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ABSTRACT Nonstandard methods allow a flat integral representation of de
Wiener measure on P (R). A representation of the Wiener measure on P, (R)
is given, allowing us to give a nonstandard representation of the Wiener measure
on P. (G) by using Ito map.

0. PRELIMINARIES
For a good introduction of nonstandard analysis we can see (Albeverio, S. (1986)).
The main features that we need in our work are the following.

We assume the existence of a set "R D R, called the set of the
nonstandard real numbers and a mapping * : V(R) — V(*R), (where
.l-'l (5) = 5. Va1 (S) = Va(S)UP (VL (S)) and V (S) = U, N Va(S5)) with three
basic properties. To state the properties we give the following notions.

"

An elementary statement is a statement @ built up from =", ™ € ", relations:

»

u = v, u € v, the conectives "and”, "or”, "not”, and "implies”, bounded quautifiers
(Yu€wv),(Juer).
An internal object A is an element of ¥V (*R) such that A == 5, Se V(R). A

set in V ("R) which is not internal is called external.
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(1) Extension Principle. “R is a proper extension of R and * : V(R) — V ("R)

is an embedding such that *r = r for all r € R.

(2) The Saturation Property: Let {R, : n € N} be a sequence of internal objects
and {Sm : m € N} be a sequence of internal sets. If for each m € N there is
an Ny, € N such that for all n > Ny, Ry € Sp, then {R, : n € N} can be

extended to an internal sequence {R, :n €& "N} such that R, € NpSym for

every n € *N — N.

(2’) General Saturation Principle: Let x be an infinite cardinal. A nonstandard
extension is called x-saturated if for every family {X;},.; , card(I) < &, with
the infinite intersection property, the intersection N;e¢.X; is nonempty. i.e. this

intersection contains some internal object.

(3) Transfer Principle: Let ®(X,,..., \m, 21, ..., 2n) be an elementary statement

in V" (R). Then, for any A;,...., 4 C R and ri,....rn € R,
DA, ..., Apm.r1, ..., Th)
is true in V' (R) if and only if
DAy, ... Am, 1, TR)

is true in V (*R).

("R." 4+ .7 - "<) extends R as an ordered field, in general we will omit the * for
the operation and the order relation.

In R we can distinguish three kinds for numbers:
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(a) r € "R is infinitesimal, if |z| < r for each r € R*.

(b) z € "R is finite, if there is a real number r € R* such that |z| < r.

(c) £ € "R is infinite number, if |z| > r for each r € Rt

For each finite number r € "R we can associate a unique real r := st (z) := °z,
such that r = r + ¢, where ¢ is infinitesimal. We say that z is infinitely closed to
y. denoted by r = y if and only if r — y is infinitesimal.

In general we use capital letters H, F, X, etc. for internal functions and processes,
while £, f, z etc. are used for standard ones. For stopping times we will always use
capital letters, and specify whether standard or nonstandard is meant.

For given set A, *A stands for the elementary extension of 4, and ns(*A) denotes
the nearstandard points in *A. If 5 is an element in ns(*A), the standard part of s
is written as st (s), or °s. For given function f, " f means the elementary extension
of f.

We say that the set T is S-dense if {°t:t€ 7T, °t < 0} = [0,00), and

ns(T)={t€T: ° < oco}. With T we denote an internal S-dense subset of *[0, 0o).
The elements of T, or more generally, of *[0, oc), are denoted with s, t, u, etc... .
The real numbers in [0, oo) are denoted by s, t, u, etc... We will work with different
sets T, so will always specify the definition of such T.
With N we denote the set of nonzero natural numbers {1,2,3,...},and N, = NU{0}.
Elements of N, are denoted with n, m, {, etc... while, elements in *IN — N will be
denoted with 5, N, etc... .

When we say that F : A — B is an internal function, mean that the domain, the

range and the graph of the function are internal concepts.
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1. Definition. A subset A C "R which is internal and for which there exists
N € *N and an internal bijection F : 4 — {0,1,2.... N — 1} is called hyperfinite
set. In such case A is said to have hyperfinite internal cardinality N, and we write
|A| = N.

Hyperfinite sets are to the nonstandard universe what the finite sets are to the
standard one.

2. Proposition. Let 4 and B be hyperfinite sets with internal cardinalities H

and N, respectively. Then:
1) A1 x B 1s hyperfinite, with |[A x B| = HN

il) AB = {F: B — A : F is an internal function} is a hyperfinite set and its cardi-

nality is AV,
iii) AU B, AN B are hyperfinite.
iv) If .1 is hyperfinite and C' C A is an internal set, also C is hyperfinite.

Let *Ry = *RU{0,x} be the extended nonnegative hyperreals. An
internal finitely additive measure on the internal algebra I/ is an internal set function

p U — "Ry such that
(i) u(e)=0
(ii) For A, BelU with ANB=¢, p(AUB) = pu(A)+ p(B).

Since u is internal, the finite additivity extends to hyperfinite unions. Let € be
a hyperfinite set and let i be the class of all internal subsets of 2. Let us define a
finitely additive measure °u : U — "R, by °u(A) = “(u(A)), where °r = xc when

ris an infinitely large element of "R
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A countable union of sets can be written as a countable disjoint union of sets of the
same kind. As have seen in Corollary A2.8 (Muiioz de Ozak, M. (1995)), a countable
union of disjoint internal sets is not internal. Then, °u is a o-additive measure on
the algebra of internal hyperfinite subsets of 2. The Loeb measure is basically the
extension v of "u to the o-algebra generated by & by means of the Carathéodory’s
Extension Theorem.

3. Theorem (Loeb). The extended real valued function v = L (u) has a stan-
dard o-additive extension to the smallest (external) o-algebra M on Q containing i.
For each B € M, the value of this extension is given by v(B) = inl4eu,Bca *u(A).
This extension is unique if p(2) < +oo, in which case, for each B € M, v(B) =
SUP 4cy B4 “#(A) and there is A € U with v(BAA)=v((B-A)U(A- B)) =0.

For the proof see (Loeb, P. (1975)).

We say that A is Loeb measurable if

e —_ ;
Pez (B) = Aeuﬂu ‘p(A) = ezl'lgy B(A) = Pin (B).

and we denote this common value by L (i) . The collection of all measurable sets is
denoted with L ().

4. Theorem. (Q,L(Q),L(u)) is a complete probability space which extends
(92,U, p). 1t is called the Loeb space associated with (Q, U, u).

For the proof see A3.2 in the appendix in (Muiioz de Ozak, M (1995)).

5. Theorem. (Fubini type) Let (Qy.4;,P\) and (Q2,Us, Py) be hyperfinite

probability spaces and let F': Q; x 22 — R be a Loeb integrable function. Then:

(i) f(w;.-)is Loeb integrable for almost all w; € Q,.
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(ii) g (w1) = [ f (w1, ws)dL (Ps) is Loeb integrable on €.
(i) [ f (wr,w2)dL(Py x Pa) = [ ([ f (w1, wa) dL (Py)) dL (Py).

The proof is due to Keisler. See (Keisler, H.J. (1984)), Theorem 1.14.b)

1. INTRODUCTION

We extend the one dimensional definition of N. Cutland (1990) of the Wiener
measure on P, (R) to P, (R?) . This allows to give a nonstandard definition of Wiener
measure on Lie algebras. Then by means of Ito’s map, we obtain the notion of
a nonstandard representation of the Wiener measure on P, (G), where (¢ is a Lie
group.

2. WIENER MEASURE ON P, (G)

Let

P,(R)={z:[0,1] — R | z is continuous and z, = 0}

and let C the Borel g-algebra on P, (R) (P, (R) is given with the uniform convergence
norm). The Wiener measure p, over (P, (R),C) is a probability measure such that,

for0=ty <ty < <t,=1and a=(ay,...,a,) € R",

n—1 2

_ . _ =12 _(¥ia1 —w)
poize Santgism= [ T[@r (b -t exp (-5 =U) ) ay
Ca i=0 ¥
v<

where y = (y1,...,¥n) € R®, yo = 0 and dy the Lebesgue measure on R". ug can be

also described as a probability on ( P, (R.) , C) making the increments (X;,,, — X,)

41 0<i<n—1
independent and N (0,;4, — t;) distributed. The canonical continuous process given

by g is a Brownian motion.

Let T = {0.At.2A¢.....1} be the hyperfinite unit interval. Following Cutland
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we can make a nonstandard construction of the Brownian motion that gives us an
adequate definition of the Wiener measure on (P, (R),C) as follows:
Fix an internal probability space (Q,U, P) carrying independent N (0,t) random

variables ('71) Define a process B : T'x {2 — *R by

teT”

B(0,w)=0

AB(t,w)= B(t,w)— B(t—At,w)=n, teT.
Let P = L (P). Cutland obtains the following result:

(1) For P-a.a. w, B (-, w) is S-continuous.

(i1) The process b(-.w) = °B(-.w) is a brownian motion.

Cutland also shows that this construction of b gives rise to a construction of the
Wiener measure that can be expressed as follows: Let [' be the internal measure on

*RT induced by B, i.e., for A € D. where D is the Borel o-algebra in *RT,

I'(A)=P(B(-,w) € A)

(Xe- X
= (zmz)-""’?fﬂexp( —‘—A;—Ai) dXardXzar .. dX
teT

with d.X, denoting the *Lebesgue measure over *R. Writting dX for the *Lebesgue

measure on “RT, and

¢ Xe=Xiar _ AN
TTAr T A

we have

_ ~N/2 1 o .
[(4)=(2rAt) fexp (-5 Z,\,_.\t) dX

A ter
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and is follows that, with respect to L ('), X is S-continuous for almost all X € "RT,

and the Wiener measure on (P, (R),C() is given by
po(D) = L(T) (st (D)), DEeC,

where st—!' (D) = {.\' € "RT:°Xe D} :

Now consider
P,(RY) = {z:[0.1] — RY| r continuous and r, = 0}

and denoted with (% the Borel o-algebraon P, (R¢) . The Wiener measure on (P, (R?) , C9)

is defined by

polry, €A1 <i<n)=

n—1 2
]f T @7t — )" exp (—'é"’“—*””) dyy -+ - dy
{ ido (tig1 — )

Ay

where {t;, : 1 <i < n} is a partition of [0,1], 4, € B(R?), ||a|| is the length of a and
dy; is the Lebesgue measure on R
Generalizing Cutland’s constructions for the Brownian motion, we can construct

d independent B' (-, 1w) processes such that b* (-, w) = °B* (-, w). Then
°B(-w)= (b (-w), - b9 (-, w))

is an R? valued Brownian motion. Similarly as for the one dimensional Brownian
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motion, we can construct a Wiener measure that can be expressed as follows:

r4 (D)= P(B(-,w)€ D)

_ ~-Nd/2 1
= (2w At) fexp ( 2 Z|
teT

D

X

2
At) dXardX2a:...dX,

Where D € D x --- x D (d-times), dX; denotes the *Lebesgue measure over "R, and

¥ A"’!. T
X, =—te "RT.

Now let D = D; x --- x Dy, where [); is an internal Borel set in *RT. For
i = 1,...,d. This class of sets generates P¢. For X € * (R‘)T, X = (X1 oy X4),
with X; € "RT. i=1,..., d. Applying Theorem 5. (Keisler-Fubini Theorem) we

have

4 teT
2
= (2rAg)~Na/2 ]--/exp —%Z(\;) At
1 Dy teT
2
exp | -5 > (X¢) At dx}, - dX4,...dX}] - dX{
teT
:(QwAt)_Nd/‘?/exp(—}.Z”\, At) Fs OO
J |

so that for D = Dy x --- x Dy, D; €D,

r*(D)=T(Dy)---T(Dy)
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and for A = Ay x -+ x Aq, with 4, €C,i=1,2,--- d,

B3 (A) = po(A1)---po(Ag) = L(T) (st™' (Ay)) -+ - L(T) (st~ (Aq))

Since the sets A = A x --- x Ay, with A; € C, 1 = 1,2,---,d, generate the Borel
o-algebra C?, we can extend the definition of u§ to C9.

Let G be a compact, connected Lie group, and let g be the corresponding Lie
algebra. Let us take an Euclidean metric on g which is Ad (g) invariant. This metric
induces a Riemannian metric on G. Suppose dimG = d. Using and orthonormal
basis,

P, (g) = {z : [0,1] — g| ¢ is continuous and r, = 0}

is isomorphic to P, (R4). let P.(G) be the set of z : [0,1] — G which are con-
tinuous , r, = e and r; is invertible with respect to the group operation for all
t € [0,1]. From Wiener’s Theorem we can assume the existence of a Wiener measure
on (P (G),B(P.(Q))), where B(P.(G)) is the Borel o-algebra on P, (G), we want
to give a nonstandard construction of this Wiener measure.

Following P.Malliavin and M.Malliavin (1990), given z € P, (g) and a partition

S={to, -, ta} of [0, 1], we define exp, (z) = v as follows:

7(0)=e

v(t) =7 (tj—1) exp ((ﬁi‘—) (z(tj) —= (tj-l))) . tE [t-1,]

ti—t,1

It is known that when the mesh of S tends to zero ud a.e., then , the following limit
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exists in the metric space P, (G) :
limexp, (x)=[(z) .

The map r — [(z) is called the Ito map and is a measurable map.

Now consider the space "g7. We know that the nearstandard elements of this
space are the S-continuous functions, and also that with respect to L (I'?), X is S-
continuous for almost all X € *g7. With no loss of generality we can assume that
for all X € *¢7. X is S-continuous.

For X € "gT define the internal function Y € *G as follows:

Y(0)=e

k=1
Y(t)= H exp (Xi”. N X!,)
1=0

where, t = t, = két. te T, = T. Considering *v . the elementary extension of
5. defined above, we see that 4|y = Y'; and since *y is S-continuous, then Y is S-
continuous and so ¥ € *GT. Thus, Y is nearstandard in *GT. Also Y (t) is invertible
for all t € T, and we can define a map T : “g7 — *G7, such that T (X) =Y.

From the above nonstandard construction of the Wiener measure on P, (R?) and

the R4 valued Brownian motion, we have that
“T(B(-.w)=E(°B(w))=1(b(-,w)).

where £ is the stochastic exponential function defined in Theorem 1.3.8.in (Munoz de

Ozak. M. (1995)). Since I is a measurable map. T is a *Borel measurable map. We
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can define an internal measure on (*GT.B (*G7)) by
v(A) = ¢ (f‘l (,4))

for .4 Borel subset of "GT.
6. Theorem. For a Borel set B in P, (), we can define the Wiener measure
ip.G)(B) as

wp.cy)(B)= L(v)(st™"(B)).

proof. For B a Borel set in P, (G) we have

stV (I-'(B)) = [{X € *¢T: °X € ["'(B)}
={X€ *gT:1(°X) € B)
and
T ' (st=1(B) =T ' ({Y € “GT: °¥ € B})
= {.\' g *g¥: °T{X) € B}
={X e *gT :1(°X) € B)
so that, st=! (I='(B)) = 7! (st=1(B)). Since pp,G)(B) = pd (I~ (B)) from the

nonstandard definition of ud, we then have

up Gy (B) = pd (I71(B)) = L (TY) (st~ (I*(B)))

= L (rY) (T“ (st~ (B))) = L(v) (st~ (B))
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