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1. INTRODUCTION

We investigate in this paper the relation between strictly plurisubharmonic
functions and partial differential equations in domains of C", (n > 1). Various
related results are obtained in this context. Several papers developed by
Lelong [14, 15, 16, 17, 18], Sadullaev [20], Oka [19], Bremermann [4, 5],Siciak
[21], Abidi [1], Cegrell [6] and others studied plurisubharmonic functions and
related topics are of particular importance in this context. For example we
can state that strictly plurisubharmonic functions and analytic subsets are
related in domains of C™ as follows. Let A = {z € C : f(z) = 0} and
B ={z € C : g(z) = 0} two analytic subsets of C, where f,g: C — C be 2
analytic functions, fg # 0. Put f; and g; some analytic primitives of f and g
respectively over C. Then AN B = () if and only if the function w,

u(z,w) = Jw = fi(2)]* + [w = g1 ()] , (z,w) € C?,

is strictly psh in C2. Some good references for the study of convex functions
are [11, 13, 3]. For the study of analytic functions we cite the references [12, 10,
13]. For the study of the extension problem of analytic and plurisubharmonic
functions we cite the references [7, 9, 6, 18, 8, 22, 23].
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As usual, N := {1,2,...}, R and C are the sets of all natural, real and
complex numbers, respectively. Let U be a domain of R?, (d > 2); my is the
Lebesgue measure on RY. Let f: U — C be a function; |f| is the modulus of
f, Re(f) and Im(f) are respectively the real and imaginary parts of f. Let
g : D — C be an analytic function, D is a domain of C. We denote by ¢(© = g,
gV = ¢ is the holomorphic derivative of g over D. ¢ = ¢, ¢©® = ¢/”. In

general ¢g(™ = % is the derivative of g of order m for all m € N. Let
2e€C" z=(z1,...,2n), n > 2. For j € {1,...,n}, we write z = (2;,Z;) =
(Z1y ooy 2jm1y 2y Zjt1y - - - » 2n) Where Zj = (21,00, 2j-1, 2j41, -+, 2n) € C*7L,

C*U)={p:U = C : pisofclass C* in U}, k € NU {oo}. Let ¢ : U — C
be a function of class C2. A(¢) is the Laplacian of . Let D be a domain of C",
(n > 1); psh(D) and prh(D) are respectively the class of plurisubharmonic
and pluriharmonic functions on D. For all a € C, |a| is the modulus of a;
Re(a) and Im(a) are the real and the imaginary parts of a respectively.

2. MAIN RESULTS

We begin this study by the next result.

THEOREM 2.1. Let hy,...,hxy : C = R be N harmonic functions, N > 1.
For the function u(z,w) = |w — h1(2)|> + - + |w — hy(2) %, (z,w) € C?, the
following conditions are equivalent:

(a) w is strictly psh in C?;

(b) {ze@:%(z):o}m---m{zec; f’gg(z):o}:@.

Proof. (a) = (b) Because |w — hi|*> + -+ + |w — hn|> = N|w|? + (h? +
o+ h3) —w(hi 4+ hy) —w(hy + -+ hy), u is a function of class C*
in C2. Now let (z,w) € C2,

82u 0h1 2 8hN 2
aza(z’w)_Q[ 5z ) +"'+‘ 5z ) ]
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The Levi hermitian form associated to u is now

0%u 9%u _

L(u)(z,w)(a, B) = %(z, w)aa +

2Rl 55

2
oh
_|_..._|_‘ N

_2[ %(z)
+2Re[— <%]?(z)++8g;v(z)> aﬂ] >0,

for all (z,w) € C? and (o, B) € C*\{(0,0)}. Thus

Ohy

2
O Oy z)| < QN[ —(2)

2
Ohn
Bz Tt ) P I

for each z € C.
Now we use the following lemma.

LEMMA 2.2. Let aq,...,any € C and N > 1. We have

(i) N(jar|* + -+ +lanl?) > a1 + -+ an|*;

(i) M(Ja1|* + -+ |an|?) > |a1 + - +an|* if M > N and there exists jo
such that aj;, # 0.

Proof.
al Nﬁ al _ al Y \a]|2 |a]|2
) () - 3 wme S laini< 3 (11
j=1 k=1 k=1 k=1 jk=1
N a2 N N N
2 2
S 5) S P 31
7,k=1 k=1 j=1 7j=1 |

Now we complete the proof of the theorem. Put

~[|om|? dhn |?
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A>0over C. A= B+ C, where B>0,C > 0. ThenA—Oifandonlyif

o= - _ Jon ] oy ()]*
B =C =0. Thus if z € C such that B(z) = |G (2)| +---+ =0,
then 8h1 L(z) == agé\’( ) = 0. Therefore C(z) = (2N — 1)("%1 (z)‘ +-- 4
N ——

The converse is also true We conclude that A(z) > 0 if and only if

2
B(z) > 0, for all z € C. Then %‘ o ‘%N > 0 over C if and only if
2

w is strictly psh in C2. But ‘% + -+ lagZN > 0 in C if and only if

{zeC %}:( ):o}m---m{zec:@(z)zo}zm.

By this proof we deduce also (b) = (a). I

For analytic functions, we have now.

THEOREM 2.3. Let g1,...,98 : D — C be N analytic functions, N €
N\{1}, D is a domain of C. Put u(z,w) = |w — g1(2)]* + - + |w — gn(2)|?,
(z,w) € D x C. Then u is strictly psh in D x C if and only if

N
Z gé-%éjk >0 over D |
Jk=1

where 6j, = (N —1ifj=kand —1ifj#k), j,ke{l,...,N}.

Proof. The function u = N|w|? + (|gl|2 4.4 |QN|2) —w(gi+- - +9§) —
W(g1 + -+ + gn) is of class C* over D x C. Let (z,w) € C2,

82u 2 / 2
%(2 w) = |g1(2)]* 4+ |gn ()7,
9%u
3w8@(2’w) N,

d%u

5.2 (W) = =(91(2) + -+ gn(2)) -

Assume that wu is strictly psh in D x C. The Levi hermitian form of u is now
L(u)(z,w)(ev, B) = [lg1(2)* + - + |gy(2)[*]ac + NBB + 2Re [ — (g1(2) +
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+gN aj > 0 for all (o, 8) € C2\{(0,0)}. Thus g, + - +g§\;!2 <
[|91|2 -+ |gN| ] over D. Then

N N
> g+ (N =D [lgil>+ -+ gn?] = D digidj >0 on D.
J,k=1(j#k) Jk=1
N —
Now assume that Z g}gfgéjk > 0 on D. By the above proof, ¢ + - +
jk=1

gnI2 < N[|gi]* + -+ lgy?]. Tt follows that L(u)(z,w)(c, 8) > 0 for each
(@, ) € C\{0}.

The theorem below gives a fundamental part of this paper and the study
of the relation between partial differential equations and strictly plurisubhar-
monic functions over domains of C”, (n > 1).

THEOREM 2.4. Let g : D — C be a function, D is a domain of C. Put
v(z,w) = |w — g(2)|?, for (z,w) € D x C. The following assertions are equiv-
alent:

(a) v is strictly psh in D x C;
(b) g is harmonic in D and {z € D : %(z) =0} =0.

Proof. (a) = (b) w is strictly psh in D x C, then v is psh in D x C.
Therefore g is harmonic in D by Abidi [1]. It follows that v is a function of class
C>®in DxC. Let (z,w) € DxC. Write v(z,w) = |w|?*+|g(2)|*~wg(z)—wg(z).
We have

0% _ 9%v 0%
%(z,w)aa—i— T (z,w)BB +2Re {8 0 (z, w)aﬁ] >0
for all (o, B) € C?\{0}, and
v |ag|*  |og|? v v g
020z |0z 0z| ’ owow 00w 0z

Therefore } - @ < ‘ 7 ‘ + | , and consequently | 7 ‘ > 0 over D.
(b) = (a) Slnce g is harmonlc in D, then v is a function of class C* in

D x C. We have

v |og|’
0207 |0z

@2
0z

0%v 0%v ~0g

’ owdw L 00w 0z
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The Levi hermitian form of v is

7820 (z,w)aa + 7821}
020z Owow

_{89 2 ’89

&(Z) + 5(2)
for (z,w) € D x C, (o, 8) € C2. Since |%(z)‘2 > 0, for every z € D, then

2

(z,w)B3 +2Re [M(z, w)aﬁ]

L)z w)(, B) = o

2} aa + BB+ 2Re [ — (.ag(z)aﬁ]
0z ’

dg 2 dg 2 dg 2
-] <|Eo| +[pge
for each z € D. Therefore,
L(v)(z,w)(a, B) > 0, V (z,w) € DX C, ¥ (a,f) € C*\{0}.

Consequently, v is strictly psh in D x C. |

Observe that if k = k; + ko, where kq, ko : D — C be 2 analytic functions
in the domain D C C, and u(z,w) = |w — k(2)[?, (2,w) € D x C, then the
strict plurisubharmonicity of w is independent of the function k1. On the other
hand if we replace the strict inequality < by the large inequality <, then the
above theorem is false.

Remark 2.5. Let k: D — C be an analytic function, D is a domain of C.
Put u(z,w) = |w — k(2)]?, v(z,w) = |w — k(2)|?, where (z,w) € D x C. Then
u, log(u) and log(v) are not strictly psh functions on any not empty domain
of D x C; v is strictly psh in D x C if and only if ’% = ‘% >0in D.

EXAMPLE. Let k(z) = exp(z), z € C, and v1(z,w) = |w — exp(z)|?,
va(z,w) = |w — exp(z)|?, for (z,w) € C?; vy is not strictly psh on any open
of C2, but vy is strictly psh in all C2. Note that log(v) is not strictly psh on
any domain of {(z,w) : |w — exp(z)* > 0}.

On the other hand, g1(z) = 2z and g2(2) = 1 — 2z (2 € C) are analytic
functions over C. Set v(z,w) = |w — g1(2)|* + |w — g2(2)|?, (2,w) € C2. Let
(o, 8) € C2. The Levi hermitian form of v is

L(v)(z,w)(a, B) = a@ + BB+ 2Re | — aff] + aa + BB + 2Re [af3]
=2(aa+BB) >0, VY (z,w)eCxC,V (a,B)cC*{0}.
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Then v is strictly psh in C2. Observe that in this case if we put ui(z,w) =
lw — g1(2)[%, ua(z,w) = |w — ga(2)|?, then u; and uy are plurisubharmonic
over C? but not strictly psh functions on any domain of C?. But v = (uy +usz)
is strictly psh in C2.

In fact we have the following result.

CrLAM 2.6. Let g1,92 : D — C be 2 analytic functions, D is a domain of
C and v(z,w) = |w — g1(2)]? + |w — ga(2)|?, where (z,w) € D x C. Then v is
strictly psh in D x C if the function Re [g}g}] < 0 over D.

If D = C, then v is strictly psh in C? if for example (g’ng) is equal a
constant ¢ over C and Re(c) < 0.

According to the paper Abidi [1], we can prove the following extension.

CrLAIM 2.7. Let a,b € C. Put v(z,w) = |[(w —2)? — (a + b)(w — Z) + ab|,
where (z,w) € C2. Then v is strictly psh on C? if and only if a = b.
In general we can state the following result: For all g : C — C be analytic,
if we put
u(z,w) = |(w—g(2))* = (a+b)(w —g(2)) + abl,
where (z,w) € C2?, then u is strictly psh on C? if and only if (¢ = b and
%(z” > 0 for all z € C).

THEOREM 2.8. Let D be a domain of C and g : D — C be an analytic
function. The following statements are equivalent:

(a1) |w—g|* is strictly psh in D x C;

(ag) |w—g|>+ |w—g|* is strictly psh in D x C;

(as) |52 >0 in D;

(a4) |w —cg—g|* is strictly psh in D x C, where ¢ € C\{0};

(a5) |wi — g|* + |wa —g|?* is strictly psh in D x C x C;

(ag) foralln €N, (lwi —gl*+ -+ |wn — g|* + |wpq1 — g|?) is strictly psh

in D x C*tL,

PROPOSITION 2.9. Let g : D — C be analytic, D is a domain of C. g =
h+ik, h = Re(g), k = Im(g). Let a,b € C, (a # 0 or b # 0). Put u(z,w) =
0 — G2, v(zw) = [ — ah(2)P + [w — bR, wi(5w) = [w— h(z)P,
ug(z,w) = |w — k(2)|?, where (z,w) € D x C. We have the equivalents:
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w is strictly psh in D x C;
uy is strictly psh in D x C;
ug Is strictly psh in D x C;
v is strictly psh in D x C.

Observe that in general we can not compare the structure strictly psh of
the functions v; and vy where vi(z,w) = |w — g(2)|?, v2(z,w) = |w — G(2)|?,
g : C — C be analytic and (z,w) € C2% But if we add another function
constructed according to the expression of g we have the following extension.

CrAam 2.10. Let g : C" — C be analytic ¢ = h + ik, h = Re(g), n € N.
Denote by (2, w) = [w—g()|2, ¢1(5,w) = [w—h(2)P+lw—g(), ¢alz,w) =
jw — h(2)* + |w = G(2)|%, ¢3(z,w) = Jw - G(2)[?, where (z,w) € C" x C.
We have the equivalents:

(a) 1 is strictly psh in C" x C;
(b) 2 is strictly psh in C" x C;
(c) n=1and g3 is strictly psh in C2.

Note that ¢ is not strictly psh on all not empty domain of C2.

At this stage of the development, observe that if f : C* — R is plurihar-
monic (n > 1), and F(z,w) = |w — f(2)[?, where (z,w) € C* x C, then F is
not strictly psh on any not empty domain of C” x C if and only if

(a1) n=1 and f is constant in C, or

(ag) n>2 and f is an arbitrary prh function over C".

The function f have real valued is of great importance in this subject.

SOME FUNDAMENTAL REMARKS CONCERNING STRICTLY PSH FUNCTIONS.
At the beginning of this statements we observe the following assertions: Let
h : D — C be a function, D is a convex domain of C. If |w — h|? is psh
(resp. convex) in D x C, then |w — E!z is psh (resp. convex) in D x C and
conversely.

But we can obtain |w — h|? is strictly psh (resp. strictly psh and convex)
in D x C and ’w — E|2 is not strictly psh (resp. not strictly psh and convex)
on any domain subset of D x C. This is one of the great differences between
the classes of functions psh, convex, of the first part and the classes of strictly
psh, (strictly psh and convex) functions for the second part. Consequently, if
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we replace the large inequality < by the strict inequality < the above result
is not true.

Now let g1,...,98 : C* — C be N analytic functions, where n, N > 1.
Put ui(z,w) = |w—g1(2)|?> + --- + |w — gn(2)]?, vi(z,w) = }w — ﬁ(z)’z +
cee 4 ’w - gTv(z)‘g, (z,w) € C" x C. If uy is strictly psh in C" x C, then
{%(gl, Ce s ON )y %(gl, e ,gN)} is linearly independent over CV and
n < N (by using the hermitian Levi form of the function ;). If u; is strictly
psh in C" x C, then v; is strictly psh in C™ x C. But not conversely.

EXAMPLE. The functions k1(2) = 2, ka(2) = 22 (2 € C) are analytic over
C. Let v1(z,w) = |w —14:71(27)}2 + |w — k2 (2) ? where (z,w) € C%; vy is strictly
psh on C2. Put u;(z,w) = |w—z|*+|w—2%|?, where (z,w) € C2. Let o, 3 € C.
The Levi hermitian form of uy is L(u1)(z,w)(a, 8) = |8 — a|? + |8 — 2za|?. If

z = %, then we have

L(u) (;w> (@,a) = 0 for each a € C\{0}.

Therefore u; is not strictly psh in C%. Put ug(z,w) = |wy — g1(2)> + -+ +
lwy — gn(2)]?, 2 € C", w = (w1, ..., wx) € CN; ug is not strictly psh in any
not empty domain of C* x CV.

Now put v3(z, w) = |wy —gT(z)‘Q ot jwy — gT\/(z)‘2 If for all fixed z
in C", the system

(2o + -+ §L(2)an = 0

%gz]f (z)ag + -+ %ZJZ (z)an, =0
(a1,...,a, € C) has only the solution (aq,...,a,) = (0,...,0), then vy is
strictly psh in C™ x CN. Therefore uy and v9 do not have the same structure
in the theory of the strictly plurisubharmonic functions.

Put ug(z,w) = |w —W(z)‘2 + ’w - 902(2)‘2, where (z,w) € C2, ¢1, s :
C — C are analytic functions, u4(z,w) = |w - @1(2)‘2 + !w - @(z)‘Q. Then
us is strictly psh in C? if and only if uy is strictly psh in C2.

QUESTION 2.11. An original problem of the theory of functions in several
complex variables is now the following. Let fo,..., fr_1 : C* — C be k
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analytic functions, (n,k > 1). Set

)

u(z,w) = [wP + fro1 ()W 4+ fi(2)w + folz)

v(z,w) = ‘wk + m(z)wk*1 + -+ (2w + fol2)],
where (z,w) € C" x C. w is convex in C" x C if and only if v is convex in
C™ x C. Now note that u is psh in C" x C, but v is not in general (example
take vi(z,w) = |w? + Zw| is not psh in C?). Find the condition described by
the functions fy, ..., fr—1 such that v is psh in C" x C. (Observe that we can
consider in this study the question of a power series).

Remark 2.12. The above proposition is not true if g : D — C is harmonic.
For example, if g : C — R, g(z) = x1, 2 = (z1 + iz2) € C, where z1,29 € R,
then }w —5’2 is strictly psh in C2. But Im(g) = 0 and |w — 02> = |w|? is not
strictly psh on any domain of C2.

THEOREM 2.13. Let g1,...,g9n : C = C, u(z,w) = |w1 — g1(2)]> + -+ +
lwy — gn(2)|%, where (z,w) = (z,w1,...,wy) € Cx CN,N € N. u is strictly
psh in C x CN if and only if gy,...,gn are harmonic functions in C and

9911 .. 4 |%x > > 0 on C.

Proof. Assume that u is strictly psh on CxC¥. Note that u is a function of

class C>® on CxCV. Let (z,w) = (z,w1,...,wy) € CxCV. Fixwy,...,wy €
C. Then the function u(.,.,ws, ..., wy) is strictly psh on C2. By Abidi [1],
g1 is harmonic on C. Consequently, g1, ..., gn are harmonic functions on C.

Put g; = f; + kj, where f;,kj : C — C be two analytic functions and
je{l,....,N}. Let (a,B) = (a,B1,...,0n) € Cx CN\{(0,0)}. The Levi

hermitian form of u is now

0 L 2
L)z w)(o,8) = |1~ D()a| +|FL()
0 20 2
#ot o= ] + | e
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for each z € C. Thus

2

0
o > 0.

dgN
oz oz )

2
(z)' IR

The converse is trivial.

Observe that the notion w is strictly psh in C x C on the above theorem
is independent of fi,..., fn, where g; = f; + kj, fj,k; : C — C are analytic
functions (1 <j < N). 1

PROPOSITION 2.14. For every g : D — C analytic, D is a domain of
C", (n > 2), u = |g|? is not strictly psh on any domain Dy C D. Indeed

2
e|g‘2, |g|26|9‘2, ]g\Qe‘g‘zeelg‘ are not strictly psh functions in any domain Dy C
D. For example let v = |g1|* + - -+ + |gy|?, where g1,...,g, : C" — C are
analytic functions. Then v is strictly psh in C" if and only if the determinant

det (ag]( ))Jk # 0, for all z € C™.

Note that we have the assertion. Let g1,...,g9n : D — C be N analytic

functions, D is a domain of C*, n > 2, N > 1. If N < n, then u = |g1|> +

-+ =+ |gn|? is not strictly psh on any domain Dy C D. In fact u is a function
of class C'*° in D. The Levi hermitian form of u is

n
82u

2
aQN

Zagl
82']
for each z = (21,...,2,) € D and a = (aq,...,a,) € C™.

Suppose that w is strictly psh in D. Then for all z € D, for all aq,...,a, €
C, L(u)(2)(aa,...,an) =0 if and only if

0 d
3‘2( z)ag + - afgi( z)ay, =0

YN (2)ag + -+ + G (2)ay, = 0.

Then

a <gi(z) ‘Zg;lv( )> +---+an<gi(z),...,gng:( )) —0
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implies that a; = --- = a,, = 0. Therefore the subset of vectors

{@2(2),...,%{’;;(2)),..-, <§Z:L(z),---,gif(2)>}

is a free family of n vectors of CV, and N < n. This is a contradiction.
Consequently, u is not strictly psh on any domain Dy C D.

But we have the following result: For all n € N, there exists uy,...,uy :
C?" — C be n pluriharmonic functions such that v = (Ju[* + - + |up|?) is
strictly psh in C?".

EXAMPLE. Put uj(z) = zj + Zngj, 1 < j < n, where z = (21,...,20,) €
C?". wy is in fact prhin C?*; |u1(2)|? = |21+ Zng1 | = |21 2+ |21 P+ 212041+
Z1Zn+1- Note that the function Ki(z) = 2z12p4+1 + Z12n+1, K1 is pluriharmonic
in C?" and therefore the Levi hermitian form of K is equal 0 over C?" x C?".
Then L(|u1|?)(2)(a1, ..., a2n) = |oa]? + [an+1]%. Then

2n
Lw)(2)(on, ... 020) = Y o> >0 if (an,..., 090) € C*™M {0}

j=1

Then v is strictly psh in C?”, but n < 2n.

In fact for all n > 1, there exists a function v : C" — R pluriharmonic such
that |u|? is not strictly psh in C”, u is not constant. Observe that we have
if h : C3 — C is pluriharmonic, then |h|? is not strictly psh in C3. Exactly
we have for all hy,...,hs : C* — C prh, if s < %, then ([h1]? + -+ + |hs[?)
is not strictly psh in C". Now if one of the function have real valued, one of
the above result is not true. For example, if v : C2 — R is a pluriharmonic
function, then u? is not strictly psh on C2.

THEOREM 2.15. Let uq,...,u, : C** — R be n pluriharmonic functions,

n € N. Set u=u?+---+u2. Then u is not strictly psh on any domain of
c2n.

Proof. The functions u?,...,u2 and u are of class C* in C?*". Denote by
2n
0%u _
L(u)(2)(aa,...,a0) = Z m(z)ajak
Ji;k=1
for all 2 = (z1,...,29,) € C*" and for all a = (ay,...,az,) € C**. We have

L(u)(2)(ou, ..., 00n) = L(u?)(2) (a1, .. ,00p) + - + L(u?)(2) (1, . . ., a2p)
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and
0?(u? ou 8u
2 1 1 1 i
L(ut)(2)(a1, ..., am) Z Oz sz a]ak =2 Z 82’ aZk )ajak
Jik=1 J 7,k=1 J
8u1 8u1
=2
j=l
2
aul
Consequently,
2 2
8un

L(u)(2)(a1, ..., q0n) =2 Z gzjl

Fix 2z = (21,...,20,) € C*™. L(u)(2)(a1,...,a2,) = 0 if and only if

2n
ouq 8un
—(2)a; =0,
j; 9z ’ Z_: 82]
Then 5 5
871;11(3)@1 +o Tt 321;1 (z)azn = 0
%LZ’IL(Z)OQ +---+ d@:; (z)ag, = 0.
Thus
ar(F4(2), ., G2 (2) + - + a2n (P2 (2), . ., g2 (2)) = (0,...,0) € C",
where aq,...,a, € C. We have 2n vectors of C" (considered a vector

space). Therefore the subset of the above 2n vectors is not a linearly in-
dependent family in the C-vector space C" of dimension n. Then there exists
(ai,...,ag,) € C*™\{0} such that L(u)(2)(a1,...,as,) = 0. Consequently, u
is not strictly psh on any not empty domain of C?". J

DEFINITION 2.16. (Klimek [12]) Let u: D — R be a psh function, where
D is an open of C", n > 1. u is maximal psh on D if for all relatively compact
open G subset of D and for each upper semi continuous function v on G such
that v is psh on G and v < w on 0G, we have v < u on G.
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Remark 2.17. (a) Let n € N, n > 2. Given uj,...,up—1 : D — R
be n — 1 pluriharmonic functions, where D is a domain of C". Then u =
(uf +---+u2_,) is not strictly psh on any domain Dy C D.

(b) Let n € N and D a domain of C". Consider hi,...,h, : D — R ben
pluriharmonic functions and put u = h? +--- + h2. u is psh on D. Then u is

ictly psh on D if Ly if det (52 (2)) for all z € D.
strictly psh on D if and only if det 3Zk(z) 1§j7k§n5£0 or all z €

(c) Let g : D — C be analytic, D is a domain of C*, (n > 2). u = |g|?
is maximal plurisubharmonic (in the sense of Klimek [12] or Sadullaev [20]).
But if ¥ : C — C is analytic not constant, then |k|> = v is not maximal
subharmonic because v is not harmonic. This is one of the great differences
between the theory of functions of one complex variable and the same theory
in several complex variables. In one complex variable, the sum of 2 maximal
subharmonic functions is maximal subharmonic.

If now g1, go : C?> — C be 2 analytic functions such that |g1|% +|g2|* = ¢ is
strictly psh in C2, then |g1|? + |g2/|? is psh but not maximal plurisubharmonic
on any open of C2. In this case |g1|> and |g2|?> are maximal plurisubharmonic
functions on C2. But the sum |g1 |2 +|g2|? = ¢ is not maximal psh on any not
empty open of C?. But we have the following result. Let g1,...,gnx : D — C
be N analytic functions (N > 1). Then if N < n, u = |g1|> + --- + |gn|? is
maximal plurisubharmonic on D.

PROPOSITION 2.18. There exists a function u : C> — R, u real analytic
on C?, v is maximal plurisubharmonic on C?, but e is plurisubharmonic on
C? and not maximal plurisubharmonic on any not empty domain of C2.

Moreover, for allv : D — R prh, (D is a domain of C", n > 2) the function
e’ is maximal plurisubharmonic on D.

Proof. Let u(z1, 22) = 23 + 2, where 21 = (21 +i73), 20 = (12 +i14) € C
(x1,22, 23,74 € R). u is plurisubharmonic in C? and real analytic. We have

the determinant 52
u
det < (z)) =0
8zj8zk ik
for each z € C2. By Klimek [12], u is maximal plurisubharmonic in C2.
Now 52 (e
e 1
det =—-#0
‘ <8Zjazk(2))j,k 8 7

for every z € C2. By Klimek [12, Proposition 3.1.6], e" is not maximal psh
on any domain of C2. §
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LEMMA 2.19. Let w: D — R be plurisubharmonic, where D is a domain
of C", n > 1. If e* is maximal psh on D, then u is maximal psh on D.

Proof. Let G be a relatively compact open subset of D and v : G —
[—00, +00[ be an upper semi continuous function such that v is psh on G and
v < won JG. Then e’ < e* on G and consequently, e’ < e* on G. It follows
that v <wuwon G. 1

Remark 2.20. For alln > 1, for all domain D of C", there exists u : D — R
be C'*° psh such that e is strictly psh on D but w is not strictly psh on any
domain Dy C D.

In general we have the following lemma.

LEMMA 2.21. Let A, B two hermitian matrix of type (n,n) with coeffi-
cients in C. Suppose that A and B are positive semi-definite.
(a) If A is positive definite then A + B is positive definite on C".
(b) If the determinant det(A) # 0 then A is positive definite on C™.

(c) If A+ B is positive definite, we can not conclude that A or B is positive
definite on C™ if n > 2.

EXAMPLE. Let D be a domain of C2. Let F = {(g1,92) / 91,92 : D — C
be analytic functions such that (|g1]|? + |g2|?) is strictly psh in C2}. Let
(91,92) € F. Fix z = (21,292) € D. Put

82| g1|? > (32Igz|2 >
A= . B= i .
<82j82‘k (2) ik 8Zjazk (2) ik

A and B are hermitian matrix positive semi definite on C2. Then A + B is an

hermitian matrix positive definite, but A and B are not positive definite over
C2.

Now we can prove the following result.

THEOREM 2.22. Letu: D — R be a function of class C?, D is a domain of
C™, n > 1. Suppose that u is psh on D. Then e is maximal psh on D if and
only if " is maximal psh on D. Therefore if e* is maximal psh on D, then
Fs(u) is maximal psh on D, for each s € N, where Fs = expo expo -0 exp
(s times).
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This theorem have good and several applications in problems and exercises.

Proof. If e is maximal psh on D. Since e* is psh and of class C? in D,

then det (azj(al%(z»jk =0 for all z € D. Fix z € D. Thus the matrix

0?(u) ou , . Ou
= <szazk(z) + (%j(z)aﬁ(z))j,k
is not an injection. Hence there exists o = (a1,...,a,) € C"\{0} such that

Aa = 0. If < .,. > is the hermitian habitual product on C”, then < a, Aa >=
0,

n 2 u " u u
S LW ot 3 2 2 agar

2
" 0%(u) " ou
Z 8zj87k(z)ajak + Z 87@(2)% =0.
Since u is psh and of class C? in D, thus
> 0.

Z 8z]8zk Ok 2

2
0% (u)

Now since > 0, it follows that Z 5,

o
Zaz] J
7,k=1

Z @ZJ az z)ajar = 0, and thus

sz( z)ajay =0 and

Jj=1 K
n
1 +e* Jajar =0
];1 8,2] 8Zk
Consequently,
n n
ou , . Ou
1 1 w2 el -
Z 8218214 z)ajay + ( +e ) 2. 9 )8zk( )ovja
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Now the matrix

2 u u u
B= () - (e e e e )

is an hermitian matrix positive semi definite because e¢” is psh on D. If
det(B) # 0, then B is positive definite on C". But there exists a € C"\{0}
such that < «, Ba >= 0. Then B is not definite positive in C". Consequently,
det(B) = 0 and we have e is maximal psh on D.

The converse is trivial. i

ExaMPLE. Let h : D — R be prh, where D is a domain of C*, n > 2.
We denote by Fs = expo expo --- 0 exp (s times), for s € N (and Fp is the
identity operator). Then Fg(h) is maximal plurisubharmonic in D. Now let
s,t € N. Thus the function Fs(h) — Fy(h) is maximal plurisubharmonic in D

. BQ(FS(h)th(h))> . .
in the case s > t. (We prove that det (—azj% \<ihen = 0. By Klimek

[12, Corollary 3.1.8] we conclude the required property).

The following two theorems have several applications in the theory of func-
tions.

THEOREM 2.23. Let f : D — R be a function, D is a domain of C",
n > 1. Put u(z,w) = |w — f(2)|?, where (z,w) € D x C. The following two
conditions are equivalent:

(a) w is strictly psh in D x C;
(b) n =1, f is harmonic in D and %(z) # 0 for each z € D.

Proof. (a) = (b) Since u is strictly psh in D x C, then w is psh in D x C
and consequently, f is pluriharmonic in D. Therefore u is a function of class
C*in D.

Suppose that n > 2. Let 20 = (29,...,2%) € D. Consider now R > 0 such
that P(2°, R) = D(20, R) x D(28,R) x --- x D(23, R) C D. We consider the
function f(.,.,2%,...,29) defined and prh in D(z), R) x D(2J,R) = A. Let
fi=f(,29,...,2%) and

ui(z1, 22, w) = U(Zl,ZQ,Zg, 20 W)

2
= |w_f(2172272g7'--a22)‘ = ‘w_fl(zth)’Q?
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where (21, z2,w) € D(2{, R) x D(23, R) x C. Note that f is prh in 4 and u,
is strictly psh in A x C,

ui(z1, 22, w) = |w? + [ fi(z1, 22) | = Whi (21, 22) — whi(z1,22).
Fix wg = 0 € C. The Levi hermitian form of u;(.,.,0) is

82u1 02u1

L(u1)(21, 22,0) (a1, ) = 02107 1(21,22,0)0410714—m

(217 22, O)OQ@

2

+2Re [M

8,21872(21’ 29, 0)0416%2} >0,

for all (21,22) € A and for all (ag,az) € C2\{(0,0)}. Moreover

of1|? )
i 041071-1-2£ agay + 2 Re 2ii aron| >0,
21 029 0z1 07z
2
on A for all (a1, ) € C2\{0}. Then ‘28f1 a;l <4 gi g—g over A. But
we have %% = 2—2 g—% = % % < g—ﬁ g—g in A (because f; has

real valued). A contradiction. Then n = 1.
Now the Levi hermitian form of w is

62 82 62
L(u)(z,w)(a, B) = W;‘z(z,w) o a“;(z w)BB + 2Re {a (2, w)aﬁ]
2
= 2’2{(,2) aa + B +2Re [— gﬁ(z)oaﬁ] >0,

for all (z,w) € D x C and for all (a, 3) € C2\{0}. Then

of

0|01
5(2)

02()

for each z € D. Thus %( ) 75 0 for every z € D. Consequently, n =1, f is
harmonic in D and {z eD: = 0} 0.
(b) = (a) The Levi hermltlan form of u is

2
L(w) (2, w)(av, B) = Q‘Zﬁ(z) @ + BB + 2 Re [— Z‘Z(z)aﬁ] >0
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for each (z,w) € D x C and (o, 8) € C2\{0}. We have
L(u)(z,w)(a,B) >0  V(z,w) € DxC, V¥ (a,B) € C*\{0}

if and only if
2
<2

g 2

of
5, %) rw

5, (%)

But this is equivalent to g—ﬁ(z) #0forall ze D. 1

Now the case where the function is complex valued, we prove the following
extension.

THEOREM 2.24. Let g : D — C be a function, D is a domain of C"*, n > 1.
Put v(z,w) = |w—g(z)|?, where (z,w) € D x C. The following two conditions
are equivalent:

(a) w is strictly psh in D x C;

(b) n =1, g is harmonic in D and {z eD: %(z) = 0} =0.

Proof. (a) = (b) Since v is strictly plurisubharmonic in D x C, then v
is plurisubharmonic in D x C. Consequently, g is pluriharmonic in D. Let
20 =(20,...,29) € D, R > 0 such that D(2{,R) x --- x D(2%,R) = A C D.

Put g = g1 + 92 in the convex domain A, where g1, g2 : A — C be two analytic
functions. Now we use the following fundamental decomposition

v(z,w) = Jw — g1(2) — Ga(2) [

=|w = g1(2)]” + 1g2(2)* = (w = g1(2))g2(2) — (w — 91(2))72(2)

for each (z,w) € A x C. Suppose that n > 2.

Case 1: n = 2. We have vi(z,w) = |w — g1(2)|%, v2(z,w) = |g2(2)
v3(z,w) = —(w — g1(2))g2(z) — (w — g1(2))g2(z), where (z,w) € A x C; v, vo
and vg are C* functions in the domain A x C, and w3 is pluriharmonic in
A x C. Then the Levi hermitian form of vg is

%, %,

L(vs)(z1, 22, w) (1,2, 3) =0
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for all (21,29, w) € A x C and for all (a1, a2,3) € C3. The Levi hermitian
form of vy is

2

0 dg
L(va)(21, 22, w) (1, 2, B) = 872(2) a1 + 72(2) a0y
Jdg2, |\ 0g2 .
+2Re [521( )%(z)alag]

) ) 2
92( )Oq—I— g2

0z1

for each (z,w) = (21, 22,w) € Ax C and (a1, az, 3) € C3. The Levi hermitian
form of vy is

2

15) _
I agon + B

2
L(v1)(21, 22, w) (a1, g, B) = 6721(2)

0
a1 + ‘;1(2)

091, \0q1 o
| 2Re [8z1< O >am]

—|—2Re[ 91()a15]+2R[ g;(z)azﬁ]

where (z,w) = (21, 22,w) € A x C.
Now we have

2
dg2 092
(92 +821() 1+8 2( )042

L(v)(z,w)(a1, a2, 3) ’5 [391

Jart P (2)aa

where (z,w) = (21, 22,w) € A x C and (a1, a9, 3) € C3.

Let z € A. Choose (a1, a2) € C*\{(0,0)} such that C()92( Jag + a92( Jag =
0. Now let 8 = ggl( Jag + agl( Jag. We have (aq, as, 3) € C3\{(0,0,0)} and
L(v)(z,w)(a1, ag,,B) — 0. This proves for example that v is not strictly psh
on any open of D x C. A contradiction.
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CASE 2: n > 3. We deduce by in fact the formula

2
" g1 0
L(v)(z,w)(al,...,an,ﬁ): ‘5_2 92
j=1
where (z,w) = (21,...,2n,w) € A x C and (g, ..., ay,,3) € C*L

Let z € A. Now it is possible to choose (aq,...,a,) € C"\{0} such that

592
Z azj a; =0 (because n > 3).

Let 8 = Z 891 )aj. We have (a, ..., ay, 3) € C"T1\{0} and
j=1

L(v)(z,w)(a1,...,an,8) =0.

Therefore in fact v is not strictly psh on any domain of A xC. A contradiction.
Consequently, n = 1. By the above theorem, g is harmonic in D and
1%| > 0 in D.

(b) = (a) By the above theorem we deduce this assertion in fact. |

THEOREM 2.25. Let g1,...,g9n : C?2 = C, v(z,w) = |w1 — g1(2)]* + -+
lwy — gn(2)|?, where z € C?, w = (wy,...,wy) € CN and N € N. The
following conditions are equivalent:

(a1) v is strictly psh in C? x CN;

(a2) g; is pluriharmonic in C2, g; = f; + kj, where f;,k; : C* — C
are analytic functions, for all 1 < j < N (N > 2). The functions
ki,...,kn satisfies an algebraic condition, that is for each z € C2,
the set {s1,...,sn} is a generating family of the C-vector space C2,

ok ok Ok Ok
s$1 = (871(2)7 37;(2))7 <y SN = (82?7 (2), 3212\7 (Z)>’

(ag) gj is pluriharmonic in C2, g; = f; + kj, where f;,k;j : C> — C are
analytic functions for all j E {1,...,N}, N > 2 and for aH z € C2, there
exist R > 0 and there exists s,t € {1,...,N} (s # t) such that v; is
strictly psh in B(z, R) x C?, where v1(2,t) = |ws — gs(2)|> + |w; — g:(2)|?,
for (z,w) € B(z, R) x C? and w = (ws, wy);
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(a4) gj is pluriharmonic on C%, g; = f; + kj, where fj, k; : C* — C are
analytic functions for all 1 < j < N. ki,...,ky satisfies {(g—Z(z), ey

%kz’l\’ (z)), <g—2(2), e %kz’;’ (z))} is a free family in the C-vector space

CN, for all fixed z € C2.

Proof. (a1) = (az2) Firstly we prove that g1,...,gn are continuous func-
tions over C2. Let 20 € C2. Put ¢ = g1(2°),...,(v = gn(20) € C;
v(2%,¢1,...,¢n) = 0. Let € > 0. Since v is upper semi-continuous in the point

(2%, ¢1, ..., () then there exists 6 > 0 such that ||z — 20| + |wy — G| + -+
lwy — (x| < & implies that |wy — g1(2)|2 + -+ + |wy — gn(2)]? < €. Let j €
{1,...,N}. If we put wy = Cl,...,w]’,1 = ijlaijrl = Cj+1,...,’U)N = CN,
then we have ||z — 2°|| + |w; — ¢;| < & implies that |w; — g;(2)|* < €. Let
w; = ¢; = g;(2"). Then ||z—2%| < & implies that |g;(2) —g;(z°)| < e. Then g;
is continuous in the point z° € C2. Consequently, g1, ..., gy are continuous
functions on C2.

We have v is strictly psh in C? x CV, therefore v is psh in C? x CV.
Therefore the function of two variables v(.,.,0,...,0) is psh in C? x C, where

v(z,w1,0,...,0) = vi(z,w1) = Jwi — g1(2)* + |g2(2)* + - + gn (2)*.

Let ¢ : C?2 = R, ¢ is of class C*° and have a compact support in C2. Let

o2 o2
A=4
(821821 * azQazQ>

the Laplace operator on C2. Then we have

N
[ w1 = ai@PAcE) dma) + Y [ 9 PAg() dmaz) 2 0
=2
for each wy € C. Let w; € R. Then we have
N
“ur [ [0 + G ENAGE) dma() + 3 [ 152 Aee) dma(z) 2 0
j=1
for all wy € R. If [[g1(2) 4+ g1(2)]Ap(2) dma(z) > 0, then we obtain a contra-

diction by letting wy to +oo. If [[g1(2) 4+ g1(2)]Ap(z) dma(z) < 0, then we
have a contradiction by letting w; go to (—o0). Consequently,

J1012) + A0 dmatz) = 0
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Since g1 + g1 is a continuous function in C?, then g; + g7 is harmonic in C2.

Let w; € iR. Then wy = —w;. In this case we prove that (g1 — g7) is
harmonic in C2. Now since g; = 3 [(91+ 1) + (91 —g1)], then g; is harmonic
in C2. Let T} : C?> — C2 be a C-linear bijective transformation. Consider now
T(z,w1) = (T1(2),w1), where z € C? and w; € C. Note that T : C3 — C? is
a C-linear bijective transformation. vy is psh in C? x C, then v; o T is psh in
C? x C,

v10T(z,w1) = w1 — g1 o Th(2)* + |g2 o Th(2)|* + -+ + |gn 0 T1(2)]?,

(z,w1) € C? x C. By the above development we have g; o 7} is harmonic in
C2. Consequently, g; is a pluriharmonic function on C?. Therefore g1, ..., gy
are pluriharmonic functions on C?; g; = f; +kj, fj, kj : C* — C are analytic
functions , 1 < j < N.

Consider now a1 (z,w) = |wy —g1(2)|?, where (z,w1) € C?x C; a1(z,w1) =
|wy — f1(2)—k1(2)|?. We consider now the following decomposition a;(z,w;) =
lwy — f1(2)|? +|k1(2) ]2 = k1(2) (w1 — f1(2)) — k1(2) (w1 — f1(2)). a1 is a function
of class C* in C? x C.

Let Hi(z,w1) = ki1(2)(w1 — fi1(2)) + k1(z)(w1 — f1(z)), where (z,w;) €
C? x C; H; is pluriharmonic in C? x C. Therefore the Levi hermitian form
of Hy is L(Hy)(z,w1)(a1,a2,81) = 0, for all (z,w;) € C? x C and for all
(041,042,51) € C3.

Then the Levi hermitian form of a; is

L(a1)(z,w1)(ou, a2, B1) = L(b1)(z, w1) (a1, a2, f1) + Le1) (2, w1) (o, az, B1)

where by (z,w1) = |w1 — f1(2)|?, c1(z,w1) = |k1(2)]? and (z,w1) € C? x C. by
and ¢; are in particular functions of class C*™ in C? x C. We have

L(o1)(z01) (01,02, B1) = 2t (3, 01) 01T + 2t (3, w1)asE
1)\%, W1) &1, &2, 01) = 921071 Z,W1 )10 02007 Z, W1 )20

9%y o 9%by —

+ 2Re [821622(2,101)041052] + W(z,wl)ﬂlﬁl

fore[ 2 wpanBi+ 2w

€ PP Z,W1)01 01 029007 Z, W1 )21

ofr, > _ oA, P fi, Ofi, . 1. .=

’%(z) aloq—l-‘azz(z) a0z + 2 Re 8721(2)8772(2)0410[2 + 3151
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_ g - [gfi( Y + 82(2’)042]

Since ¢1(z,w1) = |k1(2)|?, then

(92 C1 82 C1

L(c1)(z,w1) (a1, a2, B1) = (2, w1)aran + (z,w1)on0n

021071 029079
8261
+ 2Re |:821822(Z w1)0(1()[2:|
8k1 2 _ 1 2 8k1 814771 _
= |—= -— 2 —
9o (2)| g + ‘822 (z)| agaz +2Re 8z1( )872(z)a1a2
Ok Ok 2

821( z)aq + a72(2)042

C _ of1 of1 2
onsequently, L(a1)(z,w1)(a1,a2,B1) = ‘Bl — [8Z1( Jag + 822( )Oég” +

2
gg( Yy + ( )042‘ for each (z,w;) € C% x C and (ay, oo, f1) € C3.

Since v is a function of class C® in C? x C¥, then we have for each
(z,w1,...,wy) € C2x CN, 2 = (21,22) € C? and all (a1,a9,P1,...,0N) €
CN+2 the Levi hermitian form of v is

L('U)(Z,U)l,...,’wN)(Oé]_,OZQ,Bl,...”BN)
dfi of1 20k k1
[ﬁ() a1+ G e |+ G Glen+ G e
) o 2ok ok
\m— [”( Jor + 22z m} |G G+ 52
Fix z € C2. If L(v)(z,w1,...,wy)(a1, a0, B1,...,Bx) = 0, then

B (2o + P (2)az = 0

2

= |/ —

(2)az

ok ok
azjlv( 2)oy + 8;;’( 2)ag = 0.

Therefore if a1, as € C such that

8k1 8]{]\[ 8k1 8kN B N
oG @ G2 e G GG ) =00 e
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then oy = ag = 0. Thus N > 2 and there exists s,t € {1,...,N} (s # t) such
that {(ggf (z), ks (z)), <g—2(2) %(z))} is a basis of the C-vector space C2.

’ Ozg ) Ozo

Then {(g—lji(z), %(z)), ce (%’2’ (2), %kzg (z))} is a generating family of the
C-vector space C2. Observe that locally (s,t) is independent of z € C2, but
not globally if N > 3.

: ok ok
(as) = (a1) Let z € C2. Since {(%(z), %(2)),..., (a;f (2), Y @))}
is a generating family of the C-vector space C?, then N > 2 and we can exhibit
a family of 2 vectors which is a basis of C2. Without loss of generality we
suppose that {(g—lzi(z), 2—2(2)), (g—lzf(z), gﬁ; (z))} is a basis of C2. Therefore

the matrix (M. )1<u,v<2 have a determinant det(Au)i1<p,v<2 = ¢(2) # 0,

where A\, = %(z). Since the function ¢ is analytic in C2, then |p| > 0 on

a neighborhood B(z,r) of the point z (r > 0). Then for all £ € B(z,7) and
(a1, ) € C2, we have

2712(5)041 + %(S)QQ =0

52 (€)on + §2(€)az = 0
if and only if oy = ag = 0. Thus if (ay,az,B1,52) € C*, & € B(z,7),
81— [22 (€ + 2 (©)ao] [+ |21 (©on + 2(©)as + |2 — [22(©)on +

+
0% (€)aws || 4| 22 (€)an + 22 (E)ars

=0, then

% (©ar + 92 (az = 0
&2(&)on + P2 (Haz = 0.

It follows that a1 = ag = 0. Thus f; = P2 = 0. Consequently, ¢1(§, w1, wy) =
lwy — g1(&)]? + |wa — g2(€)]? is strictly psh in B(z,7) x C x C. In fact we
can prove that ¢ is strictly psh in (C?\A) x C2, where A is an analytic
subset of C2.

Now the above proof implies that the assertions (a;), (a3) and (a4) are
equivalent. [

COROLLARY 2.26. Let g1,g2 : C> — C be two analytic functions. Put
u(z,wi, we) = |w1 — g1(2)|? + |we — g2(2)|?, where (2, w1, ws) € C2 x C x C.
Let A C C2, A closed and bounded in C?. Suppose that u is strictly psh in
C? x (C?\A). Then u is strictly psh in C* x C2.
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Proof. Note that u is a function of class C*® on C? x C?. Assume that
u is not strictly psh at the point (zg,wg) € C? x C2. Then there exists
((a1, a2), (B1, B2)) € C* x C*\{(0,0)} such that the Levi hermitian form of
verify

L(U)(ZO,U)())((OQ,O[Q),(ﬁl,BQ))
;)
j=1""

Let by € C?\ A. Since u is strictly psh on C2 x (C?\ A), then u is strictly psh
at the point (zg,bp). But we have

L(u)(20,b0) (1, a2), (B1, B2))

2 891
Bz]

2
=0.

= 392(

+ |82 — 9z,

Zo)

J=1

2
=3t

and ((a1, a2), (B1,82)) € C* x C*\{(0,0)}. A contradiction. Consequently, u
is strictly psh on C? x C2. 1

= |1 -
J

=1

COROLLARY 2.27. Let g1,g2 : C> — C be two analytic functions. Set
u(z,w) = lwi = g1(2)]* + w2 = 32(2) *, v(z,w) = w1 — g1(2)]? + w2 — g2(2) °,
p(2.0) = ¢ = q1(2)]? + [¢ = 32(2)]?, where z € C*, w = (w1, wz) € C* and
¢ € C. Then u and v are not strictly plurisubharmonic functions in C? x C?.

We have, ¢ is strictly psh in C? x C if and only if |g1|?+|g2|? (or |g1+92|?)
is strictly psh on C2.

Proof. We have the fundamental decomposition (complex structure)
u(z,w) = [wi = g1(2)° + [wal* + [g2(2)]? — wag2(2) — w2ga(2),

for any (z,w) = (2, w1, ws) € C? x C x C where z = (z1,22) € C%.

Put u1 (2, w) = waga(z)+wage(z); u1 is a pluriharmonic function in C2? x C2.
Therefore the Levi hermitian form of this function is equal to 0 over C2.

Let uz(z,w) = |wy — g1(2)|% wug is a function of class C* in C? x C,
ug(z,w) = |w1]?+ |g1(2)|* =wig1(2) —w1gi(z). Then the Levi hermitian form
of uy is now

L(uz)(z,w) (a1, az, f1, B2) =
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for each z = (21, 20) € C?, w = (w1, w2) € C? and (o, a2, f1, B2) € CL
Let uz(z,w) = |wa|? + |g2(2)|%; us is a function of class C* in C*. The
Levi hermitian form of ug is

L(u3)(z,w)(a1, az, B, B2) = \52| + 892 (2)a O

The function v is of class C* in C2 x C2. We have
L(u)(z,w) (a1, ag, 1, 52)
= —L(u1)(z,w)(ar, az, B1, B2) + L(uz)(z, w)(a1, az, f1, B2)
+ L(us)(z, w) (o, az, B1, f2)

2
= |f1 — [82(@@1 + gg;(z)ag]

2

+|Baf?

CASE 1: |g1]? + |g2/? (or equivalently |g; + g2|?) is not strictly psh on C2.
Note that |g1]? and |go|? are functions of class C* in C2. The Levi hermitian

form (in C2) of |g1]? is
2 2(917) . — o B9, 0T, . —
I 2 5 = ()2 ,
(In) ()0 02) = D 5 522000 = D 5 (2) 5 (20056
Jk=1 Jk=1
2 2 2 2
_ 091 5. 991 _ x99
—<. - <z>6]>(2 Zk(zm) =[5
j=1 k=1 j=1

where z = (21, 22) € C? and (61, 82) € C2. Therefore
L(|g1*+1g2l?) (21, 22) (a1, o2)

0 0 ?
= |5 (G + 5 e

0z
for each (a1, a9) € C2.
Now fix 2z = (21,22) € C2. Since |g1|? + |g2|? is not strictly psh in C2, then
there exists (a1, ) € C?\{0} such that

o) 0
52( z)aq +agé( z)ag =0

0 0
agf( 2)aq + 82( 2)ag = 0.
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Fix w = (wy,ws) € C?. Take now ;1 = 2 = 0 € C. Then we have
L(u)(z,w) (a1, az, f1,B82) = 0 but (ai,as,fr,B2) € CH\{0}. Consequently,
w is not strictly psh in C2 x C2.

CASE 2: [g1]2 + |g2/? (or equivalently |g1 + ga|?) is strlctly psh in C2.
L(u)(z,w)(o1, a2, b1, B2) = 0 if and only if §; = gz (2)ar + 8 I (2)ag, B2 =0
and 2 (2)on + §2(2)az = 0.

Fix (aq,a9) € (CQ\{O} such that agz( Jar + %(z)ag = 0. Define 5 € C
by fi = G2 (z)a1 + G2 (2)az (B2 = 0). Then (a1, a2, B, B2) € C*\{0} and we
have L(u)(z,w)(aq, g, B1, f2) = 0. Consequently, u is not strictly psh on any
domain D C C*.

Concerning the function v, we have v is defined on C* and of class C™.
The Levi hermitian form of v is

L(v)(z,w) (1, a2, B1, Ba)

=[5~ |22 @ + L g +

9

9 9 2
b2 - | 2o + 52 ()

where z = (21, 22) € C?, w = (wy,ws) € C? and (a1, as, B1, f2) € C.
) Fix (z,w) € C? x C2. Leta(al,ag) (69 C?\{0} such that g—*‘z]i(z)m +
agl( )052 =0. Put 51 =0, By = [Bg?( )a + 92( )042]. Then (061,042,51,62) €
(C4\{O} and L(v)(z,w)(a1,az, B1, f2) = 0. Consequently, v is not strictly psh
on any open of C*.

Now we have the decomposition

0(z,0) =1¢— () + ¢ — 7@(2)?
=[¢ = q1(2)]> + [P + [92(2)* = Cga(2) — Cga(2)

for every ¢ € C and z = (21, z2) € C?; ¢ is a function of class C*° in C3. Put
01(2,¢) = Cg2(2) + Cg2(2). Then ¢ is pluriharmonic in C? and consequently,
the Levi hermitian form of this function is 0.

Let ©9(2,¢) = |¢ — g1(2)|?; 2 is a function of class C* in C3 and

[891

o1

2
L(g2)(2, Q) (o, 02, B) k h+%u4

for each (z,(¢) € C? x C and (a1, ag, 3) € C3.
Let ©3(2,¢) = [C|? + |g2(2)|?; 3 is a function of class C*° in C3 and

2

L(3) (2 O) (a1, a2, ) \m+@2h+%u%
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for every (z,¢) € C? x C and (a1, az,8) € C3.
It follows that

L(p)(z,0) (a1, a2, B)

= L(p2)(z,Q) (1, a2, 8) + L(p3)(z, () (a1, az, B)
2 2
= ‘ﬁ - [391(2)&1 + agl(z)ag} + ’5‘2 + %(z)oq + @(z)ag

021 029 0z1 0z

Therefore L(y)(z, () (a1, a2, 8) = 0 if and only if § = 0, g—i?(z)al —I—g—gs(z)ozg =
0 and g—gi(z)al + %(2)062 = 0. Observe now that ¢ is strictly psh in C? if
and only if |g1|2 + |g2|? is strictly psh in C2. I

COROLLARY 2.28. Let g1,92 : 92 — C be two pluriharmonic functions.
Put g = f1 + k1, where g3 = fo + ka, f1, f2, k1, ko : C2 — C be four analytic
functions. Let

u(z,wi, w2) = [wi — g1(2)]? + [wa = g2(2)|?,
v(z,wi, wy) = }wl —kj(z)‘Q + ’wQ — E(z)|2,
where (z, w1, ws) € C2 x C x C. The following conditions are equivalent
(a) w is strictly psh in C*;
(b) v is strictly psh in C*.

That is the strict plurisubharmonicity of u is independent of the choice of the
analytic functions f; and fs.

COROLLARY 2.29. Let g;,k; : D — C be analytic functions, where 1 <
j < N and D is a domain of C", n, N > 1. Put

N N N
u:Z|gj —i—kij‘Q and U:Z|gj|2+2‘kj‘2.
j=1 j=1 j=1
Then w is strictly psh in D if and only if v is strictly psh in D.
COROLLARY 2.30. Let g1,...,gn5 : D — C be N anag\;[/tic functions, where
N > 1 and D is a domain of C" (n > 1). Set u(z,w) = Z lw— g;(2)|?, where
j=1

(z,w) € DxC. If N <n, then u is not strictly psh on any domain of D x C.
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Proof. Fix z = (21,...,2,) € D and w € C. Let uj(z,w) = |w — g;(2)|?,
1 <j < N. Then u; is a function of class C* in D x C. If now (a1, ...,ayp) €
C™ and 8 € C, we have the Levi hermitian form of w; is

L)) (2 w) (@ s s B) = ‘ Zgiﬂ

Therefore, the Levi form of u is

N
L(u)(z,w)(a1,...,an,B) = ZL(uj)(z,w)(al, ey ap, B)

j=1
N n 8_9‘ 2
B3 S AN
- Zs
7j=1 s=1
Let v = [|g1]|? + - - + |gn]|?]; v is a function of class C™ on D.

CASE 1: v is strictly psh on D. We have L(v)(z)(aq,...,a,) = 0 imply

that (aq,...,an) =(0,...,0). The Levi form of v is
2 2

(991 aQN

L(v)(z)(en, .-

Since L(v)(z)(a1,...,a,) = 0 then (ai,...,an) = 0. Thus the system of
equations in (aq,...,a,) € C" satisfies

o) o)
gr(z)an + -+ g2 (2)an = 0

0 16)
852] (z)ar + -+ ai’:( 2)a, = 0

if and only if (a1,...,a,) = (0,...,0). Since N < n, then N = n. Thus
the matrix (A\jr)i<jr<n is invertible; where Aj, = %’i(z). Now we have
L(u)(z,w)(eu,...,a,, ) =0 if and only if

W (o + -+ L (2)om = B

Ogn Ogn
agl( z)ag + -+ agn( z)on = f.
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Fix 8 € C\{0}; the above system has a unique solution (o, ..., a,) € C*"\{0}.
Consequently, (a1, ..., a,,3) € C"*1\{0} and L(u)(z,w)(a1,...,an, ) = 0.

CASE 2: v is not strictly psh on D. Then there exists (aq,...,ay) €
C™\{0} such that L(v)(2)(aq,...,ay,) =0. Take § =0 € C. Then

(a1,...,0n, B) € C"T1\{0} and L(u)(z,w)(a1,...,an,8) =0.
Consequently, u is not strictly psh in D x C. |

EXAMPLE. Let (21,22) € C? and w € C. Put g1(2) = 21, ga2(2) =

22, 93(2) = 21 + 22; g1, 92,93 are analytic functions in C?. Put u(z,w) =
3

Z lw — gj(2)|*>. Then u is a function of class C* and strictly psh in C? x C.
j=1

3
If (w1, ws,w3) € C3, we put v(z1, 22, w1, ws, w3) = ZAj\wj — gj(z)\Q, where
7j=1

(A1, Az, A3 € R{\{0}). Then v is not strictly psh on any domain of C? x C3.
In fact v is a function of class C* in C2 x C3 and the Levi form of v is

2
L(v)(z, w1, w2, w3) (a1, az, B1, B2, B3) = A1|1 — [agl(z)al - agl(z)ag}

821 (9,22
992 092 2 093 093 2
+ Az |82 — [8z1 (2)or + 29 (2)042] + A3z|fB3 — B2 (2)on + 029 (2)az]| ,

for every (a1, az, B1, B2, B3) € C°. Let (a1, az) € C?\{0} such that %(z)al +
72 (z)az = 0. Put f1 = 0, B = [%(2)0&1 + %(z)az], Bs = [g—gi’(z)al +
28 (2)as|. Then (1,02, 1, B, fs) € €\ {0} and

L(v)(z, wy, w2, w3)(a1, a2, B1,B2,83) = 0.

Therefore v is not strictly psh on any not empty open of C? x C3.
Observe that here in fact we have for all ky,...,ky : C* — C analytic

functions, where n, N € N, if N > n, then v; is not strictly psh in any domain
of C" x CN, where

N
vl(z,wl, Ce ,’LUN) = ZB]‘|’LU]‘ — kj(z)\Q (Bl, ...,By € R+\{O}) s
j=1

z€ C" and (wy,...,wy) € CN.
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A fundamental application concerning analytic functions and the complex
structure is now the following extension.

THEOREM 2.31. Let g1,...,9n : D — C be N analytic functions, D is a
domain of C*, (n > 1) and (N > 1). Put

2

u(sz) - ‘w_gl('z)‘z +oot ’w _gN(Z) )
v(z,w) = [w=gi(2)]* + - + [w - gn(2) "

)

vi(z,w) = [w = ha(2)] + -+ [w = ha (2) %,
where (z,w) € D x C, and h; = Re(g;), for 1 < j < N.

(a) Suppose that u is strictly psh in D x C. Then v and vy are strictly psh
in D x C and N > n+ 1, but the converse is false.

(b) In fact, v is strictly psh in D x C if and only if vy is strictly psh in D x C.

For the proof of this theorem, we use Lemma 2.2.

EXAMPLE. Let g1(z) = z, go(2) = 22, where z € C. ui(z,w) = |w — 2|*> +
lw — 222, ug(z,w) = |w —Z|> + |w — 22|2, for (z,w) € C?; u; is not strictly
psh on any domain of the form D(%, r) x C (for every r > 0); ug is strictly
psh on C2.

On the other hand, the minimal number IV of analytic functions k1, ..., kn:
C" — C (n > 1) such that if ui(z,w) = |w —l?l(z)‘2 +ot|w —H(z)‘2 is
strictly psh on C" x C is in fact N = n. But for all ¢1,...,on : C* = C be
N analytic functions, us(z,w) = |w — ©1(2)|? +-- -+ |w — @ (2)|? satisfies uz
is not strictly psh on C"* x C if N < n.

Now there are a great differences between the class of functions defined
analogues to u; and the class of functions defined similar of us.

Now we are in position to prove the following result.

THEOREM 2.32. Let g1,...,9, : D — C, D is a domain of C", n € N.
Set v(z,w) = w1 — g1(2)]*> + -+ + |wp — gn(2)]?, where (z,w) € D x C",
w = (wy,...,wy). The following conditions are equivalent:

(a) v is strictly psh in D x C";
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(b) g1,...,9n are prh functions in D and for all z = (z1,...,2,) € D (fixed),
the system

%(z)al 4+ 4+ g%(z)an =0

% (2)ar + - + G2 (2)an = 0
has only the solution (o, ..., a,) = (0,...,0). That is strictly plurisub-
harmonic functions and partial differential equations have a rigid rela-
tion to discover here for example.

QUESTION 2.33. Let g; : C2 — C be a prh function. Find a condition
satisfied by ¢; such that there exists go : C> — C prh and satisfying u is
strictly psh on C? x C2, where u(z,w) = Ai|lwy — g1(2)|> + Az|wa — g2(2) |,
z € C?, w = (w1, wy) € C? and Ay, Ay € Ry \{0}. In general this problem
have no solution and an affirmative answer is given by the following result.

PROPOSITION 2.34. Let g : C?> — C, g(21,22) = ki1(21)ka(22), where
(21,22) € C2, k1, kg : C — C be two analytic not constant functions, k1 (0) =
ko(0) = 0. For all Ay, Ay € R \{0}, there does not exists a function k : C* —
C be analytic such that v = Ay|g|? + As|k|? is strictly psh on C2.

Proof. Let k : C2 — C be a analytic function. Put v = A;|g|? + As|k|?.
v, |g|* and |k|? are functions smooth of class C* in C2. The Levi hermitian
form of |g|? is

2

0 0
L(‘Q‘Q)(Zla z) (0, ) = ’ai(zh zo)a1 + 8752(21, Z2) 0
for each 2z = (21, 22) and (a1, a2) € C2. Therefore, the Levi hermitian form of
v 1S
2

L(v) (21, 22) (a1, ) = Ay|ky(21)ka(22)ar + ki (21)ky(22) o

ok ok 2
—(2)a1 + —(2)aq

A
+ A2 821 82’2

2
Take z1 = 20 = 0. L(v)(0,0)(a1,a0) = Ag %(0)@1 + %(0)(12‘ . Now take
(a1, az) € C?\{0} such that %(0)@1 + %(O)ag = 0. Then L(v)(0,0)(aq, a2)
= 0. Consequently, v is not strictly psh on C2. I
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It follows that, for all £ : C?> — C be analytic, for all A;, Ay € Ry \{0},
if uy(z,w) = Ai|lwy — g(2)]? + Asjwy — k(2)|?, where z = (21, 22) € C?,w =
(w1, ws) € C2. Then u; is not strictly psh on C? x C2.

Consequently, the above question globally has a negative answer. But
locally we have a positive answer. Because in fact, by using all the notation
of the question 2.33, we have if go exists, then |g1|? + |g2|? is strictly psh on
C2. By the above proposition, there exists a function g : C2 — C be analytic
such that A|g|? + As|k|? is not strictly psh on C2?, for any k : C*> — C be
analytic, for every A, Ay € R4 \{0}.

Now locally, if 20 = (29, 29) € C? we can write g1 = f1 + k1, go = fo + ko,
where f1, fa,k1,ko : C> — C be 4 analytic functions. In fact we can prove
that, the functions f; and fs do not have any role on the subject of the strict
plurisubharmonicity of u; w is a function of class C™ in C? x C2. The Levi
hermitian form of w is

L(u)(2°, w1, ws) (a1, a2, B1, B2)
2

of of ok ok
= A1 |p1 - [azi (2%) a1 + 82;(20)04 + Ay 8721(7:0)041 + Gz; (2%)
? ks ks ?

+ Ao + Ao 872’1 (Zo)a1 + 872’2 (Zo)ag

)

821 82’2

B — [%(ZO)M L on (20)042]

where (w1, ws) € C?, (a1, ag, B1, B2) € CL If u is strictly psh on a neighbor-
hood G of (2°,wg),wy € C2, then L(u)(z,w)(a1,az, B1,B2) = 0 implies that
(a1, a9, B1,82) = 0, for every (z,w) € G = G1 x Go2, G and Gy are convex
domains of C2, where 2° € G, wg € Go. But L(u)(z,w)(a1, a2, f1,82) = 0
has only the solution (aq, e, 51, 82) = 0 (for every (z,w) € G), if and only if
the system

g—lg(z)al + %(Z)Oég =0

%’2(2’)0{1 + %’2(2)(12 =0
(where z is fixed on G and (a1, az) is the variable in C2) has only the solution
(a1, a2) = (0,0).

Observe that this condition is independent of wy € C2?. Therefore if

(g—g(zo) %(zo)) # (0,0), there exists a ball B(z°,7) ¢ C? (r > 0) such

Y Ozo

that (%’2(2),2—2(2)) # (0,0) for each z € B(z",r). Suppose for example

that g—’;(z) # 0, for every z € B(2%,t), where 0 < t < r. Let ka(21,22) = 22,
where (21, 22) € C?; ky is analytic on C2. Put go = ko; go is pluriharmonic on
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C?. We have g—’Z(z) =0, g—g;(z) = 1. The above system has only the solution

(a1, a2) = (0,0). Then wu is strictly psh on B(2°,t) x C2.

PROPOSITION 2.35. Let g1,go : C?> — C. Put u(z,wi,ws) = Aj|w; —
g1(2)|2 + Azlws — ga2(2)|?, where z € C?, (w1, w2) € C?, Ay, Ay € Ri\{0};
ur(z,w1) = [wy — g1 (2)* +[g2(2) [, ua(z, w2) = [wz — g2(2)| + [g1(2)|*. The
following conditions are equivalent:

(a) w is strictly psh on C? x C2;
(b) uy and uy are strictly psh functions on C? x C;
(c) g1 and go are prh functions over C?, g1 = fi1 + ki, g2 = fo + ko

(f1,k1, fa, ko : C?> = C be analytic) and the antiholomorphic parts of g
and gy satisfies |ky|? + |ke|? is stictly psh on C2.

Moreover observe that if the holomorphic parts of g1 and g satisfies | f1|>+| fa|?
is strictly psh on C? (therefore here |g1|? + |g2|? is strictly psh on C?) but we
can not conclude that u is strictly psh on C2.

EXAMPLE. Let ¢g; : C2 — C be a prh function and let N € N, N > 2.
Prove that there exists go,...,gn+1 : C2 — C be N prh functions such that

N+1
if u(z,wy,wa, ..., wWNt+1) = Z lwj — g;(2)|?, where z € C2, then u is strictly
j=1
psh on C2 x CN+1, In fact, the answer is very simple, if we consider the family
of prh functions go(2) = Z71, g3(2) = Z3, 94(2) = -+ = gny1(2) = 0, where

z = (21, 22) € C2 We have in this case |wg — go|? + |w3 — g3|? is strictly psh
in C? x C2. Then w is strictly psh in C% x CN*L,

3. CONVEX AND STRICTLY PLURISUBHARMONIC FUNCTIONS

We consider in this section a classical family of psh functions, that is the
class of convex and strictly psh functions.

THEOREM 3.1. Let g1, g2 : C — C be two analytic functions. Assume that
u(z, w,wi,wz) = Alwr — g1(w = 2)|* + Blwa — g2(w = 2) [,
v(z, wi,wa) = Alwy = g1(2)[* + Blws — g2(2) [,

where (z,w,w;,wz) € C* A, B € Ry\{0}. The following statements are
equivalent:
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(a) u is psh on C*;
(b) g1 and g2 are analytic affine functions;

(c) v is convex on C3.

Proof. (a) = (b) Fix wi,wy € C. Put ui(z,w) = |w; — g1(w —2)* +
|wa — go(w — Z)|2, where (z,w) € C2. Since u; is of class C*° and psh on C?,
then the Levi hermitian form of u is

L(w) (. w)(, 8) = (I93(2) + lg4(=)*) o + (19i (=) + |g5()”) 5B
+2Re ([(w1 — 91())97 (2) + (w2 — g2(2))g3 ()] aB) = 0,
for all (a, 8) € C2. Thus

|(w1 = g1(2))g1 (2) + (w2 — g2(2)) g3 (2)| < 1g1(2)]* + |ga(2)I%,

for all z € C and all (wy,ws) € C.

Now fix z € C. If ¢f(z) # 0. Fix wa = g¢2(2) € C. Then |(w; —
91(2)g)(2)] < 191(2)|? +|g5(2)|?, for any w; € C. It follows that C is bounded.
A contradiction. Consequently, gf = 0, g5 = 0 over C. Therefore g; and go
are analytic affine functions over C. |

COMPARISON THEOREMS. We prove in this context that there exists an
infinite number F; of C*° functions defined on C2, such that for each F € F},
the function F satisfy F has a fixed type, F is convex and strictly psh on C2,
but F is not strictly convex on C?. Denote by < .,. > the habitual hermitian
product over C" in all of this section.

Let f : C* — C be a analytic function. Set u(z,w) = |w— f(2)|%, v(z,w) =
lw— f(2)], u1(z,w) = Aj|w— (< z,a > +b)|* + AsJw — (< z,a > +b)|?, where
(z,w) € C" xC, a € C", b eC, A,As € R+ \{0}. We study now the
structure of the functions u, v and u;. We have the following 3 assertions:

(a) uis psh in C" x C, but w is not strictly psh on any domain of C" x C.

(b) v is strictly psh on C"™ x C if and only if n =1 and |f’| > 0 over C. But
v is not strictly convex in all not empty convex domain of C™ x C for
every n > 1 and for any f : C* — C be analytic.

(¢) wi is not strictly convex in all not empty euclidean open ball subset of

C" x C, for Ay, Ay € R;\{0} and (a,b) € C" x C.
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But if we consider us(z,w) = |w — f(2)|*> + |w — f(2)|* + |w — g(2)|?, where
g: C — C be analytic, n = 1, (z,w) € C2?, we have the following result.

PROPOSITION 3.2. wuy is strictly convex in C? if and only if f and g are
analytic affine functions, f(z) = a1z + b1, g(2) = azz + by, for z € C, where
a1, az, bi,by € C such that ((a1,a2 € C\{0} and 2 # 1) or (a1 = 0, az # 0)
or (a1 # 0, az = 0)).

Proof. Suppose that us is strictly convex in C2. Recall that if ¢ : C™ — R
be a function of class C? (m > 1), then ¢ is strictly convex in C™ if and only

if

> 2 o < 3 2)ajar
Pyt &zjﬁzk Pyt &zj@zk

for each z € C"™ and all (a1, ...,q;) € C™\{0}. We have

uz(z,w) = ww + f(2)f(2) —wf(z) = Wf(z) + ww + f(2) f(2)
—wf(z) —wf(2) + ww + g(2)g(z) — wg(z) —Wy(2),

where (z,w) € C2. Let (a, ) € C?; uy is strictly convex in C2, then uy is
convex in all C2. Now since us is of class C* in C?, then we have

|[f//? _ wf// 4 fﬂf_ wf/l _|_g/l§ wg//] 2056]0/‘
<|B=flal? + 18P +|f'al* +18 - g'af?

is valid over C for each (a,3) € C? and w € C. If w € R, then |w(2f"(z) +
9"(2)) + ¢(2)| < pi1(z), where ¢ : C — C and ¢; : C — Ry be two functions.
The condition 2f”+¢"” # 0, imply that R is bounded, which is a contradiction.
Thus 2f” + ¢"” = 0 over C.

Now put w = it, where ¢t € R. Therefore for each t € R, |tg"” + 6| < 61,
where 6 : C — C and 0; : C — R, be two functions. Then ¢’ = 0 in C. It
follows that f” = 0. Consequently, f and g are analytic affine functions over
C; f(2) = a1z + b1, g(z) = agz + by for z € C, where ay,as,b1,be € C.

CASE 1: a; = 0. In this situation us(z,w) = |w — b1 |> + |w — b1|? + |w —
g2(2)|?; ug is a smooth function over C2. Let (z,w) € C? and (a, 8) € C2\{0}.
We have

82u2 2 82U2 2 62u2
2
022 (z;w)a”+ Oow? (z,w)5"+ 0z0w

(Z,’UJ)O(B =0,
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82’&2
0207z

0%u 0%u
2 2 2 2
(o)l + gt (w9 + 2Re | 52

= |8 — azal* + 2|8,

(- w)aﬁ]

and then

0 < |8 — azal® + 2|5
for each (a, ) € C?\{0}. If 3 =0, then a # 0 and 0 < |aza|?. It follows that
as # 0. In this case we have

28)% 418 — azal* > 0

for each (o, 8) € C\{0}.

CASE 2: ag = 0. In this situation us(z,w) = |w — f(2)]? + |w — f(2)|* +
|w — ba|?. Let (z,w) € C? and (o, B) € C*\{0}; ug is a function of class C*°
in C2. We have

0%us 2 0?uy 2 d%us _ /
L w)o? + Dz ) 20 2 (e w)a| = |~ 208f(2)]
82’&2 2 821@ 2 82uQ —
Do cla?l + 52 G wlB + 2Re | 522 (2 w)a]

= |8 = aral* + B + |aral? + |B]* > [2a8a1] .

Assume that a; = 0. We take 8 =0 and o = 1. We obtain 0 > 0, which is a
contradiction. It follows that a; # 0. In this case we have

2aBa1| < |B* + |aral.
But also we have|8 — aja|? + |8]? > 0 for each («, ) € C2\{0}. Thus
|8 — aral® +2|6* + |aral? > 2]afai]|

for every (a, 8) € C?\{0}.
CASE 3: a1 # 0 and ao # 0. By the above development it follows that

2apa1| < |8 — araf* + B +|aral? + |8 — azaf?,
for all (a, B) € C*\{0}. Thus

ti(a, ) = |8 — aral* + |8 — azal* + (|8] — ara])* > 0.
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Assume that aa; = 86, where § € 0D(0,1). Then |aa;| = |5|. In this case,
[1—62+[1— %5}2 > 0. Consequently, ¢1(a, 3) > 0 for each (a, ) € C?\{0}
if and only if [1— 62 +[1— %5|2 > 0 for every 6 € 9D(0,1). Thus t1(«, 5) >0
for each (a, 8) € C?\{0} if and only if c#L1

Finally, we resume the above development by the following result. Let
1,2 : C— C be 2 analytic functions. Set

pl,w) = Arkw — o1(2)P + sl — Z(2)P + Asfo — oa(2),

where (z,w) € C2?, Ay, Az, A3 € R, \{0}. Then ¢ is strictly convex in C? if
and only if p1(2) = a12+ b1, p2(z) = azz + be, for z € C and aq, az,b1,be € C
with a1 # ag (the stictly convexity of ¢ is independent of b; and by). Note
that, for all By, By € R, \{0}, v is not strictly convex in C?, where ¢ (z,w) =
Bi|w —1(2)]? 4+ Ba|lw —1(2)|?, (2, w) € C. But there exists several possible
cases (of the analytic function ¢; defined over C) such that v is strictly psh
over all C2.

QUESTION 3.3. Prove that there exists an analytic function g : C — C
such that for all Ag, A1, A2, A3 € R4 \{0}, the function

u = Aolg]* + A1lg'|” + A2|g"|* + Aslg”'|?

is not convex over C. We can in fact generalize this question for every fixed
order m of the derivative of g denoted % or over analytic functions defined
on C", where n > 2.

Remark 3.4. Let ¢1,...,9n8 : C* — C be N analytic functions, where
n, N € N. Assume that [g1|> + -+ + |gn|? = u is convex and strictly psh in
C™. We can not conclude that u is strictly convex in C". But we have the
next statement.

THEOREM 3.5. Let ¢g1,...,9n : C* — C be N analytic functions and
n, N € N. Put

u(z,w) = |gi(wy — 2> + - + [gn(wy — Z8) 7,
v(wy, ..., wy) = |gi(w)* + - + gy (wy)]?,

where (zj,w;) € C" x C", 1 < j < N and (z,w) = (21,...,2N, W1, ..., WN).
The following conditions are equivalent:
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(a) w is strictly psh in (C* x C*)";
(b) n=1and |g1|?,...,|gn|? are strictly convex functions over C;

(¢c) n =1 and v is strictly convex in CV.

Proof. Recall that by Abidi [2], we have for every function K : C" — C be
analytic, if we put p(z,w) = |K(w — z)|?, where (z,w) € C® x C". Then ¢ is
psh on C™ x C™ if and only if (K (z) = (< z,a > +b)™ for each z € C", where
a€C" beCandmeNU{0}) or (K(z) = el<2A>H1) for every z € C”,
where A\ € C" and p € C). Note that ¢ is psh on C* x C" if and only if |K|?
is convex on C".

(a) = (b) Let ui(z,w) = |g1(w1 — Z1)|%, ..., un(z,w) = |gn(w — Z)|?,
where (z,w) = ((z1,w1),..., (25, wn)) € (C" x C")N. w is strictly psh on
(C™ x C™)" if and only if uy, ..., uy are strictly psh on C" x C". For example

by Abidi [2], u; is strictly psh on C" x C" if and only if n = 1 and g; is an
affine bijective function over C. Therefore |g;|? is strictly convex on C. It
follows that |g1|%,...,|gn|? are strictly convex functions over C.

The remainder of the proof of this theorem follows from the above devel-
opment. [

CLAM 3.6. Let kq,...,k, : D — C be n analytic functions, D is a domain
of C"*, n > 1. The system

alg—];(z) + —i—ang—Z(Z) =0

al%(z) 4. —l—ang%(z) =0

has only the solution (aq,...,a,) =0 ¢ C" (for all z fixed in D), if and only
if w is strictly psh in D x C", where

2

)

u(z,w) = Aq|wy — k:il(z)‘2 + o Ag|wn — Fn(2)

for z = (z1,...,2) € D, w = (wy,...,wy,) € C" and Ay,..., A, € R;\{0}.

Now fix f1,...,fn : D — C be n arbitrary analytic functions. The above
system has only the solution (a1, ...,a,) = (0,...,0) for all z € D if and only
if v is strictly psh in D x C", where

v(z,w) = Al‘wl — f1(2> - E(Z)F + -+ An‘wn - fn(z) - E(Z)|27

for z = (z1,...,2n) € D, w = (wy,...,wy,) € C" and Ay,..., A, € R;\{0}.
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That is we have a rigid relation between strictly plurisubharmonic func-
tions and holomorphic or antiholomorphic partial differential equations in C™,
n > 1. Observe that we have a good relation between the algebraic method
for the resolution of a system of holomorphic partial differential equations and
the study of the strictly plurisubharmonic of a only one function in complex
analysis and conversely.

In the case of a power of analytic equations, we have the following result.

THEOREM 3.7. Let g1, ga,, k1, ko : C?2 — C be four analytic functions, and
let m1,s1, mo, so € N. The system

2my 281
ok ok 9 0,
(0158(2) + 232(2)) "+ (arfB () + a2 52(2)) =0
2mg 289
ok ok 9 0,
(01582(2) + 232(2)) " + (a1 G2(2) + a252(2)) =0

has only the solution (a1, as) = (0,0) for each z = (21, 29) € C2, if and only
if u is strictly psh on C? x C, where

u(z,w) = |w—ki(z ‘ + |w — k(2 ‘ + |w —g1(z ‘ + |w —ga(z )‘2
for each (z,w) € C? x C.

Proof. Define v by v(z,w) = 4|w|? + |k1(2)|? + [k2(2) |2 +191(2)]? + |g2(2) |2,
where (z,w) € C? x C; u and v are functions of class C* on C2 x C. In fact u
and v have the same hermitian Levi form over C? x C. Now the proof is easy
to describe. |
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