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A single queue with
mutually replacing m servers

K. C. MADAN *
ABSTRACT.

Customers arriving in a Poisson stream are served one by one exponentially
by the m servers 81,82, ... .S,«. A server who has just completed a service
either continues the next service or is replaced by another server. The replace-
ment of server at each service completion is governed by a probabilistic criterion
of availability of servers. Transient solutions in terms of Laplace transforms of
the probability generating functions are obtained and among some special cases
the earlier known results of Madan (1990) for the case of 2 servers are deduced.
The steady state solutions and the mean queue lengths have been explicitly for
some particular cases.

Key words Poisson stream, exponential service, availability criterion, Laplace
transform, probability generating service, sequential service, steady state, mean
queue length.

1. Introduction

Madan (1990) has studied a 2-server queue with correlated availability of
servers. The idea was motivated by some papers dealing with correlated ar-
rivals, correlated departures and some other similar situations. (c.f. Chaudhry
(1965), Mohan (1955), Mirari (1969)). in this paper, we generalize the prob-
lem to m-servers. The mathematical model is briefly described by the following
assumptions:

(1) Arrivals occur one by one in a Poisson stream with mean arrival rate
).(> 0).

(2) The system has m servers designated as 81, 82, . . . , 8m and only one of
them serves the customers at a time. The service is provided on a first
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come, first served basis and the service times of Sj are exponentially
distributed with mean 1/ /-tj, j = 1,2, ... ,m.

(3) Whenever an empty system starts with a first arriving customer, the
servers Sl, S2, ... ,Sm are available with respective probabilities ttj =
1,2, ... ,m, where 2:7'=1 1fj = l.

(4) Subsequently, however, at the completion of each service, a server who
. has just completed a service either. continues the next service or is
replaced by another server. The availability criterion of server is de-
termined by the conditional probability Pij = the probability that the
server Sj has just completed a service. Obviously, when j = i, it means
that the server Si continues with the next service. Thus the m x m
availability matrix is given by

[

Pll
P21

Pm1

P12
P22 P1m]P2m

PmmPm2

(5) It has been assumed that the replacement of servers is instantaneous.

2. Equations governing the system

Define p~j)(t)(n 2: 0) as the probability that at time t there are n customers
in the queue excluding the one being served by the jth servers j = 1,2, ... , m
and let Q(t) be the probability that at time t the queue length is zero and none
of the m servers is providing service. The following set of forward equations
govern the system for j = 1,2, ... ,m:

~p~j)(t)+(>"+/-tj)P~j)(t) = >"P~~l(t)+ tPkj/-tkP~~l(t)
k=l

(n > 0) (1)

~pJj)(t) + (>" + /-tj)pJj)(t) = A7rjQ(t) + tPkj/-tkPJk)(t) (2)
k=l

d m
dt Q(t) + >..Q(t) = L /-tkPJk) (t) (3)

k=l

We assume that initially there are no customers either waiting in the queue or
being served so that the initial condition is

Q(O) = 1 (4)
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Taking Laplace transform of equation (1) to (3) and using equation (4), we
have

(n> 0) (5)

m

(s + A + /1-j)pJj)(S) = A7rjQ(S) + LPkj/1-kPJk)(S)
k=l

(6)

m

(S + A)Q(S) = 1+ L /1-kPJk)(S)
k=l

(7)

3. The time-dependent solution

Let P(j)(s, z) = L~o p~j)(s)zn, Izi ~ 1 define the probability generat-
ing functions of queue length under various states in terms of their Laplace
transforms. Multiplying equations (5) and (6) by suitable powers of z and
simplifying, we obtain

m

(s + A + /1-j - AZ)ZP(j)(s, z) = AZ7rjQ(S) + LPkj/1-kP(k)(S, z)
k=l

m
" . -(k) ._- LJPkJ/1-kP (s), J - 1,2, ... ,m
k=l

(8)

We solve the system of equations given by (8) for p(j)(s, z),j = 1,2, ... ,m
and have

(9)

Where £::, is the determinant of the m x m matrix

[

c,
-~~~/1-1

-Plm/1-1 -P2m/1-2

and
Gj = (s + A + /1-j - AZ)Z - Pjj/1-j

m

n, = AZ7rjQ(S) - LPkj/1-kPJk)(S)
k=l
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and NUl is the m x m determinant which is obtained from the determinant 6.
by replacing the j th column of 6 by the column vector (HI. Hz, ... , Hm),.

We note that due to the vector (Hl,Hz, .... Hm)', appearing in NU), the
numerator of each of the equations given by (9) involves m + 1 unknowns,
namely, Q( s) and pcik) (s), k = 1,2, ... ,m. We proceed to determine these
unknowns. It is easy to see that each Gj = (s + A + I-lj - AZ)Z - Pjjl-lj has only
one zero inside the unit circle [z] = 1 for j = 1,2, .... m and, for that matter,
due to the product term G IGz ... Gm appearing in 6., the denominator of the
right hand side of (9) has rri zeros inside Izi = 1. These zeros give rise to m
equations in m + 1 unknows mentioned above. In addition, equation (6) also
involves the same m + 1 unknowns. Thus there are in all m + 1 equations in
m + 1 unknowns which are sufficient to determine the m + 1 unknowns. Hence
all the probability generating functions PU) (s, z), for J = 1,2, ... ,m, can be
completely determined.

4. Some part icular cases

Case 1 (sequential service)
If we let PIZ = PZ3 = P34 = ... = Pm-l.m = Pml = 1 and all other p's are

zero, this essentially means that the servers are providing sequential service.
In this case, the corresponding results will be given by (9) where now, we will
have

Gj = (s + A + J.lj - AZ), j = 1,2, ... , m

Hj = AZ7fjQ(S) - j.lj_IPcij-l)(s), j = 2,3, ... ,m

- -(m)HI = AZ1TlQ(S) -l-lmPo (s)

Case 2 (each server completes his cycle)
Let Pii = 1 for i = 1, 2, ... ,m and Pij = 0 for i =1= j which means that

51, 5z, ... 5m whosoever starts service continues serving until the queue be-
comes empty again. In this case,

Gj = (s + A + J.lj - >'z)z - j.lj

Hj = >'Z1TjQ(S) - J.ljPcij)(s)

and then (9) yields

. - - (j)

P-(j)( ) = >'Z1TjQ(S) - J.ljPo (s)
s, Z ( ,

s + >. + J.lj - >'z) Z - J.lj

The denominator of the right hand side of equation (10) has one zero inside
the unit circle [z] = 1. Let Z = Zj be this zero. This zero gives

j = 1,2, ... ,m (10)

- - U) .
>'Zj7!'jQ(s) - J.ljPO (s) = 0 for J = 1,2, ... ,m (11)
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Using equation (11) in (7), we have

- 1
Q(8) = m

8 + x - >. 2::j=1 7rj Zj
(12)

and hence

-(j) >'Zj7rj
Po = { ",m , j = 1,2, ... ,m (13)

J.Lj 8 + >. - >. LJj=1 7rjZj}

Steady state

Let p~j),j = 1,2, ... ,m and Q be the respective steady state probabilities
corresponding to p~j)(t) and Q(t) and, for that matter, let p(j)(z) be the
steady state probability generating functions corresponding to p(j) (8, z). Then
the steady state solution can be obtained by using the well-known Tauberian
property lims~o 8f(8) = limh<Xl f(t).

We proceed to derive the steady state results only for the particular case 2
as follows: Applying the above Tauberian property, equation (10) yields

(j)
(j) _ >'Z7rjQ - J.LjPO . _

P (z) - (>. >. ) ,J -1,2, ... ,m+ J.Lj - z Z - J.Lj
(14)

Now, Z = 1 is a zero of the denominator of the right hand side of (14). There-
fore, its denominator must vanish for this zero, giving

(j) >. .Po = (-)7rjQ, J = 1,2, ... ,m
J.Lj

(15)

Using (15), equation (14) can be written as

p(j)(Z) = (z - 1)>,~jQ ,j = 1,2, ... ,m
(>' + J.Lj - >.z z - J.Li

(16)

For Z = 1, equation (16) is indeterminate of the (0/0) form. Therefore, using
L'Hopital's rule, we have

P(j)(I) = >.-;rjQ, j = 1,2, ... ,m
J.Lj - >. (17)

Using (17) in the normalizing condition 2::7=1 P(j)(I) + Q = 1, we obtain

(18)
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Which is the probability that the system is empty and none of the servers is
providing service. .

Using the value of Q from (18) in equation (16) we get

j=I,2, ... ,m

(19)
Factoring (A+ ILj - AZ)Z - ILj as (z - I)(ILj - AZ) and canceling out the factor
(z - 1), we can write equation (19) as

p(j)(Z)= A7rj [1+Af~]-l, j=I,2, ... ,m (20)
(ILj - AZ) j=l ILj - A

which can again be re-written as

p(j)(Z) = A7rj [1 + -\f7r~ A] -1 [1- AZrl, j = 1,2, ... ,m (21)
ILJ j=l ILJ ILJ

Expanding the last factor of the right hand side of equation (21) and picking
up the coefficient of the nth power of z, and simplifying, we have

[ ]

-1
m tt : A n+1

1+-\ __ J_ _LIL--\ (W) ,
J=l J J

n~0,j=1,2, ... ,m (22)

The mean queue length

Let Pn = L:.7'=l P~P denote the steady state probability that the queue length
is n ~ 0, irrespective of whosoever server is providing service. Then, the mean
queue length, Lq is given by

(23)

Carrying out the summations and simplifying, we have the mean queue length
as

(24)
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Case 3 (the case of two servers)
If the system has two servers, then m = 2 and, for that matter, 1rj = 0 =

P(j)(s, z), for j ~ 3. Also, Pij = 0 for i.i ~ 3 so that now we have a 2 x 2

selection matrix given by [PII PI2]. Then in this case the equations in matrix
P21 P22

form will be
-P21/-L2] [P(l)(S,Z)] = [HH21]

G2 P(2)(s, z)
(25)

where

G1 = (s + >. + /-LI - >'z)z - Pn/-Ll
G2 = (s + >. + /-L2 - AZ)Z - P22/-L2

- -(1) -(2)HI = AZ1rIQ(S) - Pn/-LIPo (s) - P21/-L2P (s)
- -(1) -(2)H2 = AZ1r2Q(S) - PI2/-LIPO (s) - P22/-L2P (s)

Solving (25) simultaneously, we have

p(l)(s z) = HI[(s + >. + /-L2 - AZ)Z - P22/-L2] + P21/-L2H2 (26)
, [(s + >. + /-LI - AZ)Z - Pn/-LI][(S + A + /-L2 - AZ)Z - P22/-L2]

P(2)(s z) = H2[(s + >. + /-LI - AZ)Z - Pn/-LI] + PI2/-LIHI (27)
, [(s + >. + /-LI - AZ)Z - Pn/-LI][(S + >. + /-L2 - AZ)Z - P22/-L2]

Results in equations (26) and (27) agree with known results. (see Madan
(1990))

Under the conditions of particular case 2 discussed above, we have pn =

1 = P22 and PI2 = 0 = P2I for j = 2. Consequently, the steady state results
corresponding to the equations (16), (18), (22) and (24) can be derived as
follows:

p(j)(z) = (z -1)>'1rjQ .i = 1,2. (28)
(A + /-Lj - AZ)Z - /-Lj

Q
__ (/-Ll - A)(/-L2 - A) (29)

hI (/-L2 - A) + >'1r2(/-LI - A) + (/-LI - A)(/-L2 - A)

p(j) = [ (/-LI - A)(/-L2 - A) 11rj(~)n+1
n A1rI(P'2 - A) + h2(/-LI - A) + (/-LI - A)(/-L2 - A) /-Lj

n ~ O. j = 1,2.
(30)

(31)

where Q is given in equation (29).
Again, all the above results given in equations (28), (29), (30) and (31) agree

with results of Madan (1990), except for notations.
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