis testing the hypothesis defines the default course of action, which is
overruled only when there is sufficient evidence against it. In hypothesis testing,
the semicontinuous prior for ω, with a mass at zero, can be declared. Such a
distribution is a mixture of the mass at zero and a continuous distribution. For a
given continuous component, greater prior mass at zero leads to greater posterior
mass at ω = 0. Transparency of the declaration, a clear justification for the
declared mass, is therefore essential. In the approach we propose, we do not have
to resort to such a device.

Instead of ω = 0, we may test the hypothesis that ω ≤ ω0 . However, then the
power of the test for values slightly greater than ω0 is very small, so ω0 is not a
tangible quantity in hypothesis testing as it is in our approach, where it represents
a clear boundary between the two options. Note that tests (and decisions) for ω
and the intraclass correlation coefficient, ρ = σ2

B/(σ
2
B +σ2

2), are equivalent because
ρ = 1/(1 + 1/ω) is a monotone function of ω. Although the scale of ρ is preferred
by some for interpretation, evaluations for ω̂ are easier for both hypothesis testing
and decision making because of its relation to F distribution.

Having to set the penalty ratio R might seem as an additional burden to the
analyst. However, its importance is obvious from how ω∗q depends on R. Figure 2
displays the values of ω∗0 as a function of R for the pairs (K,m) set to (4, 6), (7, 10)
and (10, 20), and thresholds ω0 = 0.1 and ω0 = 0.25 drawn by black and gray
colors, respectively. The noninformative prior (q = 0) is assumed. The functions
are drawn on the original (linear) and log scales, to obtain high resolution for both
large and small values of R.
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Figure 2: The equilibrium values ω∗ as functions of the penalty ratio R for number of
clustersK and cluster sizem indicated in the left-hand panel; non-informative
prior for ω.

The functions are decreasing with limits +∞ as R→ 0 and −1/m as R→ +∞.
They are drawn either for R < 20 or up to the value of R at which the equilibrium
reaches the minimum of −1/m. For (K,m) = (10, 20), the equilibria are above
the minimum of −0.05 for both ω0 = 0.1 and 0.25 even at R = 20, but for the
other settings the limits are reached for R < 20.
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For very small penalty ratio R, action B is selected only for extremely large
values of ω̂ because the error of incorrectly choosing action A has no serious reper-
cussions. When the equilibrium is at −1/m we choose action B for all values of ω̂.
The equilibrium functions ω∗(R) have steep gradients for small values of R. The
equilibria have much less curvature on the log scale. Higher value of ω0 is associ-
ated with uniformly higher equilibrium. The differences of the pairs of equilibrium
functions decrease with R.

3.1. Piecewise Linear Loss

In some settings, the loss depends not only on the sign of the error made, but
also on its magnitude |ω − ω0 |. One such class of loss functions are the piecewise
linear, defined as ω0 − ω when we choose B inappropriately (when ω ≤ ω0) and
R(ω − ω0) when we choose A inappropriately (when ω > ω0).

For a given value of ω̂, we compare the expected losses LA and LB , and choose
the action with the smaller expected loss. In Appendix D, we derive the following
expression for the balance function ∆L = LA − LB ,

∆L =
1 +mω0

m

Fk1,k2
{G(ω0)} − Fk1,k2

{G(0)}
1− Fk1,k2

{G(ω0)}
− K(n−K + 2q − 2)

(K + 2q − 5)(n−K)

× 1 +mω̂

m

Fk1+2,k2−2{h1G(ω0)} − Fk1+2,k2−2{h1G(0)}
1− Fk1,k2{G(0)}

,

(11)

where G(y) = Hqz(y; ω̂) = Hq(1 +my)/(1 +mω̂). This identity holds only when
K > 3−2q. Otherwise LA is infinite, so action B is chosen, irrespective of ω̂, ω0 or
R. When ∆L is well defined (finite) we choose A if ∆L(ω̂;R,ω0) < 0, and choose
B otherwise.

Figure 3 presents the equilibrium functions for a selection of designs (K, m,
indicated in the diagram), and ω0 set to 0.1 and 0.25 (distinct colors), as functions
of the penalty ratio R. All six functions in the diagram are non-increasing—
greater R makes the choice of B more attractive. Each equilibrium converges to
the minimum value of ω̂, equal to −1/m. For ω0 = 0.1, K = 8 and m = 15, this
limit is reached at R .

= 5.92 < 20. For ω0 = 0.1, K = 10 and m = 14, the limit
is reached at R .

= 23.26, off the horizontal scale. Smaller value of ω0 is associated
with lower equilibrium, and therefore increased preference for action B.

Earlier we conjectured that the balance function for the piecewise constant loss
is increasing. This is not the case for the piecewise linear loss in general. A set
of examples is drawn in Figure 4 for K = 8 and m = 15. All the functions in the
diagram converge to zero as ω̂ → −1/m. However, for R smaller than a critical
value R† = R(K,m), the balance has a dip before increasing. Without choosing
the initial values carefully, a search for the root of ∆L may converge to −1/m,
even when there is another root. For R < R† , the balance in favor of action A is
narrower for ω̂ close to −1/m than for larger values of ω̂ because larger values of
ω̂ yield posterior distributions with greater dispersion. This adds strength to the
choice of B, although the decision rule remains reasonable:
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Figure 3: The equilibrium values ω∗ as functions of the penalty ratio R for number
of clusters K and cluster size m indicated in the left-hand panel. Piecewise
linear loss and non-informative prior for ω.
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Figure 4: The balance functions ∆L(ω̂) for the piecewise linear loss; K = 8, m = 15,
ω0 = 0.2 and non-informative prior for ω. The values of R are indicated on
the curves.

• for R up to a certain value R∗, choose A for ω̂ smaller than a critical value;
otherwise, choose B;

• for R greater than this value, choose B for all values of ω̂.

The borderline value R∗ depends on K, m and ω0 .
A more radical dependence of the loss on the magnitude of the error is rep-

resented by the quadratic loss function, given as (ω − ω0)2 when we erroneously
choose action B, even though ω < ω0 , and as R(ω − ω0)2 when we choose action
A, even though ω > ω0 . The balance function for this loss is derived in Appendix
E.
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3.2. Plausible Loss Functions, Priors and Values of ω0

The values of the penalty ratio R and ω0 are elicited from the subject-matter
expert (the client). Often no single pair of values is arrived at; instead, ranges of
plausible values R = (RL , RU) and Ω = (ω0L , ω0U) are declared. A range R (or
Ω) is said to be plausible if any value R (or ω0) outside the range can be ruled
out. Thus, if a range is plausible, then so is any (wider) range that contains it.

With plausible ranges of R and ω0 , we might solve the problem for a grid of
plausible values (R,ω0) ∈ R × Ω and choose action A or B if the expected loss
with that action is smaller for every plausible pair (R,ω). If action A is preferred
for some plausible pairs (R,ω0) but action B for some others, then an impasse
results, which can be resolved only by reviewing and reducing the ranges R and
Ω. Uncertainty about the prior parameter q can be dealt with similarly.

We assume that the plausible values of R and ω0 form a rectangle, R × Ω.
In practice, it suffices to find the signs of the balance ∆L for the vertices of this
rectangle. If ∆L < 0 at all four vertices, then action A is selected; if ∆L > 0 at
all four vertices, then action B is selected. In these two cases, we have unequivocal
decisions; the same action is chosen for all plausible configurations of R and ω0 .
Otherwise we reach an impasse. If the plausible ranges of R and ω0 are reviewed
in further elicitation, the reduced ranges have to remain plausible.

In an alternative approach, we split the space of all pairs (R,ω0) according
to the sign of ∆L(ω̂;R,ω0). For ω0 close to zero, LB is very small, and so B
is the preferred action. For very large ω0 , action A is preferred. For ω̂ and ω0

fixed, the balance functions are linear in R. Therefore ∆L = 0 for a unique value
R∗ = R(ω0 ; ω̂). This function of ω0 and ω̂ splits the space (R,ω0) to the regions
in which A or B has smaller expected loss. Figure 5 displays these functions for
piecewise constant loss and a selection of values ω̂ indicated at the right-hand
margin. The curves drawn by black color are for the design (K = 8, m = 11)
and those by gray color for (K = 8, m = 10), to explore the dependence of R∗
on m. Less information in the data requires smaller penalty ratio R to reach the
balance of the two expected losses. This applies also when K is reduced; details
are omitted.

If plausible ranges are declared for R and ω0 and R∗ intersects the plausible
rectangle, we have an impasse, because for some plausible pairs (R,ω0) one action,
and for other pairs the other action is preferred. The equilibrium value R is an
increasing function of ω0 . Therefore, if the same action is preferred for both
extremes RL and RU , then it is preferred for all R ∈ (RL , RU). If one action is
preferred for some plausible values of R, say, action A for R ∈ (RL , RQ), RL <
RQ < RU , and action B for R ∈ (RQ , RU), then we have an impasse that can be
resolved only by resuming elicitation to narrow down the plausible range (RL , RU).

Although the standard Bayesian analysis deals with a single prior, it is some-
times practical to consider a range of plausible priors, or prior parameters, (qL , qU),
reflecting the lack of consensus in the elicitation or uncertainty admitted by the
expert. See Longford (2010) for an application and related discussion. An example
is given in Figure 6 for the design with K = 10 and m = 10. Piecewise quadratic
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Figure 5: The equilibrium functions R∗ = R(ω0 ; ω̂) for the piecewise constant loss
function and values of ω̂ indicated at the right-hand margin; K = 8 and
m = 11 (black lines) and m = 10 (gray).

loss is assumed. The functions drawn in the diagram are the equilibrium functions
R(q) which satisfy the identity ∆Lq(ω̂;R(q), ω0) = 0. The solutions for ω̂ = 0.05
are drawn by black lines for the values of ω0 printed at the right-hand margin.
The solutions for ω̂ = 0.055 and the same values of ω0 are drawn by gray lines.
For ω0 = 0.10 the two curves are difficult to discern.
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Figure 6: The equilibrium functions R(q) for the piecewise quadratic loss function and
values of ω0 indicated at the right-hand margin and at the top; ω̂ = 0.05
(black lines) and ω̂ = 0.055 (gray), K = 10 and m = 10. The plausible
rectangle is filled by gray color, and its reduced version is delimited by dots.

Suppose the value ω̂ = 0.05 was realised and the plausible range (0.15, 0.20)
was declared for ω0 . Further, suppose the respective plausible ranges for R and q
are (4, 6) and (1.3, 1.4); this rectangle is filled in the diagram by gray color. The
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plausible rectangle is above the equilibrium curve R(q) for any plausible value of
ω0 ∈ (0.15, 0.20), so action B is selected unequivocally.

Suppose next that the plausible range of ω0 is (0.20, 0.25). Then nearly the
entire plausible rectangle lies between the functions R(q) for ω0 = 0.20 and ω0 =
0.25. In this case, we have an impasse—for some plausible values of ω0 action A
and for other values action B is preferred. Finally, suppose the plausible range of
ω0 is (0.25, 0.30). The plausible rectangle intersects the region delimited by the
functions R(q) for ω0 = 0.25 and 0.30, but if the lower limit of plausible values
of q could be increased, or the upper limit for R reduced, the reviewed plausible
rectangle might be entirely under the curve R(q) for ω0 = 0.25 and action A would
then be preferred unequivocally. Such a reviewed plausible rectangle is delimited
in the diagram by dots.

These examples imply a strong incentive to declare as small a set of plausible
values as possible for all the parameters involved, to reduce the chances of an
equivocal decision. But the client has to be comfortable with the implication that
all pairs outside the declared set can be ruled out.

4. Designs Without Balance

For designs without balance we do not have a closed-form expression for the
conditional distribution of ω̂ given ω, nor a tractable posterior density of ω. We
approximate this distribution by its match among the balanced designs. In the
approximation, we use the synthetic number of clusters K ′ = n2/

∑
k n

2
k and the

harmonic mean of the cluster sizes m′ = K/
∑

k 1/nk in the respective roles of K
and m. These proposals are based on Potthoff, Woodbury & Manton (1992) and
Longford (2000). Potthoff et al. (1992) derived a generalisation of the equation
for K ′ by matching the information in a sample with unequal sampling weights
with a sample that would have equal weights. The approximation for m′ is derived
directly from the information about the variance ratio in the likelihood maximi-
sation. We note that these approximations are poor for large ω, such as ω > 0.5.

Figure 7 presents the histograms of the ML estimates ω̂ obtained in 10,000
replications each for the values of ω listed in the titles for the design with two
clusters each of size 6, 7 and 8, for which K ′ = 5.92 and m′ = 6.90. The ap-
proximation is not perfect, but in the context of substantial dispersion of ω̂ it is
acceptable.

An alternative is to assume that the statistic SB is associated with K − 1
degrees of freedom and SW with degrees of freedom in the range (nl , nu), where
nl = (K − 1)ml and nu = (K − 1)mu , and ml and mu are the sample sizes of the
smallest and largest clusters, respectively, 6 and 8 in the example above. Then
we solve the problem for K(ml − 1) and K(mu − 1) degrees of freedom associated
with SW . If we arrive at the same conclusion in both cases, then it applies also to
the original dataset. The method is poorly suited for extremely unbalanced data.
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Figure 7: The empirical distribution of ω̂ (histogram) for the design with sample sizes 6,
6, 7, 7, 8 and 8 and the fitted distribution based on K′ = 5.92 and m′ = 6.81
(solid line), for ω = 0.0, 0.05, . . . , 0.025 (title). Histograms based on 10,000
replications.

Another alternative is motivated by methods for missing data (Little & Rubin
2002, Rubin 2002). We assume that the (unbalanced) observed dataset is incom-
plete, and its complete version is balanced, with mu observations in each cluster.
The EM algorithm (Dempster, Laird & Rubin 1977) is particularly easy to im-
plement for this setting, but it does not yield the sampling distributions of the
estimators. By multiple imputation, we generate a number of plausible comple-
tions of the observed data, and then analyse each dataset separately. If in every
case we prefer the same action, we have an unequivocal conclusion. Otherwise an
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impasse results. The problem with this approach is that the chances of an impasse
increase substantially when the sample sizes nk are in a wide range, because the
missing data contains a large fraction of the complete information.

We note that a similar approach to hypothesis testing requires an adjustment
because by augmenting the observed (incomplete) dataset to make it balanced
we bias the results toward the alternative. See Li, Meng, Raghunathan & Rubin
(1991) for a solution.

5. Application

We illustrate the methods on the data from ten training sessions of a track
athlete. Each session comprised eight 400 metre runs (one lap of the track),
separated by jogging 400 metres for recovery. The athlete ran unaccompanied,
and was not informed about any intermediate times (e.g., at 200 metres), nor
when completing a lap; he could inspect the eight times only at the end of the
session. He aimed to run each lap in 55.0 seconds. The purpose of the sessions was
to develop a good judgement of speed, discounting any fatigue and any external
factors (weather). The collected data, times in seconds with precision to one
decimal place, are presented in Figure 8, with sessions marked as A – J.
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Figure 8: The times for running 400 metres (a lap of the track) in sessions A – J com-
prising eight separate laps (repeats) each.

We ignore the sequential order of the runs and sessions. Running a lap in 55.0
seconds does not require a full effort of the athlete, who could run the distance in
well below 50 seconds. Of course, fatigue accumulates over the laps, but there is an
equal threat of under- and over-compensating for it. Also, initial data exploration
suggests no presence of a trend over the eight laps nor any temporal dependence
across the sessions. The sufficient statistics for the random-effects ANOVA are
SW = 5.595 and SB = 1.797 and the sample mean is µ̂ = 55.16. The maximum
likelihood estimates (MLE) of the variance components are σ̂2

W = 0.0799 and
σ̂2
B = 0.0125.
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If the times achieved do not differ much across the sessions (and are sufficiently
close to 55.0 seconds on average), then the athlete can progress to the next stage
of training, for which the ability to maintain the particular speed is essential. One
aspect of the ability is a sufficiently small value of the variance ratio ω; its MLE is
ω̂ = 0.156. Elicitation from the coach and his colleagues concluded that ω ≤ 0.20 is
necessary for progressing to the next stage and that piecewise linear loss functions
with R ∈ (1/5, 1/3) are plausible. Noninformative prior (q = 0) is assumed.

Contrary to popular perceptions, (professional) athletes and their coaching and
management staff are well aware of uncertainty about future fitness and perfor-
mance, which they consider in preparing training schedules, planning attendance
in competitions and assessing the athlete’s prospects. A lot of data is nowadays
collected in training, and statistical definitions of distributions and their dispersion
are relatively easy to introduce. In the elicitation process, we communicated with
the coaching staff mainly through graphs of large (simulated) sets of times, and
asked them whether the displayed variation was acceptable or not for progressing
to the next stage. We settled first on ω ∈ (0.17, 0.24) and later agreed on ω = 0.20.
Disagreement and uncertainty persisted about the value of R, which compares the
harm done by the two kinds of erroneous choice, and that is why we consider a
plausible range for it.

Figure 9 summarises the results of the analysis by the plot of the equilibrium
function (marked q = 0). The plausible range of R is marked by shading and the
value of ω̂ by horizontal dots. Since ω̂ is above the equilibrium function throughout
R, the action with smaller expected loss is not to proceed to the next stage; the
estimated variance ratio is too large. The equilibrium values ω∗ are 0.101 and
0.074 for the respective values R = 1

3 and 1
5 . For R = 0.075, ω∗ = 0.157, so the

decision would not be affected if values of R much smaller than 1
5 were regarded

as plausible.
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Figure 9: The equilibrium values of ω for the study of the track athlete’s times for 400
metres.
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If instead of a single value, ω0 = 0.20, the plausible range ω0 = (0.17, 0.24) were
agreed, as it was in an earlier round of elicitation, the equilibrium functions drawn
by black dashes and marked by the values of ω0 would be obtained. Since both
curves are entirely below ω̂ = 0.156 for all R ∈ (0.20, 0.33), the conclusion ‘Not to
proceed’ would not be affected. By trial and error, we found that for ω0 = 0.272
the equilibrium at R = 0.2 is equal to ω̂. Thus, if a standard more lenient than
ω0 = 0.272 for the athlete’s consistency were plausible, then the decision would
be equivocal (in doubt) because the equilibrium curve would then intersect the
horizontal line at ω̂ for a plausible value of R. For ω0 = 0.32, the equilibrium
curve is equal to ω̂ at the upper limit of plausible values of R, 0.33. So, if ω0 were
greater than 0.32 the appropriate decision would be ‘To proceed’.

We add a word of caution at this point. Suppose the prior with q = 1.01 is
adopted. The proximity of q to unity might suggest that this prior is only mildly
informative. However, the equilibrium function, drawn by gray color, differs from
the equilibrium for q = 0 substantially. In fact, with q = 1.01, the decision
to proceed (that ω is small) would be preferred, because the ‘gray’ equilibrium
function is entirely above ω̂ throughout the plausible range of R.

In an established approach, we would test the hypothesis that ω ≤ 0.20. This
hypothesis is not rejected; the p value, derived from (4), is 0.48. Commonly, one
would conclude that the action appropriate when the hypothesis applies should
be taken. Such a decision process is logically incorrect, confusing failure to reject
a hypothesis with its acceptance. That is, the analysis started by assuming that
the hypothesis is valid, and no contradiction with it was found. The appropriate
conclusion is that of ignorance, that we do not know whether ω ≤ 0.20 or ω > 0.20,
or more precisely, that the data yield sufficient evidence for neither the hypothesis
nor the alternative. We note that the hypothesis ω > 0.20 (exchanging the roles
of the original hypothesis and alternative) would not be rejected either, further
compounding the illogicality of a decision based on the result of a hypothesis test.

6. Discussion and Conclusion

The outcome of a hypothesis test is often used to support a decision to continue
an analysis as if the hypothesis or the alternative were valid. This is widely
acknowledged to be inappropriate when we fail to reject the hypothesis, and yet
act as if it did apply, but this is often ignored in practice. In our perspective, such
use of a hypothesis test is inappropriate even when the hypothesis is rejected, and
thus evidence against it obtained, because the consequences of the type II error
are not taken into account. The pragmatic arguments for hypothesis testing, such
as relatively simple computational procedures and reference to asymptotic theory,
do not have a good foundation in the case of variance estimation, especially in
experiments with small or moderate sample sizes, in which the expenditure on the
study and the ramifications of the errors of the two kinds are important factors.

In our approach based on decision theory, the consequences of the two kinds
of bad decision are represented by a loss function, and the uncertainty about
it by a set of plausible loss functions. The loss functions are elicited from the
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expert (client), together with the prior information about the variances. The prior
distribution of the variances is useful, but specifying it is not an imperative in our
analysis. In fact, it can be formulated as an alteration of the realised dataset, so
the analyst does not have to subscribe to the Bayesian paradigm. Plausible priors
(or prior data) and loss functions have an important role as conduits for sensitivity
analysis, exploring how the conclusion is changed as a result of (small) changes in
the input. This is greatly simplified by the choice of classes of loss functions, for
which the balance is a linear function of the penalty ratio R; see (10), (11) and
(16). The priors used in them involve the within-cluster sample size m. They are
chosen so that the posterior would have a closed form. An alternative to them is
the class of uniform priors on (0, ω†), with a value or a plausible range specified
for ω†. The balance functions with these priors are obtained from (11) and (16)
by replacing each term 1−Fk′

1,k
′
2
{hG(ω0)} with Fk′

1,k
′
2
{hG(ω†0)−Fk′

1,k
′
2
{hG(ω0)},

where respectively k′1 = k1(q), k1(q) + 2 or k1(q) + 4 and similarly for k2 ; h = 1,
h1 or h2 .

Restricted maximum likelihood (REML; Patterson and Thompson, 1971) is
often considered for random effects models. Our method has a simple adaptation
for REML. It amounts to setting u = 1/(1 +mω) in (4) and

Hq =
n−K
K − 1

k1(q)

k2(q)

in (9). No other changes are required in the subsequent equations.

The task solved by our approach is to select the action that is appropriate when
the unknown value of the variance ratio ω is smaller than a set threshold ω0 > 0,
or the complementary action; ω0 can be interpreted as the smallest important
deviation from zero. Although a typical hypothesis test about ω is for ω = 0, failure
to reject it is regarded as appropriate when ω is positive but small. Our approach
requires a quantification of what ‘small’ means, by ω0 , and setting it to zero would
not be reasonable. Its magnitude should be informed by the methods (steps in
the analysis or in experimentation) contemplated after the decision. Uncertainty
about it and the contentious nature of having to specify a single value are dealt
with by using a plausible range for ω0 .

Our development is exact only for balanced (one-way) designs; the proposed
solutions for unbalanced designs make references to the results for similar bal-
anced designs. Extensions to more complex (multiway) designs are on our re-
search agenda; for such designs the reference to balanced designs may be rather
restricting.

Decision theory for some elementary statistical problems, such as estimating
a mean (and fixed-effects ANOVA), a variance, and classifying units to two cat-
egories, is developed in Longford (2013). With fixed-effects ANOVA, the group-
level means µk , k = 1, . . . ,K, are parameters, and µ1 = · · · = µK is the commonly
tested hypothesis. A measure of the departure from this hypothesis, needed for
applying our approach, can be defined through the (finite-sample) variance of the
means, σ2

G =
∑

k(µk − µ)2/K, which is similar to, but not the same as σ2
B . The
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variance σ2
G is estimated by the method of moments, adjusting

∑
k(µ̂k − µ̂)2/K

for its bias.
All computing was carried out in R, and the software developed is available from

the first author (NTL). All our evaluations are based on closed-form expressions
for the expected losses, and are executed instantly. When a prior is declared for
which the posterior density has to be evaluated numerically, Monte Carlo Markov
chain (MCMC) calculations can be employed (Robert & Cassella 2004) Large sam-
ples from the joint posterior distribution of the parameters are generated and the
integrals involved in the expected loss are evaluated from these samples empiri-
cally. Much of the calculus, similar to that presented in the Appendices, can be
dispensed with, in exchange for approximate results (due to the stochastic nature
of MCMC) and concerns related to the convergence of the chain(s). Although
MCMC evaluations are computationally much more demanding they should not
restrict the scope of sensitivity analysis, which we regard as an integral element of
our method.

[
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Appendix A. Maximum Likelihood Estimation

We derive the score function for the model in (1). The joint distribution of the
n× 1 vector of outcomes y is normal with block-diagonal matrix with (identical)
blocks σ2

WWk = σ2
WW1 = σ2

W(Im +ωJm) corresponding to clusters k = 1, . . . ,K;
Im is the m×m identity matrix and Jm the m×m matrix of unities. Denote by
1m the m × 1 vector of unities, so that Jm = 1m1>m . Let ek = yk − µ1m be the
vector of residuals in cluster k.

The loglikelihood is l = l1 + · · ·+ lK , with cluster-level contributions

lk = −1

2

{
m log

(
2πσ2

W

)
+ log (det W1) +

1

σ2
W

e>k W−1
1 ek

}
= − 1

2

[
m log

(
2πσ2

W

)
+ log(1 +mω) +

1

σ2
W

{
e>k ek −

ω

1 +mω

(
e>k 1m

)2}]
,

using the identities det(W1) = 1 + mω and W−1
1 = Im − ω/(1 + mω) Jm . The

respective score functions for σ2
W and ω are

∂l

∂σ2
W

= − 1

2σ4
W

{
nσ2

W − e>e +
ω

1 +mω

K∑
k=1

(
e>k 1m

)2}

∂l

∂ω
=

1

2

{
− n

1 +mω
+

1

σ2
W

1

(1 +mω)2

K∑
k=1

(
e>k 1m

)2}
.

The expressions for the roots of these equations are given in (2).

Appendix B. A Link Among F Densities

We prove the identities in (5). By Γ2 we denote the half-gamma function,
Γ2(x) = Γ( 1

2x). The density of the F distribution with k1 and k2 degrees of
freedom is

fk1,k2
(y) =

Γ2(k1 + k2)

Γ2(k1) Γ2(k2)

(
k1
k2

)k1/2 yk1/2−1(
1 + k1

k2
y
)(k1+k2)/2

. (12)

Hence

yfk1,k2(y) =
Γ2(k1 + k2)

Γ2(k1 + 2)Γ2(k2 − 2)
,

(
k1 + 2

k2 − 2

)k1/2+1
(h1y)k1/2(

1 + k1+2
k2−2

h1y
)(k1+k2)/2

=
k1

k1 + 2
fk1+2,k2−2(h1y),

(13)

where
h1 =

k1
k2

k2 − 2

k1 + 2
.
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The identity in (13) is obtained by matching the expression for yfk1,k2
(y) with an-

other F density. First, the factor yk1/2 implies k1 +2 degrees of freedom instead of
k1 ; then the term 1+yk1/k2 in the denominator implies the argument h1y instead
of y, and its exponent (k1 + k2)/2 implies the change from k2 degrees of freedom
to k2 − 2. The constant factors remaining from the match with fk1+2,k2−2(h1y)
reduce to k1/(k1 + 2). By reusing the identity in (13) we obtain

y2fk1,k2(y) =
k1

k1 + 2
yfk1+2,k2−2(h1y)

=
k1

h1(k1 + 4)
fk1+4,k2−4(h2y),

(14)

where
h2 = h1

k1 + 2

k2 − 2

k2 − 4

k1 + 4
=
k1
k2

k2 − 4

k1 + 4
.

Appendix C. Posterior Distribution of ω

Using the terminology associated with the Bayes’ theorem, the conditional
distribution (ω̂ |ω) is derived from (4). Its density is

mufK−1,n−K(u+mux) =
K

K − 1

m

1 +mω
fK−1,n−K

(
K

K − 1

1 +mx

1 +mω

)
.

For ω we choose the noninformative prior g(y) = I(y > 0), where I denotes the
indicator function; its result is unity when its argument as a statement is correct,
and is equal to zero otherwise. The posterior distribution of ω is the standardised
product of the densities of (ω̂ |ω) and ω:

g(y | ω̂) =
Dm

1 +my

1

B2(K − 1, n−K)

(
K

n−K

)(K−1)/2(
1 +mω̂

1 +my

)(K−1)/2−1

×
(

1 +
K

n−K
1 +mω̂

1 +my

)−(n−1)/2
I(y > 0) ,

where B2(k1, k2) = Γ2(k1 + k2)/Γ2(k1)/Γ2(k2) and D = D(ω̂;K,n) is the stan-
dardising function (the denominator in the Bayes’ theorem). By rearranging the
penultimate factor as a power of a linear function of 1 +my, we obtain

g(y; ω̂) =
Dm

1 +mω̂

I(y > 0)

B2(n−K,K − 1)

(
n−K
K

1 +my

1 +mω̂

)(n−K)/2

×
(

1 +
n−K
K

1 +my

1 +mω̂

)−(n−1)/2
.

Except for the indicator I(y > 0) and a scalar D′, this matches the density

H0m

1 +mω̂
fn−K+2,K−3

(
H0

1 +my

1 +mω̂

)−(n−1)/2
, (15)
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where
H0 =

n−K
n−K + 2

K − 3

K
.

Let Y be a random variable with F distribution with n−K+ 2 and K−3 degrees
of freedom. Then the function in (15) is the density of

Z =
1 +mω̂

H0
Y − 1

m
.

The posterior distribution of ω has the same distribution as Z, except for the
condition that Z > 0, that is, Y > H0m/(1 + mω̂). Therefore, the posterior
density of ω is

g0(y; ω̂) =
H0m

1 +mω̂

fn−K+2,K−3 (H0z)

1− Fn−K+2,K−3{H0/(1 +mω̂)}
,

where z = (1 +my)/(1 +mω̂).

A Class of Informative Priors

A class of proper densities for which the posterior density can be obtained in
a closed form is

g(y) =
m(q − 1)

(1 +my)q
I(y > 0)

for q > 1. For orientation, a selection of densities is drawn in Figure 1. For q
close to unity, the prior is highly dispersed (the density for q = 1.2 is drawn by
a gray line). The densities are decreasing for y > 0 and g(0) = m(q − 1). For
greater q, the density has greater mass around zero and has a steeper slope for
small y. Although this is quite a flexible class of functions, the dependence on m is
an obvious drawback. Note that q should not be set to a large value (say, q > 5),
because it corresponds to information comparable to that in a very large sample.
In the derivations below, we assume that q < (n−K)/2 + 1.

To reduce the typographical length of some subscripts, we introduce the nota-
tion k1(q) = n−K−2q+2 and k2(q) = K+2q−3, and drop the argument q when
its value is not specified or is obvious from the context. Following the outline for
the non-informative prior, we obtain

g(y; ω̂, q) =
Dqm

(1 +mω̂)q+1

I(y > 0)

B2(n−K,K − 1)

(
n−K
K

1 +my

1 +mω̂

)(n−K−2q)/2

×
(

1 +
n−K
K

1 +my

1 +mω̂

)−(n−1)/2
=

D′qHqm

(1 +mω̂)q+1
fk1,k2

(
Hq

1 +my

1 +mω̂

)−(n−1)/2
,

where
Hq =

n−K
n−K − 2q + 2

K + 2q − 3

K
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generalises the definition of H0 . Hence, the posterior density of ω is

gq(y; ω̂) =
Hqm

1 +mω̂

fk1,k2 (Hqz)

1− Fk1,k2
{Hqm/(1 +mω̂)}

,

so long as q < (n−K)/2+1. In view of Figure 1 this is not a restrictive condition.

Appendix D. The Balance Function for Piecewise Linear Loss

Denote G(ω) = Hqz(ω; ω̂). The expected loss with action B is

LB =

∫ ω0

0

(ω0 − y) g(y; ω̂) dy

=
Hm

1 +mω̂

1

1− Fk1,k2{G(0)}

∫ ω0

0

(ω0 − y)fk1,k2 {G(y)} dy

=
1

1− Fk1,k2
{G(0)}

∫ G(ω0)

Hz(0,ω̂)

{
ω0 +

1

m
− u

Hm
(1 +mω̂)

}
fk1,k2(u) du

=

(
ω0 +

1

m

)
Fk1,k2

{G(ω0)} − Fk1,k2
{G(0)}

1− Fk1,k2{G(0)}

− k1
k1 + 2

1 +mω̂

Hm

1

1− Fk1,k2
{G(0)}

∫ G(ω0)

G(0)

fk1+2,k2−2(h1u) du

=

(
ω0 +

1

m

)
Fk1,k2

{G(ω0)} − Fk1,k2
{G(0)}

1− Fk1,k2{G(ω0)}

− K

n−K
n−K + 2q − 2

K + 2q − 5

1 +mω̂

m

× Fk1+2,k2−2{h1G(ω0)} − Fk1+2,k2−2{h1G(0)}
1− Fk1,k2{G(0)}

,

where we dropped the index q in G, H, k1 and k2 .

The expected loss when action A is chosen is obtained by similar steps:

LA =
HmR

1 +mω̂

1

1− Fk1,k2
{G(0)}

∫ +∞

ω0

(y − ω0)fk1,k2
{G(y)} dy

=
R(1 +mω̂)

Hm

1

1− Fk1,k2{G(0)}

∫ +∞

G(ω0)

ufk1,k2
(u) du
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= − R(1 +mω0)

m

1− Fk1,k2
{G(ω0)}

1− Fk1,k2{G(0)}

=
R(1 +mω̂)

Hm

k1
k1 + 2

1

1− Fk1,k2
{G(0)}

∫ +∞

G(ω0)

fk1+2,k2−2(h1u) du

− R(1 +mω0)

m

1− Fk1,k2{G(ω0)}
1− Fk1,k2

{G(0)}

=
RK

n−K
n−K + 2q − 2

K + 2q − 5

1 +mω̂

m

1− Fk1+2,k2−2{h1G(ω0)}
1− Fk1,k2

{G(0)}

− R(1 +mω0)

m

1− Fk1,k2
{G(ω0)}

1− Fk1,k2{G(0)}
,

assuming that k2 > 2, that is, K > 5− 2q.
The balance function is

∆L =
1

1− Fk1,k2
{G(0)}

(
K

n−K
n−K − 2q + 2

K + 2q − 5

1 +mω̂

m

×
[
R− (R− 1)Fk1+2,k2−2{h1G(ω0)} − Fk1+2,k2−2{h1G(0)}

]
− 1 +mω0

m

[
R− (R− 1)Fk1,k2{G(ω0)} − Fk1,k2{G(0)

])
.

The leading factor can be dropped in a search for the root of ∆L(ω̂).

Appendix E. The Balance Function for Piecewise Quadratic
Loss

When action B is chosen,

LB =

∫ ω0

0

(y − ω0)2g(y; ω̂) dy

=
Hm

1 +mω̂

1

1− Fk1,k2
{G(0)}∫ ω0

0

{(
ω0 + 1

m

)2 − 2
(
y + 1

m

) (
ω0 + 1

m

)
+
(
y + 1

m

)2}
fk1,k2{G(y)} dy

=
(1 +mω0)2

m2

Fk1,k2
{G(ω0)} − Fk1,k2

{G(0)}
1− Fk1,k2{G(0)}

− 2(1 +mω0)(1 +mω̂)

Hm2

1

1− Fk1,k2
{G(0)}

∫ G(ω0)

G(0)

ufk1,k2(u) du
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+

(
1 +mω̂

Hm

)2
1

1− Fk1,k2{G(0)}

∫ G(ω0)

G(0)

u2fk1,k2(u) du

=
1

1− Fk1,k2
{G(0)}

(
(1 +mω)2

m2

[
Fk1,k2{G(ω0)} − Fk1,k2{G(0)}

]
− 2k2
k2 − 2

(1 +mω0)(1 +mω̂)

Hm2

×
[
Fk1+2,k2−2{h1G(ω0)} − Fk1+2,k2−2{h1G(0)}

]
+

k1
H2h1h2(k1 + 4)

(
1 +mω̂

m

)2

× [Fk1+4,k2−4{h2G(ω0)} − Fk1+4,k2−4{h2G(0)}]
)
.

The constant factor of the concluding term is

k1
H2h1h2(k1 + 4)

=
k1 + 2

k1

k1(k1 + 2)

(k2 − 2)(k2 − 4)
.

By similar steps we obtain the expression

LA =
R

1− Fk1,k2
{G(0)}

(
(1 +mω)2

m2

[
1− Fk1,k2

{G(ω0)}
]

− 2k2
k2 − 2

(1 +mω0)(1 +mω̂)

Hm2

[
1− Fk1+2,k2−2{h1G(ω0)}

]
+

k1
H2h1h2(k1 + 4)

(
1 +mω̂

m

)2

[1− Fk1+4,k2−4{h2G(ω0)}]
)
,

and hence

∆L =
1

1− Fk1,k2
{G(0)}

×
(

(1 +mω0)2

m2

[
R− (R+ 1)Fk1,k2{G(ω0)}+ Fk1,k2{G(0)}

]
− 2k2
k2 − 2

(1 +mω0)(1 +mω̂)

Hm2

×
[
R− (R+ 1)Fk1+2,k2−2{h1G(ω0)}+ Fk1+2,k2−2{h1G(0)}

]
+

k1
h1h2(k1 + 4)

(
1 +mω̂

Hm

)2

×
[
R− (R+ 1)Fk1+4,k2−4{h2G(ω0)}+ Fk1+4,k2−4{h2G(0)}

])
.

(16)

It holds only when K > 5 − 2q; otherwise LA is infinite and B is the preferred
action. The factor [1−Fk1,k2{G(0)}]−1 is not relevant for finding the root of ∆L,
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and can be dropped. Figure 10 displays the equilibrium values for a selection of
designs (K,m) and ω0 set to 0.1 and 0.25. The equilibrium functions are decreasing
and reach their minima of −1/m for finite R. In the diagram, the functions are
interrupted at that point. For K = 9, m = 7 and ω0 = 0.1, no line is drawn
because the equilibrium is equal to −1/m even for very small ω̂.
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Figure 10: The equilibrium values ω∗ as functions of the penalty ratio R for number
of clusters K and cluster size m indicated in the left-hand panel. Piecewise
quadratic loss and non-informative prior for ω.
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