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1. INTRODUCTION

In the classical harmonic analysis theory the study of the differentiability
and smoothness of functions, f : R* — R, can be described in the context of
Banach spaces of functions. Thus, Sobolev spaces W,f (A\q) and potential spaces
LE(N\g) are taking into consideration, where we denote A\ as the Lebesgue
measure, s > 0, kK € Nand 1 < p < co. On the one hand, Sobolev spaces
WY (Aq) allows us to consider functions, such that, f € LP()\g) and its partial
derivatives 0% f € LP()\y), with |a| < k, where the derivatives are understood
in a suitable weak sense to make the space complete. On the other hand,
potential spaces L% (\y) are defined by using fractional powers of the Laplacean
(=A)™%/2, 0 < s < d, and its variants (I — A)~%/2, s > 0. These fractional
powers are known as Riesz potentials and Bessel potentials respectively and
we have that the potential spaces LE()\g) are subspaces of LP()\g), such that,
f=(I—A)"%?g, with g € LP()\g). Riesz potentials, Bessel potentials and
their properties have been deeply studied and by means of these operators it
has been obtained that

WP(Ag) = LP(\g) with k€N and 1<p< oo,
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230 I. A. LOPEZ P.

(see [15, 6]). This identity is very meaningful because the condition defining
to W7 (Aq) spaces is not easy to check for any function given, nevertheless, the
condition defining to L} (A\q) can be described in terms of Bessel potentials
which have integral representations.

Similar identity holds in the Hermite setting and a probabilistic proof of
this fact has been given by H. Sugita in [16] and S. Watanabe in [17], where the
notion of Sobolev spaces of Wiener functionals has been introduced to develop
Malliavin’s calculus. This question has been studied by B. Bongioanni and J.
L Torrea in [1, 2], where they considered Sobolev spaces associated to Hermite
functions expansions and Laguerre functions expansions. However, in [7] we
introduced the fractional derivative for the gaussian measure 4, and by means
of analytical methods we obtained that

WP(y1) = IX(71), with k€N and 1<p< o,

but only in the unidimensional case.
Therefore, the purpose of this paper is to extend this identity to the mul-
tidimensional case. If d > 1, k € N and 1 < p < oo, we shall prove that

WP (v4) = L (va)

and once more, Bessel potentials and adjoint Gaussian-Riesz transforms are
key tools in the proof of this fact. In the Laguerre polynomials and Jacobi
polynomials setting, some similar results have been obtained in [5] and [§],
respectively. Particularly, if 1 < p < 00,0 < s <1 and k£ > 1 we obtain that
WP (va) C LE(vq) and the inclusion is proper.

The paper is organized as follows. Section 2 contains some basic facts
notation and we obtain the result of this paper in Section 3.

2. PRELIMINARY DEFINITIONS.

Let 8 = (B1,...,64) € N U {0} be a multi-index, so 8! = [[L, B!
and |B] = Zgzl Bi. Let us denote by 0; = %, for each 1 < i < d, and
b = 81'8 o ﬁgd. Let P be the subspace of polynomials functions on R

a2

We denote the Gaussian measure v4(dz) = eﬂ%dw, with z € R? and the

Ornstein-Uhlenbeck differential operator is defined as
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Let us consider the normalized Hermite polynomials of order §, in d vari-
ables, defined as

o2 36 a2
hole) = (2061 31) 1/2H PG

with ho(x) = 1, (see [18, pages 105-106]) and it is well known that the Hermite
polynomials are eigenfunctions of L; this way,

Lhg(z) = — Bl ha(z). (2.1)
Also,
Ojhp(x) = \/2Bjhg—c;, foreach 1<j<d

and if v is a multl—mdex,

d 1/2
2"‘/2(1_[ Bi(B—1)-- (B — oy + 1)) hg—a(z), if aj < Bj,
j=1

8ahg(l‘) = Vi=1,...,d,

0, otherwise.

Now, given a function f € L'(vy,) its B-Fourier-Hermite coefficient is de-
fined by

& = / F(@)hs(@)valde)

and let C,, be the closed subspace of L?(y;) generated by the linear combina-
tions of {hg :|B| =n}. The orthogonality of the Hermite polynomials with
respect to vy, lets us see that {C,} is an orthogonal decomposition of L?(v,)

d) = @ Cn
n=0

which is called the Wiener chaos decomposition, see [17]. Now, we denote J,,
the orthogonal projection of L?(v4) onto Cy,. If f € L?(,), we have that

Jnf =Y chhg
18l=n

and its Hermite expansion is given by f = > ., Jnf. Then, following [16]
there exists a positive constant Cp,,,, such that,

[nfllpra < Conllfllpya for 1<p<oo.
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Also, if f € L?(y4) the operator

Lf=) -nf,

n>0
defined on the domain Do(L) = {f € L*(yq) : 2 n>0 2_|8|=n ]cé\Q < oo} is
a self-adjoint extension of L considered on dense subspace of L?(y4). More

precisely, L has a clousure wich also will denote by L.
In this context, the Ornstein-Uhlenbeck semigroup, {7}},~, is defined as

T 1 _ *2t<\x|2+\y\2>2—2e*t<z,y> J 59
e — 1—e—2t
tf(x) (1 o)1 /Rde fy)va(dy), (2.2)

where its kernel is given by Mehler formula
1 et (laf? +\y\ 22,

e YT S )

(1 n>018|=n

It is well known that {Tt},5, is a symmetric diffusion semigroup, with in-
finitesimal generator L, see [14, 16] and moreover

HTt(I —Jo—-— n—l) < Cp,ne_ntHprﬁdv 1 <p<oo. (2-3)

By means of Bochner subordination formula the Poisson-Hermite semi-
group {P;},~ is defined as

Pif(a) = 2= / thmuf( 2)du (2.4)

and similarly, {P;}, is a strongly continuous semigroup on LP(v4) with in-
finitesimal generator (—L)/2, (see [14]). From (2.1) we obtain that

Tihg(z) = e Plhs(z) and Pihs(x) = e VI hg(a) (2.5)
Moreover,
Ty(Jnf) = e ™ Jf and Pi(Jnf) = e VI, f. (2.6)

Now, if s > 0, similar to the classical case, the gaussian fractional integral
of order s, I, is defined by

I7:= (—L)~*?My, where IIy=1—Jp.
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This (formal) definition is correct for all Hermite polynomials hg, since by
using (2.1) we have that

1
Ihs(x) = Whﬁ(l“)» v|B| > 0, (2.7)

and define IJho(z) = 0, see [3, 13]. In the case that f € L!(v,), an integral
representation of I is obtained in [13], which is given by

1=

1 Oosfl o
F(S)/O £ IP(I — Jo) fdt. (2.8)

By using (2.5), we can see that (2.8) coincides with (2.7), if f = hg, V|3 > 0
and consequently, (2.8) coincides with (2.7) if f is a nonconstant polynomial

or f € L%(vy).
Again, from (2.3) and (2.4) we obtain that

| Pe(I = Jo) fllpre < Cpe_t||f||pﬁd 1 <p<oo, (2.9)

since
o0 —Uu
e 2
e /Mgy,

:ﬁ/o Vu

Therefore, from (2.8) and (2.9) we can conclude
1Y fllpva < Copllfllpra 1 <p<o0. (2.10)

Now, for a € N%, we consider the Riesz transform of order ||, associated
to L, defined as, (see [10])

2 =0T

lo| |

(2.11)

and if f € L(v4) with cg = 0, then

|a|f( )

la|—2 7\y7rz|2
logr 2 —rx e 1—2
Cda/Rd/ <1—T2> a(m) (1_T2)d/2+1 rf(y)dy

LP(~4) estimates for 1 < p < oo of the Gaussian-Riesz transform, have been
showed by several authors using probabilistic and analytic methods (see for
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example [4, 10, 11] among other authors). Particularly, if f = hg, for each
i=1,...,d and 8; > «;, we have

1/2

glal \ /2 7.d
Rf hp(z) = ( ) [H Bi(Bi— 1)+ (Bi—ai+1)|  hg-al(z)

and the j-th Gaussian-Riesz transform of first order, R{ =0;1],j=1,....d,
with respect to Hermite polynomials can be expressed as

2B;

Rihg = 5 oo

In [7], the j-th adjoint operator, (le)* of the Gaussian-Riesz transform R{,
has been defined as

(R f.9)., = (f,Ri9)

and we can observe that I} = (—L)~'/2 is a self-adjoint operator, then inte-

grating by parts with respect x;, we obtain
(fsRY9)va = (£ 0111 9)va = (83, 1] )70 = (L]0 9}
where §;(-) = —0;(-) +2x;(-). This way, we can express, for each j =1,...,d,
(R)* = 178; = (=L)7"/%;.
By means of the identity
2(8j + Dhge; = 22jhs + \/2Bjhp—c; =0,

where h_., =0, Vj =1,...,d, (see [18, pages 105-106]), we have that

d3hg = \/2(8j + Dhge, (2.12)
and therefore,
- 28, + 1)
R hg = (| 72— hg e, - 2.13
(RD)hs =\ |55 o, (2.13)

Also, in [7] we obtain the boundedness of j-th adjoint operator of the
Gaussian-Riesz transform (RJ)* for 1 < p < oo. This follows easily from
Holder’s inequality and the LP(4) continuity of the Riesz transform. So,

|&de]l,, = Sup (7 Righua] < Call s
' gllg<
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Similarly, the j-th adjoint Gaussian-Riesz operator (Ri)* of higher order k,
with k > 1, is defined by

(Ri)* = I;wf = (—L)_k/z(S;?, for each j = 1,...,d,

If o € N¢, we can define the higher order adjoint operator of the Riesz trans-
form by
(Rfa‘)* = I&Y'(Ssd o---007",

thus, we get

olal 1/2 r 4 1/2
(Rjo))"hs(z) = (W) [H(&- +1)--- (B + )| hgral)
=1

and if 1 < p < oo with f € LP(v4), we have that

IR Fllpva < Collfllpa-

Now, in [7] the Gaussian fractional derivative of order s > 0, DY, is defined

formally as
DY = (—L)*/?

and for Hermite polynomials, from (2.1), we have that
DYhs(x) = |BI"? hs(x). (2.14)

Particularly, from (2.14), we have that DJho(z) = 0 and, similar to the clas-
sical case, the Gaussian fractional derivative of a constant function is equal to
zero, see [14, 12]. In the case of 0 < s < 1, we can write

prf=1 /O T pg - pat, (2.15)

Cs

where

o
Cs = / uw (e " — 1)du,
0

for f € P and f € L?(v4) (see [7]). This way, (2.15) is an integral repre-
sentation of D f. By using (2.5) we get that (2.15) coincides with (2.14), if
f=hg,V|B] >0and 0 <s < 1. Similarly, by means of the property P1 =1
we conclude that (2.15) coincides with (2.14), if f = hg. Moreover, if f € P,
by (2.7) and (2.14) we obtain that

I{(D§f) = DI f) = 1of. (2.16)
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Following S. Watanabe [17] and H. Sugita [16], we consider the Gaussian-
Bessel potentials defined by

(I—L)™%?f = i(l +n)"%2J,f, for feP.
n=0

By means of the Gamma function we obtain that

1 /Oo 21 —(14n)t —s/2
t2" e dt=(14+n ,
IG/2) Jo (t+n)

thus, (2.6) lets us write

1
T(s/2)

and by use of the contraction property of the semigroup {7}}+>0, we obtain
that

(I-L)y**f=

/ t3 e Ty fdt, for feP (2.17)
0

1= L) fllpra < 1 llpa-

Then, the Gaussian-Bessel potential spaces of order s > 0, LE(vy), with 1 <
p < 00, can be defined as the completion of the polynomials with respect to
the norm

1l = [T = D)72¢]

PsYd

in other words, L%(v4) is a subspace of LP(v4) consisting of all f which can
be written in the form

f=—L)"%?p, with e LP(vy),

where
1£ll,,s = llv

These potential spaces present the following inclusion properties (see [7, 17]
for more details).

|P7’Yd .

i) If p < q then Li(y4) C LE(ry), for each s > 0.
ii) If 0 < s < r then LY(y4) C LE(vq), for each 1 < p < co.

Then, in [7] the following Theorem has been obtained

THEOREM 2.1. Let s >0 and 1 < p < oo. Then f € L%(v,) if and only if
DJf € LP(~y). Moreover,

Bps | fllps < ID5f

PyYd < Apvs Hf”p,s .
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Particularly, we can observe that if {P,} € P, such that, lim,, o P, = f
in L%(vy4), then lim,, DY P, exists in L%(v4) and does not depend on the choice
of a sequence {P,},.

Theorem 2.1 is a corollary of the following theorem, obtained by P.A.
Meyer, see [9, 16]. This theorem shall be an important tool to develop our
result in Section 3.

THEOREM 2.2. (Meyer’s multiplier theorem) Let Ty be given by
Ty=> ¢(n)Jy,
n>0

where {¢(n)}n>0 is a real sequence. Assume that h(z) is a function, which
is analytic on some neighborhood of the origin. If there are ng € N, and a
positive constant s, such that h(n™°) = ¢(n) Yn > ng, then T, can uniquely
extend to a bounded linear operator on LP(~y,), for each 1 < p < oc.

As an application of Meyer’s multiplier theorem, in [7], the following result
has been obtained.

PROPOSITION 2.1. Given 1 < p < oo and s > 1. If f € LE(ry), then
f €LY |(ya) and for each j =1,...,d, 8;f € LY_,(v4). Moreover,

d
1F st + D105 sy < Apsal1f 1] -

j=1
Finally, let us consider the Gaussian Sobolev space defined as
Wi (ya) = {f: 0°f € LP(ya), @ €N’ o] < &},
where 0 f = f, equipped with the norm

HfHW,f = Z 10% Fllpva

o<k

(see [15, pages 121-122]; where W} ()\) spaces are considered).

Then for each 1 < p < oo and k > m, we can see that [/ f|[y» < Hf||W£
and therefore, W} (vq) € Wih(vq)-

Also, from the definition of W} (v4) spaces we can see that f € W/ (yq), if
and only if, f and 9;f € W} _,(va) for each j = 1,...,d. Moreover, the two
norms

d
[fllwp and !f\wg_lJrZ;IIaijwg_l
‘]:
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are equivalent.

Remark. In [7], as has been mentioned previously, we proved that if & > 1,
1 <p<ooand f € LY(y1), then there exist a positive constant, By, such
that,

dk
[Nl < Bp.k %f

P71
for the unidimensional case. Nevertheless, in order to motivate the results to
be developed in Section 3, we recall how this inequality was proved.

In fact, if f € P we define the operator T}, as

B (n+ k)*
ka_;%(n—i-k)---(n—i-l)

cghn.

Then using Meyer’s Multipliers Theorem with the function

(1+ k2)k
261+ kz2)--- (1 +2)’

h(z) =

we obtain that
Hka ‘p,’yd S CP Hpr,’yd .

Now, we introduce the operator Uy as

n+k

k/2 s
Ughyn = ( > ((TL + k) T (n + 1)) hn+k
and if f € P we get that Upf =", cflUk(hn).

Denoting (Ri)* = (—L) */26 as the unidimensional adjoint Gaussian
Riesz transform of order k, with & > 1, we can see that

n+1)---(n+ k)72
(n + k)k/2

(Ri)* () = 247210 s

Therefore, for each k£ > 1 and n > 1, we have
Uk (hn) = [(Rg)™ o Tx](hn).

For this reason, if f € P, by means of the LP(~,)-continuity of the opera-
tors (R¥)* and T}, we obtain that

”kaHp,'yd S Cp,k HfHP:’Yd . (218)
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But by definition (Ug o R¥)(h,) = h,, and if f € P with c{; =0, we get

dk
Dgf:(UkoRkoDZ)f <Ukod OI’YOD’Y>‘]C Uk(d kf>
Therefore, by using the Theorem 2.1 and (2.18) we have that

dk
1l <

9

P

and we can use the density of the polynomials in LP(+;) in the general case.
Now, let us consider the multidimensional case with d > 1 and we would
like to repeat a similar argument. In this case, we could define the operators

8+ ol

d
210l TT(181+ 1) - (18] + )
i=1

Ta(hﬁ) = hﬂ

and

o\l [ d 172

atis) = (25 [Hwﬁl)m(mai)
i=1

oo

for o € N%. Thus, if f € P we introduce

Taf: ZTa(Jnf)a and Uaf = ZUQ(Jnf)

n>0 n>0
and by using Meyer’s Multipliers Theorem with
—lal lof
9—lal(q 2 (1 + >
h(z) = Urlol)  ana pa) = ;

f[l(lwz)m(”z) H( |B|> <1+|ﬁ|>’

we obtain that T, has a LP(v4)-continuous extension. However, we can see
that

oy 11/2
51 + 1 Bz + 7,)
. (a1 )
[(R\a|) OTa](hﬁ) = 9lal d hgta
H B8]+ 1) (18] + )
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and therefore
Uaf # (R 0 Tulf,

if f € P. In consequence, this reasoning fails in the multidimensional case.
This way, to prove that

I1f

we need to developed a different argument.
Consequently, we are able to present the results of this paper in the fol-
lowing section.

o = 1l

3. THE RESULTS

By using (2.11) and (2.16) we can write

if f is a nonconstant polynomial. Then, by means of the LP(~4)-continuity of
the Gaussian-Riesz transform and Theorem 2.1, we get

||aaf||p7fyd é Cp,‘0¢| Hf||p7‘a| (31)

and therefore, the density of the polynomials in LV (v4), with |a| < k, the

|
fact that ||, o < If]l,x and (3.1), allows us to conclude that

1 llwe < Cprll fllp,x- (3.2)

Consequently,
LY (v4) € WP (va) foreach keN. (3.3)

Now, we shall prove the converse inequality in (3.2). First, we establish
the following Lemma, where the relation between Riesz potentials and Bessel
potentials are obtained in the gaussian context; see [3] for similar results and
compare with [15, pages 133-134].

LEMMA 3.1. Let s > 0 and 1 < p < o0.

i) Suppose f € P, then there exists a constant C), > 0, such that,

1(D7 0 (1= 1)) ], < Collfllpn:
ii) Suppose f € P, then we have
(T =Ly on)f||, < Apll fllpra-

PsYa —
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iii) There exists a pair of operators 11 and Ty, which are bounded operators
on LP(v4), so that

(I —L)*? =Ty + DY oTy.

Proof. Ttems i) and ii) have been obtained in [3]. However, we present it
with details for the sake of completeness.
i) If f € P then f = ano Jn f. Particularly, we observe that

(DY o (I —L)™*/*)Jof =} (DY o (I —L)™/*)hg =0

and we can express

(DYo(I—L)™2)f=>"

n>0

ns/2
T mr
Therefore, the result follows from Theorem 2.2 considering the function
hz)=(z+1)"%2.
ii) Again, we consider f € P, such that f € (Cp)*, then
((I L)S/2 . IV f Z (1 +s72)5/2 55

n>0

and similarly, by means of Meyer’s multiplier theorem with the function
h(z) = (2 +1)"2,

we get that

(1= L) o I)fIl,, .. < Apllflpa

Particularly, if f is a constant function, then f = céf ho and since by defi-
nition IJ hg = 0, we have that

(I —L)*?o1))f =c}((I - L)*?o1))hg =0.
iii) We choose 77 = I and
Ty=((I-L)**o1))~1J.
Then if f € P, such that, f € (Cy)*, we obtain
<|[(@=ryem)s|

PyYd

s 122 F

and iii) follows from ii) and (2.10).
Particularly, if f is a constant function, we have that I f = 0 and therefore,

Thf =0. 1
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Remark. It should be emphasized, that polynomials are dense in LP(vy),
for 1 < p < co. This way, the Lemma 3.1 states that the operators defined by

DYo(I—L)"*? and (I—L)*?o1],
are bounded operators on LP(v4), on every 1 < p < oc.

Now, on the one hand, by using (2.12) and (2.13) we observe that

2 .
()" @3hs) = ()" (v/2bpee,) = b

for each 7 = 1,...,d and |B] # 0. Thus,

d
> (R (9hg) = 2|8 *hg

j=1

and if g € P, we obtain that

*(0jJng) = 2n1/2Jng

M&

1

J

In consequence,
d

Do =5 S (RI)(09). (3.4)
j=1

Particularly, if g is a constant function we can see that D]g = 0 and since
0;g9 = 0, then (3.4) is also true.

On other hand, if s > 1, we claim that
(I—L)"67D2(8;9) = (Ty 0 0;(I — L)~ =172, (3:5)

where we set Ty := (I — L)*~V/20 17 |
In fact, suppose g € P, such that, g € (Cp)*. Then g = > n>0 Jng and

L\ -1/
o3I — L)~D/2g = ( ) S V2Bichhs o,

NI 1Bl=n
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Also,
26 c’
(s—1)/2 A
(I = L) )/8 Zzwsl/zﬁ%
n>0|8|=
L\ D72 /1 N (=172
:Z%( n ) <1+n> WX_: V2bicsho—e,

= (I - L)V 201)  00;(I - L)~6D/2)g,
which proves (3.5). Particularly, if ¢ is a constant function we have that
(I-L)" 6" Y28;9) =0 and 9;(I — L)~ Y/2g = cJd;hg =0

and therefore, (3.5) is also true.
Then, we are able to prove the following proposition (see [15, pages 136—
138]).

ProrosSITION 3.1. Given 1 < p < oo and s > 1. Suppose that f €
LY (ya) and 9jf € LY |(yq) for each j = 1,...,d. Then, f € L%(v4) and

also,

1£1lp,s < Bp.s (IIprs 1+ZII3 Fllys- 1>

Proof Let f € LY | (y4) N'P. Then, there exists ¢ € P, such that f =
(I — L)~(5=1/24) and therefore,

(s—1)/2
x ()

n>0

and

1 (s—1)/
=Y () X v,
n>0

|8]=n

Since 1 € LF(vyq) NP, we can write 1) = (I — L)~'/?h and according to the
Lemma 3.1, part iii), where we consider s = 1, 71 = I and

—(I-D"on) -1,
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we obtain that
h= (I — L)% =T+ (D] o Ty)eh.
Therefore,
[Allpra < 1T1%]pe + H(D¥ °© TQW’H
Now, we can see that

llp e = || = L)"?9)|

and

DPYd’

— || = D)Y2(1 = D)=

PyYd PsYd

1T lps = [llpog = 12 = LY D2A]] = 1 lpat.
On the other hand, by means of (3.4) we have that

d
(D} o o) = (Ty0 DY) = 3T

. <R{>*<8jw>]

7j=1

and therefore,

(D} o T2)¢)

d
b}

(R{)*(ajw)]

1
PYd 5 :

7j=1

pYd
d

> (R (959)
j=1
d

<Cp) o

J=1

< 4,

PyYd

|p77d'

Since f € L |(vq) NP and 9;f € LY _|(ya) NP, for each j = 1,..

according to (3.5) with g = ¢ we have that
To(0;f) = (I — L)~ ==V20;)
and consequently,
105 llp g = || (To o (1 = L)D/2)(9;0)]|
< || = L)V, 1)||
= Cpl|9; fllp,s—1,

Pyvd

PyYa

= 1llp.s

(3.6)

'7d7
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because Ty o (I — L)5=D/2 = (I — L)(5=1/2 6 Ty. Then, from (3.6) we obtain

that ;
1l < Brs ( 1l + S 105 )
j=1

In the general case, the density of the polynomials in L% () is used. |

Remark. In the proof of the Proposition 3.1, if f is a constant function,
we can see that f =1 = h. Then, trivially we can write

h=(I—-L1)"* =T+ (D) o o)y
because (I — L)Y/2¢) =, T11p = 1 and Tpyp = 0. This way, we obtain that

||f||p,s—1 = Hf”p,s :

The Proposition 2.1 and the Proposition 3.1 let us obtain the following
corollary.

COROLLARY 3.1. Suppose 1 < p < oo and s > 1. Then, f € LE(v,) if and
only if f € LY _|(v4) and for each j :dl, ooyd, 9jf € LY, (y4). Moreover, the
two norms, || f[|,, s and [ f|l, 1 + 22521 195 f[l, s, are equivalent.

Also, by means of the Proposition 3.1 we get the following result.

COROLLARY 3.2. Given 1 < p < oo and k > 1. Suppose f € W} (va),
then there exists a positive constant A, such that

HprJc < Apk (Hf”pﬁd + Z ||aaf||pﬁd>'
o<k
Proof. By using the Proposition 3.1, with s = 1, we have
d
[fllp1 < Bpa ( £l + D 19515, )
j=1
If s = 2 we can see that

d
1 £1l,2 < Bpe ( £l + > ||a@-f||p,1>

=1
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and for each i =1,...,d,

d
10: £l < Apa ( 10:F s+ D 1051, )
j=1

Then by means of the estimates above, we get

d d d
1712 < Gp,z(ufup,w 3101, + 0D Hazjfupﬂd)
j=1

i=1 j=1
and the result of this corollary is obtained by induction. |

Therefore, we can conclude that
WP(vq) C LY (va) for each keN (3.7)

and in consequence, by using (3.3) and (3.7) we obtain the following theorem
which it is the principal result of this paper.

THEOREM 3.1. Suppose k is a positive integer and 1 < p < co. Then

L (va) = W (va).

Particularly, as a final comment we observe that

Remark. If 0 < s < 1,1 < p < oo and k > 1, then W} (v4) C LE(v4) and
the inclusion is proper.

In fact, if 0 < s < 1 and k > 1, the inclusion properties of the potential
spaces allows us to write

Wi (va) = Li(va) € LE(7a)-
Now, let us consider d =1, k=1, p =2, 0 < s < 1 and the function f defined
as
x ifx >0,
flay={ VT o2
0 ifx <0.

First, one checks that f € L?(y1) but f’ ¢ L?(y1) and therefore f ¢ W2(v1).
Now, for each s € (0,1) we define the family of functions

Vv2sx if x>0,
gs(z) = .
0 if £ <0,
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and from (2.2) we get that the semigroup, Tigs, can be written as

_t1|2

yetm
=2t

28 1/2
Tigs(x) =/ — / - 1-— e—Qtu +e tx) e~V du

(1— e—2t>1/2

—t/2 2¢ > —u?
>e NZT— e " du,
T Jo

so, Tigs(z) > 2%/2e74/2\/z, for all t > 0 and = > 0. Therefore,
1

(1= 0*aw) = 77755 | " e g, (2)dt

2 2V (g ) M)

and then, by use of the change of variable ¢t = u/2, we obtain

Ttgs( )

By using the change of variable u =
that

in the above identity, we have

(I —L)~*?gy(z) > f(z) foreach > 0. (3.8)
From (2.17) if hy > hga, we have that
(I —L)™*?hy > (I — L)"*/?hy, (3.9)

because T3 is linear and T:h > 0, if h > 0. Also, if h; > hs, we can see that
(I —L)*?hy > (I — L)*?h,.

In fact, suppose that h; > hg but (I — L)*/2hy < (I — L)*/?hy, then by using
(3.9) we obtain a contradiction. Thus, by applying the operator (I — L)*/? in
(3.8), we get

gs(2) = (I = L)*? f(=)

and consequently,
1f 2 = [|(T = )£l < Ngsllom =220 fllan < V21 f o

since s € (0,1). Therefore, we can conclude that f € L2(7).
This way, we have obtained a function f, such that, f ¢ W2(v;) but
feLli(n),if0<s<1,
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