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ON A VACATION Q U E U E W I T H T W O PARALLEL 

SERVERS EACH E Q U I P P E D W I T H A S T A N D - B Y 

K. C, MADAN 

Department of Mathematics, University of Bahrain 

ABSTRACT. The paper studies an Af/A//2 queueing system in which each server is 
equipped with a stand-by. The stand-by are employed only during the vacation períods 
of main severs. The vacation periods of the two severs are aasumed to be independent 
with an identical exponential distribution. The time dependent results giving probabil­
ity generating functions for the number in the system under various states have been 
obtained and in a particular case a known result has been derived at . The corresponding 
steady state results are also derived. 

1. INTRODUCTION 

Madan [4,5] has studied some queueing systems with server vacations. These va­

cations of the human servers or analogous breakdowns of the mechanical devices are 

a common phenomenon and have a definite effect on the efficiency of a system and on 

the customer's waiting time in the queue. Among the several important contributions 

on this aspect of queues, a few to be mentioned are those by Scboll and Kleinrock [6], 

Keilson and Serví [3], Doshi [1], Shanthikumar [7] and Gaver [2]. In all these papers, 

the system ceases to work as soon as vacation starts. In this paper, we have intro­

duced the idea of a stand-by which opérales only during the vacation periods of the 

main server. The commissioning of a stand-by is common and worthwhile in mamy 
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real life situations. Briefly, the mathematical model is described by the foliowing 

assumptions: 

2. T H E UNDERLYING ASSUMPTIONS 

(i) Arrivals occur one by one in a Poisson stream with mean arrival rate A(> 0). 

(ii) There are two parallel servers which provide identical service to the incoming 

units one by one in the order of their arrival. The service times at each channel 

are assumed to be exponential with identical mean service time p~^{p > Q). 

(iii) Both servers are subject to a random cali for vacation. As soon as a server 

Ieaves for vacation, a stand-by takes over and starts operating. And as soon 

as the vacation of a server terminales, it instantly replaces the stand- by and 

inmediately starts providing service. 

(iv) The service times of each stand-by are exponential with identical mean service 

time i/~^.{¡/ < p). 

(v) Let a dt be the first order probability that a server will stop working during 

the interval {t,t -{• dt) and a vacation starts. Further, we assume that the 

vacation periods of a server follow an exponential distribution with mean 

vacation time l/0.{0 > 0). In this case, it foilows that ¿Sdl is the first order 

probability that a vacation will termínate durig the time interval {t,t -\- dt). 

(vi) Commencement or termination of vacations of the two servers are indepen­

dent of each other also independent of all other stochastic processes involved 

in the system. 

3, DEFINITIONS AND TIME - DEPENDENT EQUATIONS 

Let P(j , n, t) denote the probability at time /, j servers (j = 0,1,2) are on vacation 
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and there are n(> 0) customers in the system (including those being served, if any). 

We note that whenever any server is away on vacation, it is imphed that a stand-by 

is avíiilable in its place and is providing service if there is a customer in the system. 

Clearly, when j servers are away on vacation, 2 — ; servers are available and further, 

the availabiUty of a server means it is providing service, if there is any customer in 

the system or else, it is idle. Let P{n, t) be the probability that at time t there are 

n customers in the system irrespective of the number of server on v2ication so that 

2 

P{n,t) = Y,P{j,n,t) 
; = 0 

Initial probability arguments based on the system's underlying assumptions lead 

to the foliowing set of forward difference-differential equations for the system : 

(1) P'(0,n,í)-(-(A-l-2/i-|-2a)P(0,n,í) 

= AP(0, n - 1,0 + 2pP{Q,n-I- l , í ) -i- 0 P [ \ , n , t ) (n > 2) 

(2) P '{{i , l , t )+{X^p-^2a)P{Q,l , t ) 

= AP(0,0,í) + 2/i/ '(0,2,0 + m i - l > 0 

(3) P'(0,0,í)+(A + 2o)P(0,0 ,0 

= p P { ^ , l , t ) ^ 0 P { l , Q , t ) 

(4) P ' ( l , n ,0+(A + /i-l-i/ + a- | - /?)P(l ,n , í ) 

= A P ( l , n - l , 0 + (/i + í / ) P ( l , n + l , < ) + 2aP(0,n, í ) 

- | -2/?P(2,n,<)(n>2) 

(5) P ' ( l , l , 0 + ( A + M + a-h/?)P(l , l ,<) 

= AP(1,0,0 -I- (;/ -H i/)P(l,2, t) -i- 2aP(0 ,1 ,0 + 2/?P(2,1,0 
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(6) P ' ( l , 0 , 0 + (A-ha + /3)P(l ,0,0 

= / í P ( l , l , O + 2aP(0 ,0 ,0 + 2^P(2,0,O 

(7) P'(2,Ti,0 + (A-l-2í/-|-2/?)P(2,n,0 

= A P ( 2 , n - l , 0 + 2i /P(2,n- | - l ,0 + o P ( l , n , 0 ( « > 2 ) 

(8) P ' ( 2 , l , 0 + (A-^í/-(-2^)P(2,l ,0 

= AP(2,0,0 + 2t/P(2,2,0 + a P i h l.<) 

(9) P'(2,0,O + (A + 2^)P(2,0,O 

= í /P(2 , l ,0 + a P ( l , 0 , 0 

We assume that initially there are i customers in the system and both servers are 

available (j = 0) so that the initial condition is 

(10) PiJ, i ,0)=i6r. , i) i6oj) i = 0,1,2 

where ¿„ , and Soj are the Kronecker's deltas. 

4. T H E TIME-DEPENDENT SOLUTION 

Let P{j,n,s) denote the Laplace transform (L.T.) of P{j ,n, t) for j = 0,1,2 and 

n(> 0). Then taking L.T. of equations (1) to (9) and using (10), we have 

(11) (s-f-A-|-2^-l-2a)P(0,n,5) 

= AP(0, n - 1, s) -t- 2/iP(0, n + 1,5) -H /?P(1,1, s) (n > 2) 
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(12) (s + A+/i- |-2a)P(0,l ,s) 

= AP(0,0, s)-t-2/x P(0,2, s)-f-/?P(1,1, s) 

(13) 

(S + A - Í - 2 Q ) P ( 0 , 0 , S ) 

= / iP(0 , l , s ) -^ /?P( l ,0 ,O 

(14) (s-hAH-/i-|-t/-|-a-H/?)P(l,n,s) 

= AP(1, n - 1, s) -I- (/i + u)P( l ,n -I- 1, s) -f 2aP(0, n, s) 

-\-20P(2,n,s) ( n > 2 ) 

(15) (s- | -A+/i- | -cH-/?)P(l , l ,s) 

= AP(1,0,5) + (/x-I-i/)P(l, 2, s)-t-2aP(0,1, s)-(-2/?P(2,1, s) 

(16) {s-^X-\-a-\-0)Pil,O,s) 

= p P { l , l , s ) + 2aP{O,O,s)-^20P{2,O,s) 

(17) (s + A-|-2i/-|-2/3)P(2,n,s) 

= AP(2, n - 1, s) -f 2i'P(2, n -f 1, s) -f- Q P ( 1 , n, s) {n > 2) 

(18) (s-f A-|-i/-|-2;9)P(2,l,s) 

= AP(2,0,s) + 2t/P(2,2,s)-(-c^P(l, l ,s) 

(19) {8-\-X-\-20)Pi2,O,s) 

= i 'P{2, l ,s)- \ -aP{l ,0,s) 

Define the probability generating functions : 

oo 2 

(20) P U , z , s ) = J 2 P { j , n . s ) z " - . Piz ,s) = ^ P i J , z , s ) , j = 0,1,2 \z\ < 1 
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Multiplying equations (11) to (19) by suitable powers of z and making use of (20), 

we get 

(21) [(s 4- A(l - z) + 2/i -I- 2a)z - 2;Í] P(0, z, s) 

= 2'+^ -f 2/i(r - 1)P(0,0, s) -I- pz{z - 1)P(0,1, s) -t- /?zP(l, 2,s) 

(22) [(s -I- A(l - 2) -I- /i -f-1/ -f- a -I- /?)z - (/i -H i/)]P(l, 2, s) 

- (^ -h i/)(z - 1)P(1,0, s) -̂  i.z(í - 1)P(1, l ,s) 

+ 2azP(0, z, s) •\- 20zP{2, z, s) 

(23) [(s -t- A(l - z) -I- 21/ -H 20)z - 2v\)P{2, z, s) 

= 2¡^iz - l)P{2,0,s) -\- uz(z - l )P{2, l ,s) -\- a zP i l , z , s ) 

Solving equations (21), (22) and (23) simultaneously we obtain 

(24) P ( j , , , s ) = ^ ^ ^ (i = 0,l,2) 
D{z,s) 

where 

(25) Ño{z, s) ={ [(s -I- A(l - z) -I- /< + 1/ -f Q -I- 0)z - (/i -I- u)] 

X [(« -I- A(l - í) -}- 2i/ -(- 20)z - 2u] - 2a0z'^} 

X {z'+i + 2p{z - 1)P(0,0, s) + pz{z - 1)P(0,1, s)} 

-t- 0z [{s ->rX{l-z)+2v-V 20)z - 2u] 

X [{p -I- u){z - 1)P(1, o, s) + vz{z - 1)P(1,1, s)] 

-^4/?V(z- l )z2p(0 ,0 .s ) 
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(26) Ñi iz , s) =2az[{s + A(l - z) -f- 2J/ -I- 20)z - 2Í/] 

X [z'-^' -{-2piz - 1)P{0,0,8) -\- pz{z - l )PiO,l ,s)] 

-1- [(s -I- A(l - z) -I- 2/i + 2a)z - 2p] 

X [{a + A(l - z) -•- 2í/ -I- 20)z - 2u] 

X [{p + u){z - 1)P(1,0, s) -H Í/Z(2 - 1)P(1,1, s)] 

-t- 2/?z [(« -I- A(l - z) -(- 2/í -̂  2Q)Z - 2/i] 

X [2i/(z - 1)P(2,0, s) -I- i/z(z - 1)P(2,1, s)] 

(27) Ñ2Íz, s) =2a^z^ [z'+' -I- 2piz - 1)P(0,0, s) -I- pz(z - 1)P(0,1, s)] 

-I- az[(s -f- A(l - z ) - \ - 2 p - ^ 2a)z - 2p] 

X [ip + i/)(z - 1)P(1,0, s) -I- ^z(z - 1)P(1,1, s)] 

-t- {[(s -1- A(l - z) + 2/1 + 2a)z - 2p] 

X [(8-t-A(l-z)-l- / i- | - i / - | -a + ;3)z-(/<-l-t/)] -2a0z '^} 

X [2 i / ( z - l )P (2 ,0 , s ) - l - i / z ( z - l )P (2 , l , s ) ] 

(28) D{z, s) = [(s -I- A(l - z) -t- 2/í -H 2a)z - 2p] 

X [(« -I- A(l - z) + /i -I-1/ -I- a -t- /?)z - (/i -1- u)] 

X [(s-H A(l - z)-I-2í/-I-2/3)z - 2í/] 

- 4a/3z2 [(« -h A(l - z)/» -I- i/ -I- a + 0)z - (/i + u)] 

Now, since each of the expressions in (24) contains six unknowns namely, P(j ,0,s) 

and P{j, l ,s) , for j = 0,1,2 appearing in their numerator give by equation (25), (26) 

and (27), it is sufficient to consider any one of them. Let us consider equation (24) 

for j = 0. Il can be shown by Rouche's Theorem that the denominator give by (28) 
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has three zeroes inside the circle \z\ = 1, Since P(0,z,s) is regular, the numerator 

Noiz, s) must vanish for each of these zeros giving 3 linear equation in 6 unknowns. 

Apart from these 3 equation we have 3 other equation namely, (13), (16) and (19) 

involving the same 6 unknowns. Thus a total number of 6 equations are sufficient 

to determine all the 6 unknowns. Therefore each P(j ,z ,s) , for j = 0,1,2 can be 
2 

determined and henee P{z,s) = ^ P ( ; , z , » ) , can be completeiy determined. 

5. PROBABILITIES O F THE STATES O F THE SYSTEM 

We let z = i in equation (25)-(28) and have 

(29) Ño{l,s) = { s -^a - \ -0 ){s -^20) -2a0 

(30) 7Vi(l ,0 = 2c»(s-(-2/?) 

(31) Ñ2{l,s) = 2a^ 

(32) D{1, s) = (fi + 2a)(s -I- a -I- /?)(s -I- 20) - 4Q/?(S + O + /?) 

Now the right hand side of equation (32) can be factored so as lo have 

(33) D(l ,s) = s(fi + a-f/?)(s-|-2/? + 2a) 

Equations (24), on using equation (29), (30), (31) and (33) for j = 0,1,2, yield 

r^4) PÍO •. .\ - ^°(^ '*) - (^ + ^ + /?)(^ + 10) - 2o/? 
(d4) r(U, -, 5) - _^^^^ - 5(s + a -(- 0){s -h 2a -H 20) 

(35) P( l ,z , s )=Sl-0 '*) - ^^(^-^2^) 
D(l,fi) 5(s + a-(-/?)(« +2a-(-2/3) 

(36) P ( 2 , z , . ) = ^ ( ^ - ^ ) - 2a^ 
D{l,s) s(s-F ft-t-/?)(s + 2Q-t-2/3) 
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On partial fraction decomposition equations (34), (35) and (36) respectively yield 

(38) ^ " • ' • • ' - ( ^ T « 5 t — + . + « + /! . + 2<,+ 2 í / 

(39) 7(M,.,= ^ { i - _ l ^ + _-¿-^} 

One can verify that on adding equations (37), (38) and (39) respectively we have 

- ^ - 1 
P(l,s) = Y^P(j,z,s) = - as it should be. 

;=o * 
On inverting the Laplace trasforms equations (37), (38) and (39) respectively give 

the probabilities that 0,1 or 2 servers are away on vacation at time í. Thus, we have 

(40) P(0,t) = — I — . ( ^ 2 ^ 2a/3c-("+^>* -(- a^-^^^-^^A 
(ar -(- /S)-* I J 

(41) P(1,0 = . ^̂  ,{2a/?-H2a(« - ^)e-(°+^)' - 2ah-^^''+l'^'] 

(42) P(2,0 = (ÍTíWí^ ~ 2e-<<'+̂ )' -I- e-2("+^)'} 

Letting < —• oo in equations (40)-(42), we have the corresponding steady state prob­

abilities of the states of the system as 

0^ (46) P(0) = " 

(47) P(l) = 

(a + 0 f 
2a0 

ia + 0 f 

(48) P(2) = 
« 2 

(a -H /?)2 

6. A PARTICULAR CASE 

If there are no server vacation, then P{j, n,s) = O fot j = 1,2 and n > O and for 

that mather A'̂ i(z, s) = N2(z,s) = 0. With these substitutions alongwith a = O, the 



30 K. C. MADAM 

foregoing results yield 

(49) Ño{z, s) ={ [(s -f- A(l - z) -I- /i -I-1/ -I- 0)z - (/i -t- u)] 

X [(s + A(l-z)- l -2t / + 2;3)z-2i ']} 

X {z> + > -̂  2p{z - l)P^o^\s) + pziz - l)Pp^(fi)} 

(50) D(z , s )=[ (5 - | -A( l -z ) - t -2 / i ) z -2 / i ] 

X [(s -I- A(l - z) -I- /i -(- í/ -f- 0)z -{p-^-1/)] 

X [{s -(- A(l - z) -1- 2t/ -I- 20)z - 2u] 

Obviously the two common factors of each of the equations (49) and (50) cancel with 

each other so that finally we have 

P(z,s) = ^ 
D{Z,8) ^ ^ 

^ z'+^ -h 2p{z - 1)P(0,0, s) -I- pz{z - 1)P(0, l,s) 

(í-I-A(l - z)-I-2/i)z - 2/1 

The result equation (51) agrees with a known result except for notations. {see SAATY 

[8], equation 4-105, p 111 } 
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