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Abstract : An Alexandroff space is a topological space in which every intersection of open sets is

open. There is one to one correspondence between Alexandroff T0-spaces and partially ordered sets
(posets). We investigate Alexandroff T0-topologies on finite quandles. We prove that there is a

non-trivial topology on a finite quandle making right multiplications continuous functions if and

only if the quandle has more than one orbit. Furthermore, we show that right continuous posets on
quandles with n orbits are n-partite. We also find, for the even dihedral quandles, the number of

all possible topologies making the right multiplications continuous. Some explicit computations for
quandles of cardinality up to five are given.
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1. Introduction

Quandles are algebraic structures modeled on the three Reidemeister
moves in classical knot theory. They have been used extensively to construct
invariants of knots and links, see for example [6, 8, 10]. A Topological quandle
is a quandle with a topology such that the quandle binary operation is compat-
ible with the topology. Precisely, the binary operation is continuous and the
right multiplications are homeomorphisms. Topological quandles were intro-
duced in [11] where it was shown that the set of homomorphisms (called also
the set of colorings) from the fundamental quandle of the knot to a topological
quandle is an invariant of the knot. Equipped with the compact-open topol-
ogy, the set of colorings is a topological space. In [5] a foundational account
about topological quandles was given. More precisely, the notions of ideals,
kernels, units, and inner automorphism group in the context of topological
quandle were introduced. Furthermore, modules and quandle group bundles
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over topological quandles were introduced with the purpose of studying cen-
tral extensions of topological quandles. Continuous cohomology of topolog-
ical quandles was introduced in [4] and compared to the algebraic theories.
Extensions of topological quandles were studied with respect to continuous 2-
cocycles, and used to show differences in second cohomology groups for some
specific topological quandles. Nontriviality of continuous cohomology groups
for some examples of topological quandles was shown. In [2] the problem of
classification of topological Alexander quandle structures, up to isomorphism,
on the real line and on the unit circle was investigated. In [7] the author inves-
tigated quandle objects internal to groups and topological spaces, extending
the well-known classification of quandles internal to abelian groups [13]. In
[14] quandle modules over quandles endowed with geometric structures were
studied. The author also gave an infinitesimal description of certain modules
in the case when the quandle is a regular s-manifold (smooth quandle with
certain properties). Since any finite T1-space is discrete, the category of finite
T0-spaces was considered in [12], where the point set topological properties
of finite spaces were investigated. The homeomorphism classification of finite
spaces was investigated and some representations of these spaces as certain
classes of matrices was obtained.

This article arose from a desire to better understand the analogy of the
work given in [12] in the context of finite topological quandles. It turned out
that: there is no T0-topology on any finite connected (meaning one orbit un-
der the action of the Inner group) quandle X that makes X into a topological
quandle (Theorem 4.4). Thus we were lead to consider topologies on finite
quandles with more than one orbit. It is well known [1] that the category of
Alexandroff T0-spaces is equivalent to the category of partially ordered sets
(posets). In our context, we prove that for a finite quandle X with more than
one orbit, there exists a unique non trivial topology which makes right mul-
tiplications of X continuous maps (Proposition 4.6). Furthermore, we prove
that if X be a finite quandle with two orbits X1 and X2 then any continuous
poset on X is biparatite with vertex set X1 and X2 (Proposition 4.7). This
article is organized as follows. In Section 2 we review the basics of topological
quandles. Section 3 reviews some basics of posets, graphs and some hierarchy
of separation axioms. In Section 4 the main results of the article are given.
Section 5 gives some explicit computations based on some computer software
(Maple and Python) of quandles up to order five.
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2. Review of Quandles and Topological Quandles

A quandle is a set X with a binary operation ∗ satisfying the following
three axioms:

(1) For all x in X, x ∗ x = x,

(2) For all y, z ∈ X, there exists a unique x such that x ∗ y = z,

(3) For all x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

These three conditions come from the axiomatization of the three Reidemeister
moves on knot diagrams. The typical examples of quandles are: (i) Any Group
G with conjugation x∗y = y−1xy, is a quandle called the conjugation quandle
and (ii) Any group G with operation given by x ∗ y = yx−1y, is a quandle
called the core quandle.

Let X be a quandle. For an element y ∈ X, left multiplication Ly and right
multiplication Ry by an element y are the maps fromX toX given respectively
by Ly(x) := y∗x and Ry(x) = x∗y. A function f : (X, ∗)→ (X, ∗) is a quandle
homomorphism if for all x, y ∈ X, f(x∗y) = f(x)∗f(y). If furthermore f is a
bijection then it is called an automorphism of the quandle X. We will denote
by Aut(X) the automorphism group of X. The subgroup of Aut(X), generated
by the automorphisms Rx, is called the inner automorphism group of X and
denoted by Inn(X). If the group Inn(X) acts transitively on X, we then
say that X is connected quandle meaning it has only one orbit. Since we do
not consider topological connectedness in this article, then through the whole
article, the word connected quandle will stand for algebraic connectedness.
For more on quandles refer to [6, 8, 10, 3]. Topological quandles have been
investigated in [2, 5, 11, 4]. Here we review some basics of topological quandles.

Definition 2.1. A topological quandle is a quandle X with a topology
such that the map X × X 3 (x, y) 7−→ x ∗ y ∈ X is a continuous, the right
multiplication Rx : X 3 y 7−→ y ∗ x ∈ X is a homeomorphism, for all x ∈ X,
and x ∗ x = x.

It is clear that any finite quandle is automatically a topological quandle
with respect to the discrete topology.

Example 2.2. [2] Let (G,+) be a topological abelian group and let σ be a
continuous automorphism of G. The continuous binary operation on G given
by x ∗ y = σ(x) + (Id − σ)(y), ∀x, y ∈ G, makes (G, ∗) a topological quandle
called topological Alexander quandle. In particular, if G = R and σ(x) = tx
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for non-zero t ∈ R, we have the topological Alexander structure on R given
by x ∗ y = tx+ (1− t)y.

Example 2.3. The following examples were given in [11, 5]. The unit
sphere Sn ⊂ Rn+1 with the binary operation x∗y = 2(x·y)y−x is a topological
quandle, where · denotes the inner product of Rn+1. Now consider λ and µ
be real numbers, and let x, y ∈ Sn. Then

λx ∗ µy = λ[2µ2(x · y)y − x].

In particular, the operation

±x ∗ ±y = ±(x ∗ y)

provides a structure of topological quandle on the quotient space that is the
projective space RPn.

3. Review of topologies on finite sets, posets and graphs

Now we review some basics of directed graphs, posets and T0 and T1

topologies.

Definition 3.1. A directed graph G is a pair (V,E) where V is the set
of vertices and E is a list of directed line segments called edges between pairs
of vertices.

An edge from a vertex x to a vertex y will be denoted symbolically by
x < y and we will say that x and y are adjacent. The following is an example
of a directed graph.

Example 3.2. Let G = (V,E) where V = {a, b, c, d} and E = {b < a,
c < a, a < d}.

d

a

b c
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Definition 3.3. An independent set in a graph is a set of pairwise non-
adjacent vertices.

Definition 3.4. A (directed) graph G = (V,E) is called biparatite if V
is the union of two disjoint independent sets V1 and V2.

Definition 3.5. A (directed) graph G is called complete biparatite if G
is bipartite and for every v1 ∈ V1 and v2 ∈ V2 there is an edges in G that joins
v1 and v2.

Example 3.6. Let V = V1 ∪ V2 where V1 = {4, 5} and V2 = {1, 2, 3}.
Then the directed graph G = (V,E) is complete biparatite graph.

Now we recall the definition of partially ordered set.

Definition 3.7. A partially ordered set (poset) is a set X with an order
denoted ≤ that is reflexive, antisymmetric and transitive.

Example 3.8. For any set X, the power set of X ordered by the set
inclusion relation ⊆ forms a poset (P(X),⊆)

Definition 3.9. Two partially ordered sets P = (X,≤) and Q = (X,≤′)
are said to be isomorphic if there exist a bijection f : X → X ′ such that x ≤ y
if and only if f(x) ≤′ f(y).

Definition 3.10. A poset (X,≤) is connected if for all x, y ∈ X, there
exists sequence of elements x = x1, x2, . . . , xn = y such that every two consec-
utive elements xi and xi+1 are comparable (meaning xi < xi+1 or xi+1 < xi).

Notation: Given an order ≤ on a set X, we will denote x < y whenever
x 6= y and x ≤ y. Finite posets (X,≤) can be drawn as directed graphs
where the vertex set is X and an arrow goes from x to y whenever x ≤ y.
For simplicity, we will not draw loops which correspond to x ≤ x. We will
then use the notation (X,<) instead of (X,≤) whenever we want to ignore
the reflexivity of the partial order.
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Example 3.11. . Let X = Z8 be the set of integers modulo 8. The map
f : X → X given by f(x) = 3x − 2 induces an isomorphism between the
following two posets (X,<) and (X,<′).

, .

Definition 3.12. A chain in a poset (X,<) is a subset C of X such
that the restriction of < to C is a total order (i.e. every two elements are
comparable).

Now we recall some basics about topological spaces called T0 and T1 spaces.

Definition 3.13. A topological space X is said to have the property T0 if
for every pair of distinct points of X, at least one of them has a neighborhood
not containing the other point.

Definition 3.14. A topological space X is said to have the property T1

if for every pair of distinct points of X, each point has a neighborhood not
containing the other point.

Obviously the property T1 implies the property T0. Notice also that this
definition is equivalent to saying singletons are closed in X. Thus a T1-
topology on a finite set is a discrete topology.

Since any finite T1-space is discrete, we will focus on the category of finite
T0-spaces. First we need some notations.

Let X be a finite topological space. For any x ∈ X, we denote

Ux := the smallest open subset of X containing x.

It is well known [1] that the category of T0-spaces is isomorphic to the
category of posets. We have x ≤ y if and only if Uy ⊆ Ux which is equivalent
to Cx ⊂ Cy, where Cv is the complement U c

v of Uv in X. Thus one obtain that
Ux = {w ∈ X; x ≤ w} and Cx = {v ∈ X; v < x}. Under this correspondence
of categories, the subcategory of finite posets is equivalent to the category of
finite T0-spaces.

Through the rest of this article we will use the notation of x < y in the
poset whenever x 6= y and x ≤ y.
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4. Topologies on non-connected quandles

As we mentioned earlier, since T1-topologies on a finite set are discrete, we
will focus in this article on T0-topologies on finite quandles. A map on finite
spaces is continuous if and only if it preserves the order. It turned out that on
a finite quandle with a T0-topology, left multiplications can not be continuous
as can be seen in the following theorem

Theorem 4.1. Let X be a finite quandle endowed with a T0-topology.
Assume that for all z ∈ X, the map Lz is continuous, then x ≤ y implies
Lz(x) = Lz(y).

Proof. We prove this theorem by contradiction. Let X be a finite quandle
endowed with a T0-topology. Assume that x ≤ y and Lz(x) 6= Lz(y). If x = y,
then obviously Lz(x) = Lz(y). Now assume x < y, then for all a ∈ X, the
continuity of La implies that a ∗ x ≤ a ∗ y. Assume that there exist a1 ∈ X
such that, z1 := a1 ∗ x = La1(x) < a1 ∗ y = La1(y). The invertibility of
right multiplications in a quandle implies that there exist unique a2 such that
a2 ∗ x = a1 ∗ y hence a1 ∗ x < a2 ∗ x which implies a1 6= a2. Now we have
a1∗x < a2∗x ≤ a2∗y = z2. We claim that a2∗x < a2∗y. if a2∗y = a2∗x and
since a2 ∗ x = a1 ∗ y we will have a2 ∗ y = a2 ∗ x = a1 ∗ y hence a2 ∗ y = a1 ∗ y
but a1 6= a2, thus contradiction. Now that we have proved a2 ∗ x < a2 ∗ y,
then there exists a3 such that a2 ∗ y = a3 ∗ x we get, a2 ∗ x < a3 ∗ x repeating
the above argument we get, a3 ∗ x < a3 ∗ y. Notice that a1, a2 and a3 are
all pairwise disjoint elements of X. Similarly, we construct an infinite chain,
a1 ∗ x < a2 ∗ x < a3 ∗ x < · · · , which is impossible since X is a finite quandle.
Thus we obtain a contradiction.

We have the following Corollary

Corollary 4.2. Let X be a finite quandle endowed with a T0-topology.
If C is a chain of X as a poset then any left continuous function Lx on X is
a constant function on C.

Definition 4.3. A quandle with a topology in which right multiplications
(respectively left multiplications) are continuous is called right topological
quandle (respectively left topological quandle).

In other words, right topological quandle means that for all x, y, z ∈ X,

x < y ⇒ x ∗ z < y ∗ z.
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and, since left multiplications are not necessarily bijective maps, left topolog-
ical quandle means that for all x, y, z ∈ X,

x < y ⇒ z ∗ x ≤ z ∗ y.

Theorem 4.4. There is no T0-topology on a finite connected quandle X
that makes X into a right topological quandle.

Proof. Let x < y. Since X is connected quandle, there exists φ ∈ Inn(X)
such that y = φ(x). Since X is finite, φ has a finite order m in the group
Inn(X). Since φ is a continuous automorphism then x < φ(x) implies x <
φm(x) giving a contradiction.

Corollary 4.5. There is no T0-topology on any latin quandle that makes
it into a right topological quandle.

Thus Theorem 4.4 leads us to consider quandles X that are not connected,
that is X = X1 ∪X2 ∪ . . . Xk as orbit decomposition, search for T0-topology
on X and investigate the continuity of the binary operation.

Proposition 4.6. Let X be a finite quandle with orbit decomposition
X = X1 ∪ {a}, then there exist unique non trivial T0-topology which makes
X right continuous.

Proof. Let X = X1 ∪ {a} be the orbit decomposition of the quandle X.
For any x, y ∈ X1, there exits φ ∈ Inn(X) such that φ(x) = y and φ(a) = a.
Declare that x < a, then φ(x) < a. Thus for any z ∈ X1 we have z < a.
Uniqueness is obvious.

The T0-topology in Proposition 4.6 is precisely given by x < a for
all x ∈ X1.

Proposition 4.7. Let X be a finite quandle with two orbits X1 and
X2. Then any right continuous poset on X is biparatite with vertex set
X1 and X2.

Proof. We prove this proposition by contradiction. For every x1, y1 ∈ X1

such that x1 < y1. We know that there exist φ ∈ Inn(X) such that φ(x1) = y1.
Hence, x1 < φ(x1) implies x1 < φm(x1) = x1, where m is the order of φ in
Inn(X). Thus we have a contradiction.
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Proposition 4.8. Let X be a finite quandle with two orbits X1 and X2.
Then the complete bipartite graph with vertex set X1 and X2 forms a right
continuous poset.

Proof. Let X be a finite quandle with two orbits X1 and X2. If x ∈ X1

and y ∈ X2 then for every φ ∈ Inn(X) we have φ(x) ∈ X1 and φ(y) ∈ X2.
Proposition 4.7 gives that the graph is bipartite and thus x < y. We then
obtain φ(x) < φ(y) giving the result.

Remark 4.9. By Proposition 4.8 and Theorem 4.1, there is a non-trivial
T0-topology making X right continuous if and only if the quandle has more
than one orbit.

Notice that Proposition 4.8 can be generalized to n-paratite complete
graph.

The following table gives the list of right continuous posets on some even
dihedral quandles. In the table, the notation (a, b) on the right column
means a < b.

Table 1: Right continuous posets on dihedral quandles

Quandle Posets

R4 ((0,1),(2,1),(0,3),(2,3)) .

((0, 1), (0, 5), (2, 1), (2, 3), (4, 3), (4, 5)) ;
R6

((0,3), (2, 5), (4, 1)) .

(2, 7), (4, 7), (6, 1), (6, 3), (0, 5), (2, 5), (4, 1), (0, 3)) ;
R8

(( 0, 1), (6, 7), (4, 5), (0, 7), (2, 1), (2,3), (4, 3), (6, 5)) .

((0, 1), (6, 7), (4, 5), (2, 1), (8, 9), (2, 3), (4, 3), (8, 7), (0, 9), (6, 5)) ;

R10 ((4, 7), (6, 9), (2, 9), (8, 1), (8, 5), (0, 7), (6, 3), (2, 5), (4, 1), (0, 3)) ;

((2, 7), (8, 3), (0, 5), (4, 9), (6, 1)) .

Notice that in Table 1, the dihedral quandle R4 has only one right con-
tinuous poset ((0, 1), (2, 1), (0, 3), (2, 3)) which is complete biparatite. While
the dihedral quandle R6 has two continuous posets ((0, 1), (0, 5), (2, 1), (2, 3),
(4, 3), (4, 5)) and ((0, 3), (2, 5), (4, 1)) illustrated below.
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Moreover, in Table 1, for R8 the bijection f given by f(k) = 3k−2 makes the
two posets isomorphic. The same bijection gives isomorphism between the
first two posets of R10. The following Theorem characterizes non complete
biparatite posets on dihedral quandles.

Theorem 4.10. Let R2n be a dihedral quandle of even order. Then R2n

has s+ 1 right continuous posets, where s is number of odd natural numbers
less than n and relatively non coprime with n

Proof. Let X = R2n be the dihedral quandle with orbits X1 = {0, 2, . . . ,
2n − 2} and X2 = {1, 3, . . . , 2n − 1}. For every x ∈ X2, we construct a
partial order <x on R2n, such that for all y ∈ X, we have 2y <x 2y − x
and 2y <x 2y + x. Then <x is clearly right continuous partial order since
2y < 2y − x and 2y < 2y + x for all y imply that 2z − 2y < 2z − (2y − x). In
other words we obtain 2y ∗ z < (2y − x) ∗ z. From the definition of the order
<x it is clear the two partial orders <x and <2n−x are the same. Hence we
obtain the following distinct partial orders <1, <3, . . .. Now we check which
ones are isomorphic. If m is odd and gcd(n,m) = 1 then f(k) = mk − 2 is
a bijective function making <1 and <m isomorphic. Now let m be odd and
gcd(m,n) = k > 1. The two posets <1 and <m are non isomorphic since <1

is connected poset, as in Definition 3.10, and <m is not connected poset. We
show that these are the only right continuous posets. Given a right continuous
poset on R2n then a < b can be written as a < a− (a− b) which implies that
a <x b where x = a−b. Now if a < b then by Proposition 4.7, we have a ∈ X1,
b ∈ X2. Now let a = 2α and b = 2β + 1 then a− b = 2(α− β)− 1 ∈ X2. This
ends the proof.

Corollary 4.11. For the dihedral quandle R2n with 2n elements, there
is a unique right continuous poset.

5. Some computer calculations

In this section we give non-trivial right and left continuous posets on the
finite quandles of order up to 5 based on Maple [9] and Python computations.
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In the following tables we have excluded the trivial and connected quandles.

Table 2: Continuous posets on quandles of order 3

Quandle for n = 3 Right continuous posets Left continuous poset 0 0 1
1 1 0
2 2 2

 ((0,2),(1,2)) . ((0,1)) .

As seen in Table 2 for n = 3, there exist a unique right continuous poset
and a unique left continuous poset.

Table 3: Continuous posets on quandles of order 4

Quandles for n = 4 Right continuous poset Left continuous poset


0 0 0 0
1 1 1 2
2 2 2 1
3 3 3 3


((0, 3)) ;

((0, 1), (0, 2), (0, 3)) ;

((0, 1), (0, 3), (1, 2)) ;

((0, 1), (0, 2), (1, 3), (2, 3)) ;

((2, 3), (1, 3)) ;

((2, 3), (1, 3), (0, 3)) .

((0,1),(1,2)) and ((1,2)) .


0 0 0 1
1 1 1 2
2 2 2 0
3 3 3 3

 ((0,3),(1,3),(2,3)) . ((0,1),(1,2)) and ((1,2)) .


0 0 1 1
1 1 0 0
2 2 2 2
3 3 3 3


((0,2),(1,2),(0,3),(1,3),(2,3)) ;

((0,2),(1,2),(0,3),(1,3)) ;
((0,2),(1,2)) ;

((2,3)) .

((0,1),(2,3)) and ((2,3)) .


0 0 0 0
1 1 3 2
2 3 2 1
3 2 1 3

 ((0,1),(0,2),(0,3)) . None .


0 0 1 1
1 1 0 0
3 3 2 2
2 2 3 3

 ((0,2),(0,3),(1,2),(1,3)) . ((0,1),(2,3)) .
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Table 4: Continuous posets on quandles of order 5, Part I

Quandles forn = 5 Right continuous poset Left continuous poset
0 0 0 0 0
1 1 1 1 1
2 2 2 2 3
3 3 3 3 2
4 4 4 4 4


((0,1),(1,2),(1,3),(0,4)) ;

((0,2),(0,3),(1,2),(1,3),(4,2),(4,3)) ;

((0,2),(0,3),(1,2),(1,3),(2,4),(3,4)) ;

((0,1),(1,4),(4,2),(4,3)) .

((0,1),(1,2),(2,3)) ;

((0,1),(1,2)) ;

((1,2)) .


0 0 0 0 0
1 1 1 1 2
2 2 2 2 3
3 3 3 3 1
4 4 4 4 4


((0,1), (0,2), (0,3), (2,4), (3,4), (1,4)) ;

((0,4)) ;

((0,1), (0,2), (0,3)) ;

(( 0,4 ),(4,1 ),(4,2 ),(4,3)) .

((0,1), (1,2), (2,3)) ;

((0,1), (1,2)) ;

((2,3)) .


0 0 0 0 1
1 1 1 1 0
2 2 2 2 3
3 3 3 3 2
4 4 4 4 4


((1,2),(0,3),(2,4),(3,4)) ;

((1,2),(0,2),(1,3),(0,3),(2,4),(3,4)) ;

((1,4),(0,4)) ;

((1,2),(0,2),(1,3),(0,3)) .

((1,2),(0,1),(2,3)) ;

((0,1),(0,2)) ;

((0,2),(1,2)) .


0 0 0 0 1
1 1 1 1 2
2 2 2 2 3
3 3 3 3 0
4 4 4 4 4

 ((0,4),(1,4),(2,4),(3,4)) .

((1,2),(0,1),(2,3)) ;

((0,1),(0,2)) ;

((0,2),(1,2)) .


0 0 0 0 0
1 1 1 1 1
2 2 2 4 3
3 3 4 3 2
4 4 3 2 4


((0,2),(0,3),(0,4)) ;

((0,2),(0,3),(0,4),(1,2),(1,3),(1,4)) ;

((0,1)) ;

((0,2),(0,3),(0,4),(0,1),(1,2),(1,3),(1,4)).

((0,1),(0,2),(0,3)) ;

((0,1),(0,2)) ;

((0,1)) .


0 0 0 0 0
1 1 1 2 2
2 2 2 1 1
3 3 3 3 3
4 4 4 4 4


((1,3),(2,3)) ;

((1,3),(2,3),(1,4),(2,4)) ;

((0,4)) ;

((3,2),(3,1)) ;

((1,3),(2,3),(4,1),(4,2)) .

((0,1),(1,2),(3,4)) ;

((0,1),(1,2)) ;

((0,1),(3,4)) ;

((0,1)) .
0 0 0 0 0
1 1 1 2 2
2 2 2 1 1
3 4 4 3 3
4 3 3 4 4


((0,1),(0,2),(0,3),(0,4)) ;

((0,1),(0,2)) ;
((0,1),(0,2),(2,3),(2,4),(1,3),(1,4)) ;

((1,3),(1,4),(2,3),(2,4)).

((0,1),(1,2),(3,4)) ;
((0,1),(1,2)) ;
((0,1),(3,4)) ;

((0,1)).
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Table 5: Continuous posets on quandles of order 5, Part II

Quandles for n = 5 Right continuous poset Left continuous poset
0 0 0 1 1
1 1 1 0 0
2 2 2 2 2
3 3 4 3 3
4 4 3 4 4


((0,2), (1,2) (2,3),(2,4)) ;

((0,2), (1,2)) ;

((2,3 ),(2,4)) ;

((0,3),(0,4),(1,3),(1,4)) .

((0,1 ),(1,2 ),(3, 4)) ;

((3,4)) ;

((0,1),(1,2)) .


0 0 0 1 1
1 1 1 2 2
2 2 2 0 0
3 3 3 3 3
4 4 4 4 4


((0, 3),(1,3), (2,3), (3,4)) ;

((0,3),(1,3),(2, 3)) ;

((3,4)) .

((0,1),(1,2),(3,4)) ;

((3,4)) ;

((0,1),(1,2)) .


0 0 0 1 2
1 1 1 2 0
2 2 2 0 1
3 3 3 3 3
4 4 4 4 4


((0,3),(1,3),(2,3),(0,4),(1,4),(2,4)) ;

((0,3),(1,3),(2,3)) ;

((3,4)).

((0,1),(1,2)) ;

((0,1)) .


0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
4 4 4 3 3
3 3 3 4 4


((0,1),(0,2)) ;

((0,1),(1,3),(1,4)) ;

((0,1),(1,2),(2,3),(2,4)) .

((0,1),(0,2)) ;

((0,1),(1,2),(3,4)) ;

((0,1),(3,4)) ;

((3,4)) .
0 0 0 0 0
1 1 1 2 2
2 2 2 1 1
4 4 4 3 3
3 3 3 4 4


((0,1),(0,2)) ;

((0,1),(1,3),(1,4)) ;

((1,3),(1,4),(2,3),(2,4)) .

((0,1),(0,2)) ;

((0,1),(1,2),(3,4)) ;

((0,1),(3,4)) ;

((3,4)) .
0 0 0 1 1
1 1 1 2 2
2 2 2 0 0
4 4 4 3 3
3 3 3 4 4

 ((0,4),(1,4),(2,4),(0,3),(1,3),(2,3)) .

((0,1),(0,2)) ;

((0,1),(1,2),(3,4)) ;

((0,1),(3,4)) ;

((3,4)) .
0 0 0 0 0
1 1 4 2 3
2 3 2 4 1
3 4 1 3 2
4 2 3 1 4

 ((0,1),(0,2),(0,3),(0,4)) . None .
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Table 6: Continuous posets on quandles of order 5, Part III

Quandles for n = 5 Right continuous poset Left continuous poset
0 0 1 1 1
1 1 0 0 0
2 2 2 2 3
3 3 3 3 2
4 4 4 4 4


((1,2),(0,2),(1,3),(0,3),(2,4),(3,4)) ;

((1,4),(0,4)) ;

((1,2),(0,2),(1,3),(0,3)) .

((0,1),(2,3)) ;

((0,1)) .


0 0 1 1 1
1 1 0 0 0
2 2 2 4 3
3 3 4 3 2
4 4 3 2 4

 ((0,2),(0,3),(0,4),(1,2),(1,3),(1,4)) .
((0,1),(2,3)) ;

((0,1)) .


0 0 1 1 1
1 1 0 0 0
2 2 2 2 2
4 4 4 3 3
3 3 3 4 4


((0,2),(0,3),(0,4),(1,2),(1,3),(1,4)) ;

((0,2),(1,2)) ;

((2,3),(2,4)) ;

((0,3),(0,4),(1,3),(1,4)) .

((0,1),(2,3)) ;

((0,1)) .


0 0 1 1 1
1 1 0 0 0
3 4 2 4 3
4 2 4 3 2
2 3 3 2 4

 ((0,2),(0,3),(0,4),(1,2),(1,3),(1,4)) . None .
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[5] M. Elhamdadi, El-Käıoum M. Moutuou, Foundations of topological
racks and quandles, J. Knot Theory Ramifications 25 (3) (2016), 1640002,
17 pp. MR3475069

[6] M. Elhamdadi, S. Nelson, “ Quandles–an introduction to the algebra of
knots ”, Student Mathematical Library, 74, American Mathematical Society,
Providence, RI, 2015. MR3379534

[7] T. Grøsfjeld, Thesaurus racks: categorizing rack objects, J. Knot Theory
Ramifications 30 (4) (2021), 2150019, 18 pp. MR4272643

[8] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl.
Algebra 23 (1) (1982), 37 – 65. MR638121 (83m:57007)

[9] Maple 15, Magma package-copyright by Maplesoft, a division of Waterloo
Maple, Inc., 1981 – 2011.

[10] S.V. Matveev, Distributive groupoids in knot theory (russian), Mat. Sb.
(N.S.) 119 (161) (1) (1982), 78 – 88, 160. MR672410 (84e:57008)

[11] R.L. Rubinsztein, Topological quandles and invariants of links, J. Knot
Theory Ramifications 16 (6) (2007), 789 – 808. MR2341318 (2008e:57012)

[12] R.E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966),
325 – 340. MR195042

[13] M. Szymik, Permutations, power operations, and the center of the category
of racks, Comm. Algebra 46 (1) (2018), 230 – 240. MR3764859

[14] N. Takahashi, Modules over geometric quandles and representations of Lie-
Yamaguti algebras, J. Lie Theory 31 (4) (2021), 897 – 932. MR4327618


	Introduction
	Review of Quandles and Topological Quandles
	Review of topologies on finite sets, posets and graphs
	Topologies on non-connected quandles
	Some computer calculations

