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1. introduction

In the last decades has been increasing the study of the first positive eigen-
value of certain elliptic operators defined on Riemannian manifolds. This
study was initiated in 1977 when Reilly [13] established some inequalities es-
timates for the first positive eigenvalue λ1 of the Laplacian operator ∆ of a
closed hypersurface Mn immersed in the Euclidean space Rn+1. For instance,
he obtained the following sharp estimate

λ1

(∫
M

Hr dM

)2

≤ n vol(M)

∫
M

H2
r+1 dM ,

for every 0 ≤ r ≤ n− 1, where Hr stands for the r-th mean curvature of Mn,
and the equality holds precisely when Mn is a round sphere of Rn+1.

∗ Corresponding author.
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Several authors presented generalizations and extensions of the previous
Reilly’s inequality to some other ambient spaces (we refer, for instance, the
works [1], [6], [7], [8], [9], [10], [11] and [16]). Also in this setting, we note
that Aĺıas and Malacarne [3] extended techniques due to Takahashi [15] and
Veeravalli [16] in order to derive sharp upper bounds for the first positive
eigenvalue of the linearized operator Lr of the r-th mean curvature Hr of a
closed hypersurface immersed either in the Euclidean space Rn+1 or in the
Euclidean sphere Sn+1.

Our aim in this work is study the first positive eigenvalue λ
Lr,s

1 of the Jacobi
type (or simply, Jacobi) operator Lr,s, which is defined as follows: fixed integer
numbers r, s such that 0 ≤ r ≤ s ≤ n − 1, Lr,s : C∞(M) → C∞(M) is given
by

(1.1) Lr,s(f) =

s∑
j=r

(j + 1)ajLj(f) ,

where Lj are the linearized operators of the j-th mean curvatures Hj , aj are
nonnegative real numbers (with at least one nonzero) for all j ∈ {r, . . . , s} and
f is a smooth function on the hypersurface Mn which is supposed immersed
either in Rn+1 or in Sn+1.

We point out that the authors in [17] established the notion of (r, s)-
stability concerning closed hypersurfaces with higher order mean curvatures
linearly related in a space form. In this setting, they obtained a suitable char-
acterization of the (r, s)-stability through of the analysis of the first positive

eigenvalue λ
Lr,s

1 of the Jacobi operator Lr,s, which is associated to the cor-
responding variational problem (cf. [17, Theorem 5.3]). Our purpose in this

work, is exactly obtain sharp upper estimates for λ
Lr,s

1 . Consequently, the
results that we will present along this paper are naturally attached with the
study of (r, s)-stable closed hypersurfaces in a space form.

This manuscript is organized in the following way: in Section 2, we recall
some basic facts concerning r-th mean curvatures Hr and their corresponding
linearized operators Lr. Afterwards, in Section 3 we obtain a version of the
classical result of Takahashi [15] (cf. Proposition 1) for the Jacobi operator Lr,s

defined in (1.1) and we apply it to obtain a Reilly type inequality for λ
Lr,s

1 (cf.
Lemma 3). Next, in Section 4 we apply our previous Reilly type inequality

in order to prove sharp upper bound for λ
Lr,s

1 (cf. Theorem 1, Theorem 2,
Theorem 3 and Corollary1). Finally, in Section5 we consider the case when
the ambient space is Sn+1 (cf. Theorem 4).
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2. Preliminaries

Given a connected and orientable hypersurface x : Mn → M
n+1

(c) into
a Riemannian space form of constant sectional curvature c, one can choose a
globally defined unit normal vector field N on Mn. Let A denote the shape
operator with respect to N , so that, at each p ∈ Mn, A restricts to a self-
adjoint linear map Ap : TpM → TpM .

Associated to the shape operator A of Mn one has n algebraic invariants,
namely, the elementary symmetric functions Sr of the principal curvatures
κ1, . . . , κn of A, given by

Sr = σr (κ1, . . . , κn) =
∑

i1<···<ir

κi1 · · ·κir ,

where, for 1 ≤ r ≤ n, σr ∈ R[X1, . . . , Xn] is the r-th elementary symmetric
polynomial on the indeterminates X1, . . . , Xn.

The r-th mean curvature Hr of Mn is then defined by(
n

r

)
Hr = Sr .

For 0 ≤ r ≤ n, let

Pr : X (M) → X (M)

be the r-th Newton transformation of Mn, defined inductively by putting
P0 = I (the identity of X (M)) and, for 1 ≤ r ≤ n,

Pr =

(
n

r

)
HrI −APr−1 .

A standard fact concerning the Newton transformations is that, 1 ≤ r ≤ n,

(2.1) tr(Pr) = brHr and tr(APr) = brHr+1 ,

where br = (n− r)
(
n
r

)
= (r + 1)

(
n

r+1

)
(see, for instance, [4] and [12]).

On the other hand, the divergence of Pr is defined by

divPr = tr(∇Pr) =

n∑
i=1

(∇eiPr)ei ,

where {e1, . . . , en} is a local orthonormal frame on Mn.
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Associated to each Pr, one has the second order linear differential operator
Lr : C

∞(M) → C∞(M), given by

(2.2) Lr(f) = tr(Pr Hessf) , 0 ≤ r ≤ n .

Note that, when r = 0, the operator Lr reduces to the Laplacian operator

of Mn and, since M
n+1

(c) has constant sectional curvature, then Lr is a
divergence (cf. [14]), more precisely

Lr(f) = div(Pr∇f) , 0 ≤ r ≤ n ,

for f ∈ C∞(M).

The following result gives sufficient conditions to the ellipticity of the
operators Lr (cf. [4, Proposition 3.2]).

Lemma 1. Let M
n+1

(c) be the Euclidian space Rn+1 (when c = 0) or an
open hemisphere of the an Euclidian sphere Sn+1 (when c > 0), and x : Mn →
M

n+1
(c) be a closed hypersurface. If Hr+1 > 0 then

(a) each operator Lj is elliptic,

(b) each j-th mean curvature Hj is positive,

for all j ∈ {1, . . . , r}.

When M
n+1

(c) is the Euclidian space, [3, Corollary 3] also gives the fol-
lowing another sufficient criteria of ellipticity.

Lemma 2. Let x : Mn → Rn+1 be a closed hypersurface with positive
Ricci curvature (hence, necessarily embedded). Then

(a) each operator Lj is elliptic,

(b) each j-th mean curvature Hj is positive,

for all j ∈ {1, . . . , r}.

3. A Reilly-type inequality in the Euclidean space

Given a closed hypersurface x : Mn → Rn+1, its center of gravity c is
defined by

(3.1) c =
1

vol(M)

∫
M

x dM ∈ Rn+1,
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where vol(M) denotes the n-dimensional volume of Mn. In this setting, let
us consider on Mn the support functions la = ⟨x− c, a⟩ and fa = ⟨N, a⟩ with
respect to a fixed nonzero vector a ∈ Rn+1. It is not difficult to verify that the
gradient of function la is given by ∇la = a⊤, where a⊤ = a − faN ∈ X(M).
Thus, for X ∈ X(M) we have that

(3.2) ∇X∇la = faAX .

From (2.1) and (3.2), for each j ∈ {r, . . . , s}, we get

(3.3) Lj(la) = bjHj+1fa .

Consequently, considering the Jacobi operator Lr,s defined in (1.1), from (3.3)
we obtain

(3.4) Lr,s(la) =

(
s∑

j=r

(j + 1)ajbjHj+1

)
fa .

Thus, denoting by {e1, . . . , en+1} the canonical orthonormal basis of Rn+1,
from (3.4) we can write

(3.5) Lr,s(x− c) =

(
s∑

j=r

(j + 1)ajbjHj+1

)
N.

Now, we are in position to present a version of a classical result due to
Takahashi [15].

Proposition 1. Let x : Mn → Rn+1 be an orientable closed connected
hypersurface and c its center of gravity. If Lr,s is the Jacobi operator defined
in (1.1), then

(3.6) Lr,s(x− c) + λ(x− c) = 0 ,

for some real number λ ̸= 0 if, and only if, x(M) is a round sphere of Rn+1

centered at c.

Proof. Suppose that (3.6) is true for some λ ̸= 0. From expression (3.5)
we have

(3.7)

(
s∑

j=r

(j + 1)ajbjHj+1

)
N + λ(x− c) = 0 .
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Taking the covariant derivative in (3.7) we obtain

(3.8) X

(
s∑

j=r

(j + 1)ajbjHj+1

)
N −

(
s∑

j=r

(j + 1)ajbjHj+1

)
AX + λX = 0 ,

for all X ∈ X(M). Consequently, taking into account that λ ̸= 0, from (3.8)
we conclude that

∑s
j=r(j + 1)ajbjHj+1 is a nonzero constant.

Thus, returning to (3.8), we obtain

A =

(
s∑

j=r

(j + 1)ajbjHj+1

)−1

· λI,

an, hence, x(M) is a totally umbilical hypersurface of Rn+1. Therefore,
unless of translations and homotheties, x(M) is a round sphere of Rn+1 cen-
tered at c.

Reciprocally, for a the round sphere of Rn+1 centered at c and of radius
ρ > 0, let us consider N = −1

ρ(x − c), and thus its j-th mean curvature is

Hj+1 =
1

ρj+1 . Then, from (3.5) we have that (3.6) is satisfied for

λ =
s∑

j=r

(j + 1)ajbj
ρj+2

̸= 0 ,

since at least on of aj are supposed be nonzero.

Remark 1. We note that the first positive eigenvalue of the operator Lr,s

on a round sphere Sn(ρ) ⊂ Rn+1 of radius ρ > 0 is given by

λ
Lr,s

1 =

s∑
j=r

(j + 1)ajbjHj+2 .

Indeed, since Sn(ρ) is totally umbilical with A =
1

ρ
I, the j-th Newton trans-

formation is given by Pj =
bj
nρj

, where bj = (j + 1)
(

n
j+1

)
. Then

Ljf =
bj
ρj

∆f for each f ∈ C∞(M) .
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Hence, for integers r, s such that 0 ≤ r ≤ s ≤ n − 1 and nonnegative real
numbers aj (with at least one nonzero) for all 1 ≤ j ≤ n, we have

Lr,s =

s∑
j=r

(j + 1)ajLj =

s∑
j=r

(j + 1)ajbj
nρj

∆ .

Since the first positive eigenvalue for the Laplacian operator ∆ in Sn(ρ) is

given by λ∆
1 =

n

ρ2
, we conclude that

λ
Lr,s

1 =

s∑
j=r

(j + 1)ajbj
ρj+2

=

s∑
j=r

(j + 1)ajbjHj+2 .

Let us consider (x− c)⊤ = (x− c)−⟨x− c, N⟩N ∈ X(M), where (x− c)⊤

denotes the component tangent of x− c along Mn. For every j ∈ {r, . . . , s},
using (2.1), it is not difficult to verify that

divPj(x− c)⊤ = bj
(
Hj + ⟨x− c, N⟩Hj+1

)
.

Consequently,

(3.9)
s∑

j=r

(j + 1)aj

[
divPj(x− c)⊤

]
=

s∑
j=r

(j + 1)ajbj
(
Hj + ⟨x− c, N⟩Hj+1

)
,

where bj = (j + 1)
(

n
j+1

)
= (n − j)

(
n
j

)
and aj are nonnegative real numbers

(with at least one nonzero) for all j ∈ {r, . . . , s}.
At this point, we will assume that the hypersurface Mn is closed. So, from

(3.9) we obtain the following Minkowski type integral formula

(3.10)

s∑
j=r

(j + 1)ajbj

∫
M

(
Hj + ⟨x− c, N⟩Hj+1

)
dM = 0 .

In the next result, motivated by Remark 1, we apply Proposition 1 to
obtain a Reilly type inequality for the Jacobi operator Lr,s.

Lemma 3. Let x : Mn → Rn+1 be an orientable closed connected hyper-
surface and let c be its center of gravity. If either Hs+1 > 0, for some integer
number s ∈ {1, . . . , n − 1}, or the Ricci curvature of Mn is positive (hence,
necessarily embedded), then

(3.11) λ
Lr,s

1

∫
M

|x− c|2 dM ≤
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM ,
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for all r ∈ {0, . . . , s− 1}, where λ
Lr,s

1 is the first positive eigenvalue of Jacobi
operator Lr,s defined in (1.1), aj are nonnegative real numbers (with at least
one nonzero) for all j ∈ {r, . . . , s} and bj = (j + 1)

(
n

j+1

)
. In particular,

the equality occurs in (3.11) if and only if x(M) is a round sphere of Rn+1

centered at c.

Proof. Since either Hs+1 > 0 or the Ricci curvature of Mn is positive,
Lemma 1 and Lemma 2 guarantee that Lj is elliptic for j ∈ {1, . . . , s} and,
hence, Lr,s is elliptic. Thus, it holds the following characterization of λL

1

(3.12) λ
Lr,s

1 = inf

{−
∫
M fLr,s(f) dM∫

M f2 dM
:

∫
M

f dM = 0

}
.

Let {e1, . . . , en+1} be the canonical orthonormal basis of Rn+1. For every
1 ≤ k ≤ n + 1, we consider the k-th coordinate function fk = ⟨x − c, ek⟩.
Thus, for every 1 ≤ k ≤ n + 1, from (3.1) we have that

∫
M fk dM = 0. So,

from (3.12) we get

(3.13) λ
Lr,s

1

∫
M

f2
k dM ≤ −

∫
M

fkLr,s(fk) dM .

Furthermore, from (3.4) we obtain

(3.14) λ
Lr,s

1

∫
M

f2
k dM ≤ −

s∑
j=r

(j + 1)ajbj

∫
M

fk⟨N, ek⟩Hj+1 dM .

Now, summing on k of 1 until n+ 1 in (3.14) and taking into account that

n+1∑
k=1

f2
k = |x− c|2 and

n+1∑
k=1

fk⟨N, ek⟩ = ⟨N,x− c⟩ ,

we get

(3.15) λ
Lr,s

1

∫
M

|x− c|2 dM ≤ −
s∑

j=r

(j + 1)ajbj

∫
M
⟨N, x− c⟩Hj+1 dM .

Hence, from (3.15) and (3.10) we have

λ
Lr,s

1

∫
M

|x− c|2 dM ≤
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM .
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If occurs the equality in (3.11), all of the above inequalities are, in fact,
equalities and, in particular, from (3.13) we get

Lr,s(fk) + λ
Lr,s

1 fk = 0 ,

for every k = 1, . . . , n+1, which happens if and only if Lr,s(x− c)+λ
Lr,s

1 (x−
c) = 0. In this case, Proposition 1 assures that x(M) is a round sphere
centered at c.

4. Upper estimates for λ
Lr,s

1 in Rn+1

In [3, Theorem 9], Aĺıas and Malacarne obtained the following sharp esti-
mate for the first positive eigenvalue λLr

1 of linearized operator Lr concerning
a closed hypersurface immersed in the Euclidean space Rn+1

λLr
1

(∫
M

Hs dM

)2

≤ br

∫
M

Hr dM

∫
M

H2
s+1 dM , 0 ≤ s ≤ n− 1 ,

occurring the equality if and only if Mn is a round sphere of Rn+1.
In our next result, we extend the ideas of Aĺıas and Malacarne [3] in order

to get a sharp estimate for the first positive eigenvalue of the Jacobi operator
Lr,s which was defined in (1.1).

Theorem 1. Let x : Mn → Rn+1 be an orientable closed connected hy-
persurface and let c be its center of gravity. If either Hs+1 > 0, for some
integer number s ∈ {1, . . . , n − 1}, or the Ricci curvature of Mn is positive
(hence, necessarily embedded), then

λ
Lr,s

1

(∫
M

s∑
i=r

(i+ 1)ãiHi dM

)2

≤

(
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM

)∫
M

(
s∑

i=r

(i+ 1)ãiHi+1

)2

dM ,(4.1)

for all r ∈ {0, . . . , s− 1}, where λ
Lr,s

1 is the first positive eigenvalue of Jacobi
operator Lr,s defined in (1.1), aj and ãi are nonnegative real numbers (with at
least one nonzero) for all i, j ∈ {r, . . . , s} and bj = (j+1)

(
n

j+1

)
. In particular,

the equality in (4.1) holds if and only if x(M) is a round sphere of Rn+1

centered at c.
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Proof. Let c the center of gravity of M defined in (3.1). If we multiply

both sides of (3.11) by
∫
M

(∑s
i=r(i+ 1)ãiHi+1

)2
dM , we obtain

λ
Lr,s

1

∫
M

|x− c|2 dM
∫
M

(
s∑

i=r

(i+ 1)ãiHi+1

)2

dM

≤
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM

∫
M

(
s∑

i=r

(i+ 1)ãiHi+1

)2

dM .

Using Cauchy-Schwarz inequality, the left side can be developed as follows

λ
Lr,s

1

∫
M

|x− c|2 dM
∫
M

(
s∑

i=r

(i+ 1)ãiHi+1

)2

dM

≥ λ
Lr,s

1

(∫
M

|x− c|

∣∣∣∣∣
s∑

i=r

(i+ 1)ãiHi+1

∣∣∣∣∣ dM
)2

≥ λ
Lr,s

1

(
s∑

i=r

(i+ 1)ãi

∫
M
⟨x− c, N⟩Hi+1 dM

)2

= λ
Lr,s

1

(
s∑

i=r

(i+ 1)ãi

∫
M

Hi dM

)2

,

where in the last equality, it was used the Minkowski type integral formula
(3.10). Hence,

λ
Lr,s

1

(∫
M

s∑
i=r

(i+ 1)ãiHi dM

)2

≤
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM

∫
M

(
s∑

i=r

(i+ 1)ãiHi+1

)2

dM .

Now if the equality occurs in (4.1), then the equality occurs also in (3.11),
implying that M is a round sphere centered at c.

Proceeding, we also get the following result.

Theorem 2. Let x : Mn → Rn+1 be an orientable closed connected
hypersurface and let c be its center of gravity. Assume that, either Hs+1 > 0,
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for some integer number s ∈ {1, . . . , n − 1}, or the Ricci curvature of Mn is
positive (hence, necessarily embedded). If Hk+1 is constant for some
k ∈ {r, . . . , s} then

(4.2) λ
Lr,s

1 ≤ 1

vol(M)

(
Hk+1

) 2
k+1

(
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM

)
.

where λ
Lr,s

1 is the first positive eigenvalue of Jacobi operator Lr,s defined in
(1.1), aj are nonnegative real numbers (with at least one nonzero) for all
j ∈ {r, . . . , s} and bj = (j +1)

(
n

j+1

)
. In particular, the equality in (4.2) holds

if and only if x(M) is a round sphere of Rn+1 centered at c.

Proof. Taking

ãi =

{
0 , for i ̸= k ∈ {r, . . . , s},

1
k+1 , for i = k ∈ {r, . . . , s},

in Theorem 1 and supposingHk+1 constant, for some k ∈ {r, . . . , s}, we obtain

(4.3) λ
Lr,s

1

(∫
M

Hk dM

)2

≤ vol(M)H2
k+1

(
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM

)
.

Since Hs+1 > 0, we have that H
1

k+1

k+1 ≤ H
1
k
k (cf. [5, Proposition 2.3]). Hence,

H
k

k+1

k+1 ≤ Hk and consequently, from (4.3) we get inequality (4.2). Moreover,
if equality occurs in (4.2), then in (4.1) we also have an equality and hence
x(M) is a round sphere of Rn+1 centered at c.

As a consequence of Theorem 2 we have the following

Corollary 1. Let x : Mn → Rn+1 be an orientable closed connected
hypersurface and let c be its center of gravity. Assume that, either Hs+1 > 0,
for some integer number s ∈ {1, . . . , n − 1}, or the Ricci curvature of Mn

is positive (hence, necessarily embedded). If Hk+1 is constant for some k ∈
{r, . . . , s} then

(4.4) λ
Lr,s

1 ≤ 1

vol(M)
inf
M

(Hm)
2
m

(
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM

)
,
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for any m ∈ {2, . . . , k+1}, where λLr,s

1 is the first positive eigenvalue of Jacobi
operator Lr,s defined in (1.1), aj are nonnegative real numbers (with at least
one nonzero) for all j ∈ {r, . . . , s} and bj = (j + 1)

(
n

j+1

)
. In particular,

the equality in (4.4) holds if and only if x(M) is a round sphere of Rn+1

centered at c.

Proof. Since H
1

k+1

k+1 ≤ H
1
m
m , for all m ∈ {2, . . . , k + 1} (cf. [5, Proposition

2.3]), then from (4.2) we have

λ
Lr,s

1 ≤ 1

vol(M)
inf
M

(
Hk+1

) 2
k+1

(
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM

)

≤ 1

vol(M)
inf
M

(
Hm

) 2
m

(
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM

)
,

for any m ∈ {2, . . . , k + 1}. When equality occurs in (4.4), the same happens
in (4.2) and in this case x(M) is a round sphere of Rn+1 centered at c.

We close this section with the following

Theorem 3. Let x : Mn → Rn+1 be an orientable closed connected hy-
persurface and let c be its center of gravity. If either Hs+1 > 0, for some
integer number s ∈ {1, . . . , n − 1}, or the Ricci curvature of Mn is positive
(hence, necessarily embedded), then

(4.5) λ
Lr,s

1

(∫
M
⟨x− c, N⟩ dM

)2

≤ vol(M)
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM ,

for all r ∈ {0, . . . , s− 1}, where λ
Lr,s

1 is the first positive eigenvalue of Jacobi
operator Lr,s defined in (1.1), aj are nonnegative real numbers (with at least
one nonzero) for all j ∈ {r, . . . , s} and bj = (j + 1)

(
n

j+1

)
. In particular, the

equality occurs in (4.5) if and only if x(M) is a round sphere of Rn+1 centered
at c. Moreover, if Mn embedded in Rn+1, then

(4.6) λ
Lr,s

1 ≤ vol(M)

(n+ 1)2vol(Ω)2

s∑
j=r

(j + 1)ajbj

∫
M

Hj dM ,

with equality if and only if x(M) is a round sphere in Rn+1 centered at c.
Here Ω is the compact domain in Rn+1 bounded by Mn and vol(Ω) denotes
its (n+ 1)-dimensional volume.



sharp estimates for the first eigenvalue 81

Proof. If we multiply both sides of (3.11) by
∫
M 12 dM , and use Cauchy-

Schwarz inequality, we obtain

vol(M)

s∑
j=r

(j + 1)ajbj

∫
M

Hj dM ≥ λ
Lr,s

1

∫
M

|x− c|2 dM
∫
M

12 dM

≥ λ
Lr,s

1

(∫
M

|x− c|dM
)2

≥ λ
Lr,s

1

(∫
M
⟨x− c, N⟩dM

)2

,

showing that (4.5) holds. Now, if the equality occurs in (4.5), then the
equality also occurs in (3.11) and, hence, x(M) is a round sphere in Rn+1

centered at c.
Moreover, in the case in that Mn is embedded in Rn+1, let Ω be a compact

domain in Rn+1 bounded by Mn so that M = ∂Ω. According to the proof of
[3, Theorem 10], let us consider the vector field Y (p) = p− c defined on Ω, as
div(Y ) = (n+ 1). So, it follows from divergence theorem that

(n+ 1)vol(Ω) =

∫
M

div(Y ) dΩ =

∫
M
⟨x− c, N⟩dM .

Therefore, from (4.5) we get

λ
Lr,s

1 ≤ vol(M)

(n+ 1)2vol(Ω)2

s∑
j=r

(j + 1)ajbj

∫
M

Hj dM .

5. Upper estimates for λ
Lr,s

1 in Sn+1

In this last section, we will consider orientable closed connected hyper-
surface hypersurfaces x : Mn → Sn+1 immersed into the Euclidean sphere
Sn+1 ↪→ Rn+2. According to [3], we defined a center of gravity of Mn as a
critical point of the smooth function E : Sn+1 → R given by

E(p) =
∫
M
⟨x,p⟩dM , p ∈ Sn+1.

In this way, a point c ∈ Sn+1 is a center of gravity of Mn if, and only if,

dEc(v) =
∫
M
⟨x, v⟩dM =

⟨∫
M

xdM, v

⟩
= 0 ,
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for every v ∈ TcSn+1 = c⊥ =
{
p ∈ Rn+2 : ⟨p, c⟩ = 0

}
. Hence a center of

gravity of Mn is given by

c =
1

|
∫
M x dM |

∫
M

xdM ∈ Sn+1,

whenever
∫
M xdM ̸= 0 ∈ Rn+2.

For a fixed nonzero vector a ∈ Rn+2, let us the smooth function ⟨x, a⟩
defined on Mn. Then, the gradient of the function ⟨x, a⟩ is given by

∇⟨x, a⟩ = a⊤ = a− ⟨N, a⟩N − ⟨x, a⟩x ∈ X(M) ,

where N is the orientation of x : Mn → Sn+1. Moreover,

∇X∇⟨x, a⟩ = ⟨N, a⟩AX − ⟨x, a⟩X,

for all X ∈ X(M) and,hence, from (2.1)

Lr,s(⟨x, a⟩) =
s∑

j=r

(j + 1)ajLj(⟨x, a⟩)

=
s∑

j=r

(j + 1)aj tr
(
Pj ◦Hess(⟨x, a⟩)

)
=

s∑
j=r

(j + 1)aj
(
⟨N, a⟩tr(A ◦ Pj)− ⟨x, a⟩tr(Pj)

)
(5.1)

=

s∑
j=r

(j + 1)ajbj
(
⟨N, a⟩Hj+1 − ⟨x, a⟩Hj

)
,

where bj = (j + 1)
(

n
j+1

)
= (n− j)

(
n
j

)
.

Proceeding with the above notation, in what follows we are able to
establish an extension of Lemma 3 for the case that Mn is a hypersurface
immersed in Sn+1.

Lemma 4. Let x : Mn → Sn+1 be an orientable closed connected hyper-
surface, which lies in an open hemisphere of Sn+1, and let c be its center of
gravity. If Hs+1 > 0, for some integer number s ∈ {1, . . . , n− 1}, then

(5.2) λ
Lr,s

1

∫
M

(
1− ⟨x, c⟩2

)
dM ≤

s∑
j=r

(j + 1)ajbj

∫
M

Hj dM ,
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for all r ∈ {0, . . . , s− 1}, where λ
Lr,s

1 is the first positive eigenvalue of Jacobi
operator Lr,s defined in (1.1), aj are nonnegative real numbers (with at least
one nonzero) for all j ∈ {r, . . . , s} and bj = (j + 1)

(
n

j+1

)
. In particular, the

equality occurs in (5.2) if and only if x(M) is an geodesic sphere in Sn+1

centered at c.

Proof. SinceHs+1 > 0, Lemma 1 guarantees that Lr,s is elliptic and, hence,
it holds the characterization of its first positive eigenvalue given in (3.12).
We consider the canonical basis {e1 . . . , en+1} ⊂ Rn+2 of TcSn+1 = c⊥ ={
v ∈ Rn+2 : ⟨v, c⟩ = 0

}
and for every 1 ≤ k ≤ n + 1, let us fk = ⟨x, ek⟩.

Then, as before,
∫
M fk dM = 0, for every 1 ≤ k ≤ n+ 1, and from (5.1)

(5.3) Lr,s(fk) =
s∑

j=r

(j + 1)ajbj
(
⟨N, ek⟩Hj+1 − ⟨x, ek⟩Hj

)
.

Hence, from (3.12) we have

λ
Lr,s

1

∫
M

f2
k dM ≤ −

∫
M

fkLr,s(fk) dM

=

s∑
j=r

(j + 1)ajbj

∫
M

(
f2
kHj − fk⟨N, ek⟩Hj+1

)
dM .(5.4)

On the one hand,

x =
n+1∑
k=1

fkek + ⟨x, c⟩c and N =
n+1∑
k=1

⟨N, ek⟩ek + ⟨c, N⟩c ,

so that

(5.5)
n+1∑
k=1

fk⟨N, ek⟩ = −⟨c, N⟩⟨x, c⟩ and 1− ⟨x, c⟩2 =
n+1∑
k=1

f2
k .

Summing on k of 1 until n+ 1 in (5.4) and using relations (5.5), we obtain

λ
Lr,s

1

∫
M
(1− ⟨x, c⟩2) dM

≤
s∑

j=r

(j + 1)ajbj

(∫
M
(1− ⟨x, c⟩2)Hj dM +

∫
M
⟨c, N⟩⟨x, c⟩Hj+1 dM

)
.

(5.6)
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Now, taking a = c in (5.1)

(5.7) Lr,s(⟨x, c⟩) =
s∑

j=r

(j + 1)ajbj
(
⟨c, N⟩Hj+1 − ⟨x, c⟩Hj

)
,

multiply both sides of (5.7) by ⟨x, c⟩, we obtain

(5.8) ⟨x, c⟩Lr,s(⟨x, c⟩) =
s∑

j=r

(j + 1)ajbj
(
⟨x, c⟩⟨c, N⟩Hj+1 − ⟨x, c⟩2Hj

)
.

Replacing (5.8) in (5.6), we get

λ
Lr,s

1

∫
M
(1−⟨x, c⟩2) dM

≤
s∑

j=r

(j + 1)ajbj

(∫
M

Hj dM +

∫
M
⟨x, c⟩Lr,s(⟨x, c⟩)Hj+1 dM

)
.(5.9)

With a straightforward computation, we see that

Lr,s

(
⟨x, c⟩2

)
=

s∑
j=r

(j + 1)aj
⟨
∇⟨x, c⟩, Pj (∇⟨x, c⟩)

⟩
+ ⟨x, c⟩Lr,s(⟨x, c⟩) .

Integrating over Mn and using divergence theorem we obtain

(5.10)

∫
M
⟨x, c⟩Lr,s (⟨x, c⟩) dM = −

s∑
j=r

(j + 1)aj

∫
M

⟨
c⊤, Pj(c

⊤)
⟩
dM ,

where c⊤ = ∇⟨x, c⟩. From (5.9) and (5.10), we get

λ
Lr,s

1

∫
M

(
1− ⟨x, c⟩2

)
dM

≤
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM −
s∑

j=r

(j + 1)aj

∫
M

⟨
c⊤, Pj(c

⊤)
⟩
dM .(5.11)

Since each operator Lj is elliptic, for r ≤ j ≤ s, from Lemma 1 we have

that the operator P̃ =
∑s

j=r(j+1)ajPj is positive. Consequently, from (5.11)
we get

λ
Lr,s

1

∫
M

(
1− ⟨x, c⟩2

)
dM ≤

s∑
j=r

(j + 1)ajbj

∫
M

Hj dM ,

with the equality occurs if and only if c⊤ = ∇⟨x, c⟩ = 0, that is, if and only
if x(M) is a geodesic sphere Sn+1 centered at the point c.
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Before to present our last result, we observe that integrating (5.1) over
Mn and using divergence theorem we obtain the following Minkowski type
formula for hypersurfaces immersed in Sn+1

(5.12)
s∑

j=r

(j + 1)ajbj

∫
M

(
⟨N, a⟩Hj+1 dM − ⟨x, a⟩Hj

)
dM = 0 ,

where a ∈ Rn+2 is arbitrary.
As an application of Lemma 4, we derive the following Reilly type in-

equality for the first positive eigenvalue of the Jacobi operator Lr,s of a closed
hypersurface in sphere, which extend [3, Theorem 16].

Theorem 4. Let x : Mn → Sn+1 orientable closed connected hypersur-
face, which lies in an open hemisphere of Sn+1, and let c be its center of
gravity. If Hs+1 > 0, for some integer number s ∈ {1, . . . , n − 1}, then we
have following inequalities

λ
Lr,s

1

(
s∑

i=r

(i+ 1)ãi

∫
M

Hi⟨x, c⟩dM

)2

≤
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM

∫
M

(
s∑

i=r

(i+ 1)ãiHi+1

)2

dM(5.13)

and

(5.14) λ
Lr,s

1

(∫
M
⟨c, N⟩dM

)2

≤ vol(M)

s∑
j=r

(j + 1)ajbj

∫
M

Hj dM ,

for all r ∈ {0, . . . , s− 1}, where λ
Lr,s

1 is the first positive eigenvalue of Jacobi
operator Lr,s defined in (1.1), aj and ãi are nonnegative real numbers (with
at least one nonzero) for all i, j ∈ {r, . . . , s}, bj = (j + 1)

(
n

j+1

)
and vol(M)

denotes the n-dimensional volume of Mn. In particular, if M is embedded in
Sn+1 then (5.13) results in

(5.15) λ
Lr,s

1

(∫
Ω
⟨c, p⟩dΩ(p)

)2

≤ vol(M)

(n+ 1)2

s∑
j=r

(j + 1)ajbj

∫
M

Hj dM ,

where Ω is any one of the two compact domains of Sn+1 bounded by Mn.
Moreover, the equality occurs in one of these three inequalities if and only if
x(M) is a geodesic sphere in Sn+1 centered at c.
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Proof. Multiply both sides of (5.2) by
∫
M (
∑s

i=r(i+ 1)ãiHi+1)
2 dM , we

have

λ
Lr,s

1

∫
M
(1−⟨x, c⟩2) dM

∫
M

(
s∑

i=r

(i+ 1)ãiHi+1

)2

dM

≤
s∑

j=r

(j + 1)ajbj

∫
M

Hj dM

∫
M

(
s∑

i=r

(i+ 1)ãiHi+1

)2

dM .

Using Cauchy-Schwarz inequality, the side left can be developed as in following
way

λ
Lr,s

1

∫
M
(1− ⟨x, c⟩2) dM

∫
M

(
s∑

i=r

(i+ 1)ãiHi+1

)2

dM

≥ λ
Lr,s

1

(∫
M

√
1− ⟨x, c⟩2

∣∣∣∣∣
s∑

i=r

(i+ 1)ãiHi+1

∣∣∣∣∣dM
)2

.(5.16)

On the other hand, c = c⊤ + ⟨c, N⟩N + ⟨x, c⟩x, so that

1− ⟨x, c⟩2 =
∣∣c⊤∣∣2 + ⟨c, N⟩2 ≥ ⟨c, N⟩2,

which implies

(5.17)
√

1− ⟨x, c⟩2 ≥ |⟨c, N⟩| .

Occurring equality if and only if ∇⟨x, c⟩ = c⊤ = 0, that is, if and only if x(M)
is a geodesic sphere in Sn+1 centered at c.

Replacing (5.17) in (5.16) and using the Minkowski type formula (5.12)
with a = c, we obtain

λ
Lr,s

1

(∫
M

√
1− ⟨x, c⟩2

∣∣∣∣∣
s∑

i=r

(i+ 1)ãiHi+1

∣∣∣∣∣ dM
)2

≥ λ
Lr,s

1

(∫
M

|⟨c, N⟩|

∣∣∣∣∣
s∑

i=r

(i+ 1)ãiHi+1

∣∣∣∣∣dM
)2

≥ λ
Lr,s

1

(
s∑

i=r

(i+ 1)ãi

∫
M
⟨c, N⟩Hi+1 dM

)2

= λ
Lr,s

1

(
s∑

i=r

(i+ 1)ãi

∫
M
⟨x, c⟩Hi dM

)2

,
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which proves (5.13).

For proof the of (5.14), we multiply both sides of (5.2) by vol(M) =∫
M 12 dM , using Cauchy-Schwarz inequality in (5.17), we have

vol(M)

s∑
j=r

(j + 1)ajbj

∫
M

Hj dM ≥ λ
Lr,s

1

∫
M
(1− ⟨x, c⟩2) dM

∫
M

12 dM

≥ λ
Lr,s

1

(∫
M

√
1− ⟨x, c⟩2 dM

)2

≥ λ
Lr,s

1

(∫
M
⟨c, N⟩dM

)2

,

which shows (5.14). Moreover, if occurs the equality either in (5.13) or
in (5.14), then occurs in (5.2), and x(M) is a geodesic sphere in Sn+1

centered at c.

Now, if Mn is embedded in Sn+1, following the same steps of [3, Theorem
16], let us consider the vector field Y on Sn+1 defined by Y (p) = c − ⟨c, p⟩p,
p ∈ Sn+1. Observe that Y is a conformal vector field on Sn+1 with singularities
in c and −c, and with spherical divergence given by

divY = −(n+ 1)⟨c, p⟩ .

Moreover, if Ω denotes one of the two compact domains in Sn+1 bounded by
Mn so that ∂Ω = M , then

(5.18) (n+ 1)2
(∫

Ω
⟨c, p⟩dΩ(p)

)2

=

(∫
M
⟨c, N⟩dM

)2

.

Therefore, replacing (5.18) in (5.13), we obtain (5.15).
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