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Abstract

A class of univariate distributions called the exponentiated generalized
class was recently proposed in the literature. A four-parameter model within
this class named the exponentiated generalized Gumbel distribution is de-
fined. We discuss the shapes of its density function and obtain explicit ex-
pressions for the ordinary moments, generating and quantile functions, mean
deviations, Bonferroni and Lorenz curves and Rényi entropy. The density
function of the order statistic is derived. The method of maximum likelihood
is used to estimate model parameters. We determine the observed informa-
tion matrix. We provide a Monte Carlo simulation study to evaluate the
maximum likelihood estimates of model parameters and two applications to
real data to illustrate the importance of the new model.

Key words: Gumbel Distribution, Maximum Likelihood, Moment, Rényi
Entropy.

Resumen

Recientemente fue propuesta una clase de distribuciones univariadas cono-
cida como la clase exponencializada generalizada. Dentro de esta clase se de-
fine un modelo con cuatro pardmetros conocido como distribucion Gumbel
exponencializada generalizada. En este articulo estudiamos las formas de la
funcién de densidad de este modelo, obtenemos expresiones explicitas para
los momentos ordinarios, las funciones generadora de momentos y cuantilica,
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para los desvios medios, las curvas de Bonferroni y Lorenz, y, para la en-
tropia de Rényi. Derivamos la funcién de densidad de la estadistica de orden.
Usamos el método de méxima verosimilitud para estimar los parametros del
modelo. Determinamos la matriz de informacién observada. Presentamos
una simulacion de Monte Carlo que evalaa las estimativas de méxima ve-
rosimilitud de los parametros del modelo y presentamos dos aplicaciones a
datos reales que ilustran la importancia del modelo nuevo.

Palabras clave: distribuciéon Gumbel, entropia de Rényi, maxima verosi-
militud, momentos.

1. Introduction

The Gumbel distribution is a very popular statistical model due to its wide
applicability. An extensive list of the Gumbel model applications can be obtained
in Kotz & Nadarajah (2000). In the area of climate modeling, for example, some
applications of the Gumbel model include: global warming problems, offshore
modeling, rainfall and wind speed modeling (Nadarajah 2006). We can find ap-
plications of this model in various areas of engineering such as flood frequency
analysis, network, nuclear, risk-based, space, software reliability, structural and
wind engineering (Cordeiro, Nadarajah & Ortega 2012). Due to its wide appli-
cability, several works aimed at extending the Gumbel model become important.
Some examples are mentioned in: Nadarajah & Kotz (2004), Nadarajah (2006)
and Cordeiro et al. (2012).

The cumulative distribution function (cdf) G(z) and probability density func-
tion (pdf) g(x) of the Gumbel (Gu) distribution are given by

G(z;p,0) = exp {eXp <T) } (1)

g(@;p,0) = éeXp { {w + exp <T)] } : (2)

respectively, for x € R, p € R and ¢ > 0.

and

In recent years, some different generalizations of continuous distributions have
received great attention in the literature. Here, we refer to the papers: Marshall
& Olkin (1997) for the Marshall-Olkin class, Eugene, Lee & Famoye (2002) for
the Beta class, Zografos & Balakrishnan (2009) and Ristic & Balakrishnan (2011)
for the Gamma class and Cordeiro & de Castro (2011) for the Kumaraswamy
class of distributions. In a similar manner, for any baseline c¢df G(x), and xz € R,
Cordeiro, Ortega & Cunha (2013) defined the exponentiated generalized (EG) class
of distributions with two extra parameters a > 0 and 8 > 0 and cdf F(z) and pdf
f(z) given by

F(z) = {1 - [1 - G@)]*}’ (3)

and

flz) = aB[l = G@)]* {1 - [1 - G(x)]*}~g(x), (4)
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respectively. In this paper, we study the so-called ezponentiated generalized Gum-
bel (“EGGu” for short) distribution by inserting in equation .

The rest of the paper is organized as follows. In Section 2, we define the EGGu
distribution. Shapes of the density function are discussed in Section 3. Explicit
expressions for cumulative and density functions, quantile function, ordinary mo-
ments, mean deviations, Bonferroni and Lorenz curves, generating function, Rényi
entropy and order statistics are derived in Section 4. We discuss maximum like-
lihood estimation and present a Monte Carlo simulation experiment to evaluate
the maximum likelihood estimates (MLEs) of the model parameters in Section 5.
Two applications in Section 6 illustrate the usefulness of the new distribution for
data modeling. Lastly, concluding remarks are given in Section 7.

2. The EGGu distribution

The EGGu distribution was proposed by Cordeiro et al. (2013), but they did
not study its mathematical properties. The cdf and pdf of the EGGu distribution
are given by

Fz) = F(z;a, B, i, 0) = {1 - {1 — exp {—exp (—‘”;“ﬂ }Q}B (5)

and
) = Saian o) =Lesp { = |2 e (-2 |
N
T — ot
{1—[1—exp[—exp<—au)” } ’
respectively.

Henceforth, a random variable X having density function (@ is denoted by
X ~ EGGu(a, 8, u,0). We write F(z) = F(z;«,8,1,0) in order to eliminate
the dependence on the model parameters. In this model, 4 € R and ¢ > 0 are
the location and scale parameters, respectively, whereas a > 0 and 8 > 0 are
the shape parameters. The Gumbel distribution is clearly a special case of
when a = 8 = 1. Setting S = 1 we obtain the exponentiated Gumbel distribution
defined by Nadarajah (2006).

3. Shape

The main features of the density shape can be perceived through the study
of its first and second derivative. Regarding the EGGu distribution, the first
derivative of log{ f(z)} is
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dx o

ot} 1 {1111(2) [1 CEUEN a(ﬂ[l_n(i(_lz)j])“”

where z = exp [— exp (—%)] Here, 0 < z < 1.

The critical values of f(z) are the roots of the equation:

(@—1)z a(B-1)2(1-2)>" In(z)+1
(1-2) [1—(1—2)°] n(z) (7)

If the point x = x¢ is a root of , then we can classify it as local maximum,
local minimum or inflection point when we have, respectively, A(zg) < 0, A(zg) > 0
and \(zg) = 0, where A\(x) = d?log{f(z)}/dx>.

Plots of the EGGu density function for selected parameter values are displayed
in Figure [T}
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FI1GURE 1: Plots of the EGGu pdf for 4 = 0, 0 = 1 and some values of o and £.
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4. Properties

In this section, we study some structural properties of the EGGu distribution.

4.1. A Useful Representation

Several properties of the new distribution can be derived using the concept
of exponentiated distributions. The class of exponentiated distributions has been
studied by many authors in recent years. Here, we refer to a few of these pa-
pers: Gupta & Kundu (2001) for exponentiated exponential, Nadarajah & Kotz
(2003) for exponentiated Fréchet, Nadarajah (2006) for exponentiated Gumbel,
Shirke & Kakde (2006) for exponentiated lognormal, Nadarajah & Gupta (2007)
for exponentiated Gamma, Carrasco, Ortega & Cordeiro (2008) for exponentiated
modified Weibull and Cordeiro, Ortega & Silva (2011) for exponentiated general-
ized Gamma.

For an arbitrary baseline cdf G(x), a random variable is said to have the
exponentiated-G (“exp-G” for short) distribution with power parameter a > 0, say
Y ~exp-G(a), if its cdf and pdf are H,(z) = G(x)® and h,(z) = ag(x)G(x)* 1,
respectively. We consider the generalized binomial expansion

(-2 = ki(—l)k (3) = 0

0

which holds for any real non-integer b and |z| < 1. Using expansion (8)) twice in
equation , we can express the EGGu cdf as

F(z) = Z wjy1 Hjy1(z), 9)
=0

where w1 = Yoo (—1)7tm+1 (P) (ﬁof) and Hj () = G(x)?™! is the expo-
nentiated Gumbel (exp-Gu) cdf with power parameter j + 1. By differentiating

@, we obtain
f(@) =Y wiri by (@), (10)
§=0
where h;11(x) is the exp-Gu pdf with power parameter j + 1 given by

() = U exp{— {WHJ’H)GXP (—”ﬂ:“)]} (11)

Equation reveals that the EGGu density function is a linear combination
of exp-Gu densities. This result is important to derive some structural properties
of the new distribution such as ordinary and incomplete moments, generating
function and mean deviations from those of the exp-Gu distribution.
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4.2. Quantile function

In applied work, we are interested on the quantile function (qf) of a continuous
distribution. Based on the qf, we can generate occurrences of the distribution and
obtain measures of skewness and kurtosis. The EGGu ¢f, say z = Q(u), follows
by inverting the EGGu cdf as

x = Q(u) = 1 — o' log{—log[L — (1 — u!/%)"/°]}. (12)

The median of X is simply 21,5 = Q(1/2). Further, it is possible to generate
EGGu variates by X = Q(U), where U is a uniform variate on the unit interval
(0,1).

The effect of the additional shape parameters o and 8 on skewness and kurtosis
of the new distribution can be based on quantile measures. In this sense, two
important measures are the Bowley skewness (B) and the Moors kurtosis (M).
Recent papers have used these measures to determine skewness and kurtosis, for
example, Régo, Cintra & Cordeiro (2012), Zea, Silva, Bourguignon, Santos &
Cordeiro (2012) and Ramos, Marinho, Silva & Cordeiro (2013) derived the B and
M measures for the Beta normal, Beta exponentiated Pareto and exponentiated
Lomax Poisson distributions, respectively.

The Bowley skewness (Kenney & Keeping 1962) based on quartiles is given by

B QB/4) +0Q(1/4) —20(1/2)
QB Q)

On the other hand, the Moors kurtosis based on octiles (Moors 1988) is given by

1 = Q1/8) — Q(5/8) + Q(3/8) — Q(1/8)
Q(6/8) — Q(2/8) '

These measures are less sensitive to outliers and they exist even for distributions
without moments. For the normal distribution, B = M = 0. Plots of these
skewness and kurtosis measures for some choices of the parameter 3 as functions
of a, and for some choices of a as functions of 3, for 4 = 0,0 = 1, are displayed
in Figure These plots indicate that skewness and kurtosis decrease when
increases for fixed o and when « increases for fixed £.

4.3. Moments

It is hardly necessary to emphasize the importance of calculating the moments
of a random variable in statistical analysis, particularly in applied work. Some key
features of a distribution such as skewness and kurtosis can be studied through its
moments. The nth moment of X can be determined from as

E(X") = /_OO > w1 by (z)de

n
T
o0 J

%i(j + 1) wjg1 /j:o m"exp{— [% +(j+1exp (—%)]}dm,
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FIGURE 2: Plots of the EGGu skewness and kurtosis as functions of « for some values
of B and as functions of 8 for some values of a.

which, on setting u = exp{—(x — p)/o}, it reduces to

E(X™) = 3G+ Dy / "l — o log(u)]" exp{—u(j + 1)}du.

=0

Using the binomial expansion for [p — o log(u)]™, E(X™) can be expressed as

B =33+ () ol upin [ og(l expl-uti+ D). (13)

7=0 ¢=0

Using a result by Nadarajah (2006), 1(i,j) = [;~ [log(u)]’ exp{—u(j + 1)}du
reduces to

16.9) = (5 ) 16+ 17T bms (14)
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By combining and , the nth moment of X becomes

B =33 G+ (7) -oruwyes (;) G+ 17T (@)] for

§=0 i=0

4.4. Generating Function

The moment generating function (mgf) of X can be obtained using the fact
that the EGGu density function is a linear combination of exp-Gu densities. Thus,

M) =3 [ hipa(e)da
j=0 —oe

ii(j+1)wj+1 /Ze“exp{— [”“;“ +(G+1)exp (—x;“ﬂ}dm

Setting u = exp{—(x — p)/o}, M(t) reduces to

o0

M) = 3G+ Vg [ expl-( + Duldu

Jj=0

Using a result by Cordeiro et al. (2012), we have

I(5) = /0Oo u ™ exp[—(j + Du]du =T(1 —to)(j + 1)1,

and then

M(t) =e"T(1—to) > (j+1)" wjs1.
j=0

4.5. Mean Deviations

Generally, there has been a great interest in obtaining the first incomplete
moment of a distribution. Based on this quantity, we can calculate, for example,
mean deviations which provide important information about the characteristics of
a population. Indeed, the amount of dispersion in a population may be measured
to some extent by all the deviations from the mean and the median.

For calculating the mean deviations from the mean and the median, we require
the first incomplete moment of X given by T'(z) = ffoo x f(x) dz. Using equation
and setting u = exp{—(x — u)/o}, T(z) reduces to
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oo

T(2)=3_G + Dy [l alogu)lexpl-u(j + Dlde
0 (15)
= wir{exp[t( + 1)][u — o log(®)] - oT(0, (j + 1)1},

where ¢ = exp{—(z — p)/o} and T'(k,z) = [ " v*"!e~Vdv is the complementary
incomplete Gamma function.

The mean deviations from the mean and the median are defined by
&y =2uy F(uh) — 2T (uy) and §o = py — 2T (M),

respectively, where pf = E(X), the median M of X is determined from the gf by
M =Q(1/2), F(M) and F(u}) are easily obtained from and T'(z) is given by
(L5).

Another important application of the first incomplete moment is to determine
Bonferroni and Lorenz curves, which are commonly used in applied works in areas
such as economics, reliability, demography, insurance, medicine and others. For a
given probability 7, these curves are defined by B(w) = T(q)/(np}) and L(w) =
T(q)/ 1}, where pj = E(X) and ¢ = Q(m) is calculated by (12).

4.6. Rényi Entropy

The entropy of a random variable X with density function f(z) is a measure
of variation of the uncertainty. For any real parameter A > 0 and A # 1, the Rényi
entropy is given by

Ir(\) = ﬁ log (/O:O f(:z:)’\dx) :

Using the binomial expansion twice in equation (4, we can write
oo
f@) = (aB)* Y 6;Glx) g(x), (16)
§=0

where §; is given by

5 = i(_l)iﬂ (A(ﬁi— 1)) (ai + )\('a — 1)).

J

Inserting (1)) and (2) in equation (16) and after some algebra, we obtain
A o
. (oB Ma—p) . .
== 5; - —_— A _ )
f(z) < > ) ]E:O Jexp{ [ o T+ A)exp -
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Finally,

Ir(\) = q i Y log{ (Of)A i 5;

o {2 (222 )

4.7. Order statistics

We derive an explicit expression for the density of the ith order statistic X.,,
say fin(z), in a random sample of size n from the EGGu distribution. It is well-
known that

fin® = ey Z (" swree

Substituting and in equation and applying the binomial expansion
twice, we can write

Jin(®) = Br 7D n_H ng

where ¥ is given by
Calge —i\ (BGi+5) =1\ [k +1)—1
ey () ()
jgo];] j k /

Thus, replacing G(z) and g(z) by the cdf and pdf of the Gumbel distribution
given by and , respectively, we can write f;.,(z) as

fim(2) = (M%gﬁe eXp{— {T + ({+1)exp (—T)} }

After simple algebraic manipulation, we can rewrite the last equation as

of o
fim(x) = Blin—it1) ;ﬁz hesa(z), (18)
where ¥ = d;/(¢ + 1) and hyiq(z) is given by (TI)).

Equation reveals that the density function of the EGGu order statistic is a
linear combination of exp-Gu densities. A direct application of is to calculate
the moments and the mgf of the EGGu order statistics.

The rth moment of X;.,, is given by

— 00

T _04—6 c- * > r
E(Xi,) = Blin—it 1) ;19@/ z" hyya () d.
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From the results presented in Section 4.3, the last equation reduces to

B = g e ot ()0 () 1 )] e

£=0 k=0

The mgf of X;.,, is given by

af = o
M{t)= =—— 97 e p dx.
O =Bimn—itD ZZ:O ¢ /_Ooe e1(z)de
Finally, based on the results in Section 4.4, the last equation can be rewritten
as

oo

afe™T'(1—to) .
Mt)= ———""-"7—"7=- L+ 1)79;
®) B(i,n—1i+1) ez M &

5. Estimation

Several approaches for parameter point estimation were proposed in the liter-
ature but the maximum likelihood method is the most commonly employed. The
MLEs enjoy desirable properties and can be used when constructing confidence
intervals and regions and also in test statistics. Large sample theory for these
estimates delivers simple approximations that work well in finite samples. The
resulting approximation for the estimates in distribution theory is easily handled
either analytically or numerically. So, we consider the estimation of the unknown
parameters «, 3, u and o of the EGGu distribution from complete samples only
by the method of maximum likelihood. Let z1,...,z, be a sample of size n from
X. The log-likelihood function for the vector of parameters 0" = (o, B,p1,0) T can
be expressed as

¢(8) = nlog (O‘f) - Xn: [T‘ +exp (—xi;“)]

i=1

o= S {3 o o (-252)])
o= Sue{1- 1o e (-252)] }

The elements of the score vector are given by

ag —+Zlog Z":szalogH(xz)’

(0%
i=1

aL—*—&-Zlogl— )],
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a—1

where

and

glz:) = iexp{— {x;“ +exp <—”50_’“‘)]}

The maximum likelihood estimate (MLE) 8 of 0 is obtained by solving nonlinear
equations U, (0) = 0, Ug(#) = 0, U,(#) = 0 and U,(#) = 0. They cannot be solved
analytically and require statistical software with iterative numerical techniques.
There are many maximization methods in R scripts like NR (Newton-Raphson),
BFGS (Broyden-Fletcher-Goldfarb-Shanno), BHHH (Berndt-Hall-Hall-Hausman),
SANN (Simulated-Annealing), NM (Nelder-Mead) and L-BFGS-B. For interval
estimation and hypothesis tests on the parameters «, 8, 4 and o, we determine the
4 x 4 observed information matrix J(0) = {~U,s}, where U,.s = 9*((8)/(00,.00)
for r,s € {a, B, ,0}. The elements of J(#) are given in the Appendix.

Next, a small Monte Carlo simulation experiment based on 10, 000 replications
will be conducted to evaluate the MLEs of the parameters of the EGGu distri-
bution. We set the sample size at n = 100, 200,400 and 800, the parameter « at
a = 1.5 and 3.0, and the parameter 8 at § = 1.5 and 3.0. The location and scale
parameters were fixed at 4 = 0 and o = 1, respectively, without loss of generality.
The Monte Carlo simulation experiments are performed using the R programming
language; see http://www.r-project.org. Table [I| reports the empirical means
and the mean squared errors (in parentheses) of the corresponding estimators.
From these figures in this table, we note that, as the sample size increases, the
empirical biases and mean squared errors decrease in all the cases analyzed, as
expected.
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TABLE 1: Empirical means and mean squared errors (in parentheses); u =0 and o = 1.

a B a B i E
n = 100
15 1.5 1.8709 (2.4748) 1.8402 (4.2093) 0.4719 (2.5600)  0.9405 (0.2061)
1.5 3.0 1.7451 (2.1280) 2.7433 (4.5480)  0.5222 (2.3406)  0.8962 (0.2240)
3.0 1.5 3.8777 (11.916) 1.4662 (3.1887) 0.4057 (11.311)  0.8999 (0.1775)
3.0 3.0 3.3444 (8.8191) 2.3874 (4.3211)  0.3190 (8.8023)  0.8200 (0.1654)
n = 200
15 1.5 16795 (0.9176) 1.7512 (4.1874) 0.4188 (1.0608) 0.9684 (0.1151)
1.5 3.0 15910 (0.8141) 2.8413 (4.1928) 0.3743 (0.9459)  0.9364 (0.1237)
3.0 1.5 3.6424 (7.1481) 1.5338 (3.1388) 0.3643 (6.8681)  0.9632 (0.1720)
3.0 3.0 3.1394 (3.8597) 2.5946 (4.2360) 0.2676 (3.9119)  0.8860 (0.1213)
n = 400
1.5 1.5 15886 (0.2920) 1.6240 (2.9118) 0.3542 (0.4096) 0.9839 (0.0496)
1.5 3.0 15559 (0.3442) 2.9562 (3.6910)  0.2807 (0.4199)  0.9713 (0.0674)
3.0 1.5 3.4946 (5.0507) 1.6924 (3.6551) 0.2981 (4.8949)  1.0017 (0.1697)
3.0 3.0 3.1413 (3.3052) 2.7812 (4.4744)  0.2236 (3.3352)  0.9406 (0.1107)
n = 800
15 1.5 15495 (0.1265) 1.5625 (1.9864) 0.2688 (0.1963)  0.9914 (0.0274)
15 3.0 15328 (0.1513) 2.9838 (2.5010)  0.1724 (0.1799)  0.9889 (0.0332)
3.0 1.5 3.2975 (3.6003) 1.5810 (2.8298) 0.2321 (3.5656) 0.9932 (0.1335)
3.0 3.0 2.9814 (1.4341) 2.7585 (2.5881) 0.1302 (1.4507) 0.9467 (0.0599)

6. Applications

In this section, we provide two applications to real data sets to illustrate the
importance of the EGGu distribution. The MLEs of the parameters are computed
(as discussed in Section 5) and the goodness-of-fit statistics for this model are com-
pared with other competing models. All computations were performed using the
SAS subroutine NLMixed. The four-parameter Beta Gumbel (BGu) (Nadarajah
& Kotz 2004) and Kumaraswamy Gumbel (KumGu) (Cordeiro et al. 2012) dis-
tributions are used to make a comparison with the EGGu model. Their pdfs are
given by

exp[—(z — ) /o] exp{—aexp[—(z — u)/o]}{1 — exp[—(z — p)/0]}P " 7

TBGu(®; @, B, 1, 0) = o B(a, B)

and

TKumGu (T; &, B, 11, 0) = a B exp[—(x — p) /o] exp{—aexp[—(x — u)/o]}
x {1 — exp{—aexp[—(z — p)/o]}}7 .

The first data set is obtained from Hinkley (1977). It consists of thirty succes-
sive values of March precipitation (in inches) in Minneapolis/St Paul. The data
are: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
2.05. Table [2] gives some descriptive statistics for these data, which include cen-
tral tendency statistics, variance, among others. Table [3] lists the MLEs of the
model parameters (standard errors in parentheses) for all fitted models. It is also
given the values of the Akaike information criterion (AIC), Bayesian information
criterion (BIC) and consistent Akaike information criterion (CAIC).
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TABLE 2: Descriptives statistics for Hinkley’s data set.

Statistic
Mean 1.675
Median 1.470

Variance 1.001
Minimum 0.320
Maximum  4.750

TABLE 3: MLEs (and the corresponding standard errors in parentheses), AIC, BIC and
CAIC statistics for Hinkley’s data.

Distribution a B8 m G AIC BIC CAIC

EGGu 0.1440 2.1935 0.2190 0.1285 84.1 85.7 89.7
(0.0358)>  (1.3392)  (0.2508)  (0.0078)

BGu 0.8294 0.4449 0.9133 0.4301 84.7 86.3 90.3
(2.0008)>  (0.4855) (1.5573)  (0.3628)

KumGu 0.7632 0.4349 0.9225 0.4206 84.7 86.3 90.3

(0.2094)>  (0.4428)  (0.3800)  (0.3151)
2Denotes the standard deviations of the MLEs of «, 8, 4 and o.

Plots of the estimated pdf and cdf of the fitted EGGu, BGu and KumGu
models to these data are displayed in Figure 8] They indicate that the EGGu
distribution is superior to the other distributions in terms of model fitting.

Next, we shall apply formal goodness-of-fit tests in order to verify which distri-
bution better fits the current data. We consider the Cramér-von Mises (CM) and
Anderson-Darling (AD) statistics, which are described in Chen & Balakrishnan
(1995). Table [4] gives the values of the CM and AD statistics (and the p-values
of the tests in parentheses) for the fitted models. Thus, according to these for-
mal tests, the EGGu model fits the current data better than the other models,
i.e., these values indicate that the null hypothesis is strongly not rejected for the
EGGu distribution. Based on the plots of Figure [3] we conclude that the EGGu
distribution provides a better fit to these data than the BGu and KumGu models.

TABLE 4: Goodness-of-fit tests.

Statistics
Model oM )
EGGu 0.0151 (0.9932)> 0.1169 (0.9891)2
BGu 0.0205 (0.9611) 0.1606 (0.9415)
KumGu 0.0193 (0.9718) 0.1520 (0.9548)

2Denotes the p-value of the test.

The second data set is given by Murthy, Xie & Jiang (2004). The data refer the
time between failures for repairable item: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46,
2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30,
1.82, 2.37,0.63, 1.23, 1.24, 1.97, 1.86, 1.17. Table[5|gives some descriptive statistics
for these data. Table [0 gives the MLEs of the model parameters (standard errors
in parentheses) for all fitted models and the values of the AIC, BIC and CAIC
statistics.
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Ficure 3: (a) Plots of the fitted EGGu, BGu and KumGu densities; (b) Plots of the
estimated cdfs of the EGGu, BGu and KumGu models.

TABLE 5: Descriptives statistics for the times between failures.

Statistic
Mean 1.543
Median 1.235

Variance 1.272
Minimum 0.110
Maximum  4.730

TABLE 6: MLEs (and the corresponding standard errors in parentheses) and the AIC,
BIC and CAIC statistics for the times between failures.

Distribution a B8 m G AlIC BIC  CAIC

EGGu 0.2914 1.3294 0.3146 0.3004 87.55 93.16  89.15
(0.3659)>  (1.0088)  (0.5421)  (0.3222)

BGu 7.7144 0.2089 —0.2351 0.2600 87.82 93.43  89.42
(10.521)  (0.1715)  (0.5534)  (0.1884)

KumGu 2.4766 0.2749 0.1804 0.3115 87.55 93.16 89.15

(4.4419)>  (0.2469)  (0.5544)  (0.2508)
2Denotes the standard deviation of the MLEs of «, 8, 1 and o.

Plots of the estimated pdfs and cdfs of the EGGu, BGu and KumGu models
to the current data are displayed in Figure
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FIGURE 4: (a) Plots of the fitted EGGu, BGu and KumGu densities; (b) Plots of the
estimated cdfs of the EGGu, BGu and KumGu models.

Table [7] gives the values of the CM and AD statistics (p-values between paren-
theses). Thus, according to these formal tests, the EGGu model fits the current
data better than the other models, i.e., these values indicate that the null hypothe-
ses are strongly not rejected for the EGGu distribution.

TABLE 7: Goodness-of-fit tests.

Statistics
Model oM D
EGGu  0.0168 (0.9885)> 0.1198 (0.9892)?
BGu 0.0181 (0.9821) 0.1231 (0.9874)
KumGu 0.0176 (0.9848) 0.1204 (0.9889)

2Denotes the p-value of the test.

7. Conclusions

In this paper, we study a new four-parameter model named the exponentiated
generalized Gumbel (EGGu) distribution. This model generalizes the Gumbel
distribution, which is one of the most important models for fitting data with sup-
port in R. We provide some mathematical properties of the EGGu distribution
including ordinary moment, moment generating and quantile functions, mean de-
viations, Bonferroni and Lorenz curves and Rényi entropy. The density function
of the order statistics is obtained as a mixture of exponentiated Gumbel densi-
ties. We discuss the parameter estimation by maximum likelihood and provide
the observed information matrix. We provide a Monte Carlo simulation study
to evaluate the maximum likelihood estimation of the model parameters. Two

Revista Colombiana de Estadistica 38 (2015) 123



The EGGu Distribution 139

applications to real data indicate that the EGGu distribution provides a good fit
and can be used as a competitive model to fit real data.
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H(z;) =1—exp {_exp (_ziguﬂ
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where

and
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