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1. Introduction, notation and preliminaries

In 1948, L.V. Kantorovich [24] proved the following inequality

〈Ax, x〉
〈
A−1x, x

〉
≤ (λ1 + λn)2

4λ1λn
(1.1)

where x = (x1, . . . , xn) is a unit vector in Cn and A is an n×n positive-definite
matrix with eigenvalues λ1 ≥ · · · ≥ λn > 0.

The Kantorovich inequality is still valid for an operator A acting on an
infinite dimensional Hilbert space H with MI ≥ A ≥ mI > 0 as follows:

〈Ax, x〉
〈
A−1x, x

〉
≤ (M +m)2

4mM
(x ∈ H, ‖x‖ = 1).

Replacing x by A1/2x

‖A1/2x‖ in the above inequality, we get the following equivalent

form of Kantorovich inequality:〈
A2x, x

〉
≤ (M +m)2

4mM
〈Ax, x〉2 (x ∈ H, ‖x‖ = 1). (1.2)
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The Kantorovich inequality is a useful tool in numerical analysis and statis-
tics for establishing the rate of convergence of the method of steepest de-
scent. During the past decades several formulations, extensions or refinements
of the Kantorovich inequality in various settings have been introduced by
many mathematicians; see, for instance, Moslehian [34] and references therein.
The first generalization of the Kantorovich inequality is due to Greub and
Rheinboldt [20]. They proved that if A is a bounded linear operator on H
(i.e., A ∈ B(H)) such that MI ≥ A ≥ mI > 0, then

〈x, x〉2 ≤ 〈Ax, x〉
〈
A−1x, x

〉
≤ 〈x, x〉2 (M +m)2

4mM
(1.3)

for any x ∈ H. They also showed that inequality (1.3) is equivalent to

〈Ax,Ax〉 〈Bx,Bx〉 ≤ 〈Ax,Bx〉2 (MM ′ +mm′)2

4mm′MM ′
,

when B is a selfadjoint operator permutable with A, x ∈ H and M ′I ≥ B ≥
m′I > 0. In what follows, Strang [38] generalized inequality (1.3) by proving
that if A ∈ B(H) is invertible, ‖A‖ = M and

∥∥A−1
∥∥ = 1

m , then

∣∣(〈Ax, x〉 〈y,A−1y
〉)∣∣ ≤ (M +m)2

4mM
〈x, x〉 〈y, y〉 (1.4)

for all x, y ∈ H and that the bound is the best possible. For further general-
ization of the Kantorovich inequality and recent developments of the operator
Kantorovich inequality, we refer the readers to the excellent book of Furuta
[14] and Moslehian’s paper [34]. Note that Dragomir [10] gave several Kan-
torovich type inequalities involving norms and numerical radii for operators
on a Hilbert space. Also, Garayev [19] and Başaran et al. [6] applied the
Kantorovich inequality to get Berezin number inequalities for the operators
acting on the reproducing kernel Hilbert space.

In the present article, we use some Kantorovich type inequalities to prove
some new inequalities for the Berezin number of operators. Also, we apply
a refinement of classical Schwarz inequality due to Dragomir [11] to prove
Berezin number inequalities between some powers of f(A), where f : J →
[0,+∞) is a positive continuous function, where J ⊂ [0,+∞) and A is a self-
adjoint operator on the Hardy space H2(D) with spectrum in J . Before giving
our results, we need to some definitions and notations.

Throughout this paper, B(H) stand for the Banach algebra of all bounded
linear operators acting on a Hilbert space (H, 〈., .〉). An operator A ∈ B(H) is
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said to be positive if 〈Ax, x〉 ≥ 0 for all x ∈ H. Moreover, if A is invertible, we
call it strictly positive and write A > 0. A reproducing kernel Hilbert space is
a Hilbert spaceH = H(Ω) of complex-valued functions on a (nonempty) set Ω,
which has the property that point evaluation f → f(λ) is continuous on H for
all λ ∈ Ω. Then the Riesz representation theorem guarantees that for every
λ ∈ Ω there is a unique element kλ = k(., λ) ∈ H such that f(λ) = 〈f, kλ〉
for all f ∈ H. The function kλ is called the reproducing kernel of H and the
function k̂λ := kλ

‖kλ‖H
is the normalized reproducing kernel in H (see Aronzajn

[3]). For any operator A ∈ B(H), its Berezin symbol Ã is defined by (see
Berezin [7, 8])

Ã(λ) :=
〈
Ak̂λ, k̂λ

〉
, λ ∈ Ω .

The Berezin number of A is defined as

ber(A) := sup {|µ| : µ ∈ Ber(A)} ,

where
Ber(A) = Range

(
Ã
)

=
{
Ã(λ) : λ ∈ Ω

}
is the so-called Berezin set of operator A (see Karaev [25]). The numerical
range and numerical radius of the operator A is defined, respectively, by

W (A) := {〈Ax, x〉 : x ∈ H and ‖x‖ = 1}

and
w(A) := sup {|〈Ax, x〉| : x ∈ H and ‖x‖ = 1} .

Clearly,
∣∣∣Ã(λ)

∣∣∣ ≤ ‖A‖, and more precisely, ber(A) ≤ w(A) ≤ ‖A‖. Note that

the celebrated Berger-Halmos-Pearcy inequality for the powers of the operator
A ∈ B(H) is the following (see Halmos [22] and Pearcy [37], and references
therein):

w(An) ≤ w(A)n, n = 1, 2, . . . .

Since ber(A) ≤ w(A), it is natural to ask about the same inequalities for the
Berezin number ber(A), i.e., is it true that

ber(An) ≤ ber(A)n for any integer n ≥ 1?

However, Coburn proved in his paper [9] that for some concrete operator X
on the Bergman space L2

a(D) of analytic functions on D, ber(X2) > ber(X)2,
which shows that Berger-Halmos-Pearcy theorem fails for ber(A). But, still it
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is interesting to investigate inverse estimates ber(A)n ≤ C ber(A)n, n ≥ 1, and
also other type Berezin number inequalities between the powers of operators.

In this article, motivated mainly by the paper [34], we will prove some
new inequalities for the Berezin number of powers of operators by using Kan-
torovich and Kantorovich type inequalities and also a refinement of Schwarz
inequality due to Dragomir [10]. For the related results, the reader can see in
[4, 5, 13, 15, 16, 17, 18, 21, 25, 26, 30, 32, 33, 36, 40, 41, 42, 44]

2. Some corollaries of Kantorovich inequalities

In this section, we give some immediate corollaries of several Kantorovich
type inequalities which entail new inequalities for Berezin numbers of some
operator classes. First, we start with Strang inequality (1.4).

Proposition 1. If A ∈ B(H(Ω)) is invertible, ‖A‖ = M and
∥∥A−1

∥∥ =
m−1, then

ber(A) ber(A−1) ≤ (M +m)2

4mM
. (2.1)

Proof. In fact, by putting in inequality (1.4) x = k̂λ, y = k̂µ (λ, µ ∈ Ω),
we have ∣∣∣〈Ak̂λ, k̂λ〉∣∣∣ ∣∣∣〈k̂µ, A−1k̂µ

〉∣∣∣ ≤ (M +m)2

4mM
,

or equivalently,

∣∣∣Ã (λ)
∣∣∣ ∣∣∣Ã−1∗ (µ)

∣∣∣ =
∣∣∣Ã (λ)

∣∣∣ ∣∣∣Ã−1 (µ)
∣∣∣ ≤ (M +m)2

4mM

for all λ, µ ∈ Ω. This implies immediately the required inequality (2.1).

The following is immediate from the inequality (1.2).

Proposition 2. If A ∈ B(H(Ω)) is an operator such that MI ≥ A ≥
mI > 0, then

ber
(
A2
)
≤ (M +m)2

4mM
ber(A)2.

The next result follows from Furuta’s inequality [13] which is an extension
of the Kantorovich inequality.
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Proposition 3. If A,B ∈ B(H) are positive operators, A ≥ B > 0 and
MI ≥ B ≥ mI > 0, then(

M

m

)p−1

ber (Ap) (2.2)

≥ (p− 1)p−1

pp

(
(Mp −mp)p

(M −m) (mMp −Mmp)p−1

)
ber (Ap)

≥ ber (Bp)

holds for each p ≥ 1; the constant

k+(m,M, p) =
(p− 1)p−1

pp

(
(Mp −mp)p

(M −m) (mMp −Mmp)p−1

)
is called the Ky Fan-Furuta constant in the literature (see, for instance, [13]
and its references).

Proof. In fact, by the well-known Furuta’s inequality(
M

m

)p−1

Ap ≥ k+(m,M, p)Ap ≥ Bp for each p ≥ 1 ,

or equivalently,(
M

m

)p−1

〈Apx, x〉 ≥ k+(m,M, p) 〈Apx, x〉 ≥ 〈Bpx, x〉

for all x ∈ H. In particular, for x = k̂λ and for all λ ∈ Ω, we obtain that(
M

m

)p−1

Ãp(λ) ≥ k+(m,M, p)Ãp(λ) ≥ B̃p(λ) .

Then, by taking supremum in these inequalities, we obtain the desired in-
equality (2.2).

The following is a corollary of Furuta’s result in ([14, Theorem 1.1]).

Proposition 4. Let A ∈ B(H) be a self-adjoint operator on a reproducing
kernel Hilbert space H = H(Ω) satisfying MI ≥ A ≥ mI > 0. Then

ber(Ap) ≤ (mMp −Mmp)

(q − 1) (M −m)

(
(q − 1) (Mp −mp)

q (mMp −Mmp)

)q
ber(A)q

under anyone of the following conditions (i) and (ii) respectively:
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(i) mp−1q ≤ Mp−mp
M−m ≤Mp−1q holds for real numbers p > 1 and q < 0;

(ii) mp−1q ≤ Mp−mp
M−m ≤Mp−1q holds for real numbers p < 0 and q < 0.

First, we cite the following lemma [14] to give a proof of this proposition.

Lemma 1. Let h(t) be defined by

h(t) =
1

tq

(
k +

K − k
M −m

(t−m)

)
(2.3)

on [m,M ] (M > m > 0), where q is any real number such that q 6= 0, 1 and
K and k are any real numbers. Then h(t) has the following upper bound on
[m,M ]:

(mK −Mk)

(q − 1)(M −m)

(
(q − 1)(K − k)

q(mK −Mk)

)q
(2.4)

where m,M, k,K and q in (2.4) satisfy anyone of the following conditions (i)
and (ii) respectively:

(i) K > k, K
M > k

m and k
mq ≤

K−k
M−m ≤

K
M q holds for a real number q > 1;

(ii) K < k, K
M < k

m and k
mq ≤

K−k
M−m ≤

K
M q holds for a real number q < 0.

Proof. It is elementary that h′(t0) = 0 when

t0 =
q

q − 1

mK −Mk

K − k

and it turns out that to satisfies the required condition t0 ∈ [m,M ] and also
to gives the upper bound (2.4) of h(t) on the segment [m,M ] under any one
of the conditions (i) and (ii) respectively.

Proof of Proposition 4. Since f(t) is a real-valued continuous convex
function on [m,M ], we have

f(t) ≤ f(m) +
f(M)− f(m)

M −m
(t−m) for any t ∈ [m,M ] . (2.5)

Then by passing to the operational calculus of positive operator A in (2.5)

since M ≥
〈
Ak̂λ, k̂λ

〉
≥ m, we obtain for every λ ∈ Ω that

〈
f(A)k̂λ, k̂λ

〉
≤ f(m) +

f(M)− f(m)

M −m

(〈
Ak̂λ, k̂λ

〉
−m

)
,
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or equivalently

f̃(A)(λ) ≤ f(m) +
f(M)− f(m)

M −m

(
Ã(λ)−m

)
. (2.6)

Multiplying
(
Ã(λ)

)−q
on both sides of (2.6), we get

(
Ã(λ)

)−q
f̃(A)(λ) ≤ h(t) , (2.7)

where

h(t) =
(
Ã(λ)

)−q (
f(m) +

f(M)− f(m)

M −m

)(
Ã(λ)−m

)
.

Then we obtain that

f̃(A)(λ) ≤
(

max
m≤t≤M

h(t)

)(
Ã(λ)

)q
. (2.8)

Substituting K = f(M) and k = f(m) in [34, Theorem 1.1], then (i) and (ii)
in Theorem 1.1 just correspond to (i) and (ii) in Lemma 1. We have from
(2.8) that

ber(f(A)) ≤
(

max
m≤t≤M

h(t)

)
(ber(A))q. (2.9)

Now put f(t) = tp for p /∈ [0, 1] in (2.9). Since f(t) is a real-valued continuous
convex function on [m,M ], Mp > mp and Mp−1 > mp−1 hold for any p > 1,

that is, f(M) > f(m) and f(M)
M > f(m)

m for any p > 1 and also Mp < mp and

Mp−1 < mp−1 hold for any p < 0, that is f(M) < f(m) and f(M)
M < f(m)

m for
any p < 0 respectively. Whence the proof is complete by (2.9).

Our next result, associated with Hölder-McCarthy and Kantorovich in-
equalities, is the following.

Proposition 5. Let A be positive operator on a Hilbert space H = H(Ω)
satisfying MI ≥ A ≥ mI > 0. Then the following inequality holds for every
λ ∈ Ω:

(i) In case p > 1: ber(A)p ≤ ber(Ap) ≤ K+(m,M) ber(A)p, where

K+(m,M) =
(p− 1)p−1

pp
(Mp −mp)p

(M −m) (mMp −Mmp)p−1 .
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(ii) In case p < 0: ber(A)p ≤ ber(Ap) ≤ K−(m,M) ber(A)p, where

K−(m,M) =
(mMp −Mmp)

(p− 1)(M −m)

(
(p− 1)(Mp −mp)

p(mMp −Mmp)

)
.

Proof. As f(t) = tp is a convex function for p /∈ [0, 1], (i) and (ii) Propo-
sition 4 hold in case p /∈ [0, 1] and q 6= p, so that the inequalities of the
right-hand sides of (i) and (ii) hold by Proposition 4 and ones of the left-hand
sides of (i) and (ii) follow by Hölder-McCarthy inequality [14].

Corollary 1. Let A ∈ B(H) be a positive operator on a reproducing
kernel Hilbert space H = H(Ω) such that MI ≥ A ≥ mI > 0. Then:

(i) supλ∈Ω

[(
Ã(λ)

)p
Ã−1(λ)

]
≤ pp

(p+ 1)p+1

(m+M)p+1

mM
;

(ii) ber(A2) ≤ pp

(p+ 1)p+1

(m+M)p+1

(mM)p
(ber(A))p+1 for any p ∈

[
m
M ,

M
m

]
.

Proof. (i) In (ii) of Proposition 4, we have only to put p = −1 and
replacing q by −p for p > 0.

(ii) In (i) in Proposition 4, we have only to put p = 2 and replacing q by
p+ 1 for p > 0. This proves the corollary.

3. A Berezin number inequality via the
variance-covariance inequality

Following [34], we give some necessary concepts and notations. The notion
of semi-inner product C∗-module is a generalization of that of semi-inner
product space in which the semi-inner product takes its values in a C∗-algebra
instead of the field of complex numbers. We can define a semi-norm on a semi-

inner product (X , 〈., .〉) over a C∗-algebra A by ‖x‖ = ‖〈x, x〉‖
1
2 , where the

latter norm denotes that of A. A pre-Hilbert A-module (or an inner-product
module) is a semi-inner product module in which ‖.‖ defined as above is a
norm. If this norm is complete then X is called a Hilbert C∗-module. Each C∗-
algebra A can be regarded as a Hilbert A-module via 〈a, b〉 = a∗b (a, b ∈ A).
When X is a Hilbert C∗-module, we denote by B(X ) the C∗-algebra of all
adjointable operators on X . For every x ∈ X the absolute value of x is
defined by |x| = 〈x, x〉1/2 ∈ A. Some standard references for C∗-modules are
[2, 29, 31].
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In this section, we present some Kantorovich inequalities for Berezin sym-
bols of operators involving unital positive linear mappings and the operator
geometric mean in the framework of semi-inner product C∗-modules and get
some new Berezin number inequalities. Let x, y, z, x1, . . . , xn be arbitrary
elements of a semi-inner product A-module (X , 〈., .〉). In [34], the authors
studied the covariance

covz(x, y) := ‖z‖2 〈x, y〉 − 〈x, z〉 〈z, y〉

and the variance

varz(x) := covz(x, x) ,

and proved that [covz(xi, xj)] ∈Mn(A) is positive, or equivalently

‖z‖2 [〈xi, xj〉] ≥ [〈xi,z〉 〈z, xj〉] ; (3.1)

this is called Generalized Covariance-Variance Inequality. In particular, by
the Cauchy-Schwarz inequality for the semi-inner product covz(., .), the
Covariance-Variance inequality holds

covz(x, y)covz(x, y)∗ ≤ ‖varz(y)‖ varz(x) .

Let A be a C∗-algebra and B be a C∗-subalgebra of A. A linear mapping
Φ : A → B is called a (right) multiplier if Φ(ab) = Φ(a)b (a ∈ A, b ∈ B).
If Φ is a positive multiplier, any semi-inner product A-module X becomes a
semi-inner product B-module with respect to

[x, y]Φ := Φ(〈x, y〉) (x, y ∈ X ) .

By (3.1), it holds

‖Φ(〈z, z〉)‖ [Φ(〈xi, xj〉)] ≥ [Φ(〈xi, z〉)Φ(〈z, xj〉)]

for all z, x1, . . . , xn ∈ X . In the sequel, we will assume that the A-module X
is a reproducing kernel Hilbert space over some suitable set Ω with the nor-
malized reproducing kernel k̂λ(z) = kλ(z)

‖kλ‖χ
, λ, z ∈ Ω. So, if we fix a normalized

reproducing kernel k̂λ ∈ X and take operators A and B in B(X ), then we can
define the λ-covariance of A,B and λ-variance of A by

λ-cov(A,B) = Φ
(〈
Ak̂λ, Bk̂λ

〉)
− Φ

(〈
Ak̂λ, k̂λ

〉)
Φ
(〈
k̂λ, Bk̂λ

〉)
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and
λ-var(A) = λ− cov(A,A) ,

respectively, similar to Enomoto [12]. Our idea is mainly related to the work
of Umegaki [43] and Moslehian [34] where, in particular, the proofs of several
known inequalities for Hilbert space operators are unified.

Lemma 2. Let A be a unital C∗-algebra and B be a unital C∗-subalgebra
of A such that both algebras have the same unit e. Let X = X (Ω) be a
A-module consisting from the reproducing kernel Hilbert space of complex-
valued functions on Ω with the normalized reproducing kernel k̂λ. LetA1, A2 ∈
B(X ) be two operators satisfying miI ≤ Ai ≤ IMi for some scalars mi,Mi

(i = 1, 2). Then

sup
λ∈Ω
‖λ-cov(A1, A2)‖ ≤ 1

4
(M1 −m1)(M2 −m2) .

Proof. It can be easily seen that

(M − C)(C −m) ≤
(
M −m

2

)2

for any self-adjoint operator C of a unital C∗-algebra with spectrum in [m,M ],

due to
(
C − M+m

2

)2 ≥ 0. Hence

λ-var(A1) = λ-cov(A1, A1)

= Φ
(〈
A2

1k̂λ, k̂λ

〉)
− Φ

(〈
A1k̂λ, k̂λ

〉)2

=
((
M1e− Φ

(〈
A1k̂λ, k̂λ

〉))
Φ
(〈
A1k̂λ, k̂λ

〉)
−m1e

)
− Φ

(〈
(M1 −A1)(A1 −m1)k̂λ, k̂λ

〉)
≤
(
M1 − Φ

(〈
A1k̂λ, k̂λ

〉))(
Φ
(〈
A1k̂λ, k̂λ

〉)
−m1

)
≤ 1

4
(M1 −m1)2

(by (M1 − A1)(A1 −m1) ≥ 0, the selfadjointness of Φ
(〈
A1k̂λ, k̂λ

〉)
and the

positivity of the Berezin symbol Ã1 of a positive operator A1). So, we have
that

λ-var(A1) ≤ 1

4
(M1 −m1)2,
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and similarly

λ-var(A2) ≤ 1

4
(M2 −m2)2

for all λ ∈ Ω. From these inequalities, by using the covariance-variance in-
equality, we have for all λ ∈ Ω that

‖λ-cov(A1, A2)‖2 ≤ ‖λ-var(A1)‖ ‖λ-var(A2)‖

≤ 1

16
(M1 −m1)2(M2 −m2)2,

which gives the required inequality.

Our next result is the “λ-parametrization” variant of Moslehian’s result
([34, Theorem 2.2]) about generalization of Kantorovich inequality (see
also [41]).

Theorem 1. Let A be a unital C∗-algebra and B be a unital C∗-suba-
lgebra of A such that both have the same unit e. Let X = X (Ω) be a A-
module consisting of the reproducing kernel Hilbert space of complex-valued
functions on Ω with reproducing kernel kλ. Let A ∈ B(X ) be an operator
satisfying mI ≤ A ≤MI for some scalars 0 < m < M . Then

sup
λ∈Ω

∣∣∣Φ(Ã(λ)
)

Φ
(
Ã−1(λ)

)∣∣∣ ≤ (M +m)2

4Mm
. (3.2)

Proof. Put A1 = A, A2 = A−1, m1 = m, M1 = M , m2 = M−1, M2 = m−1

in Lemma 2 to get∣∣∣Φ(e)− Φ
(〈
Ak̂λ, k̂λ

〉)
Φ
(〈
A−1k̂λ, k̂λ

〉)∣∣∣ ≤ (M −m)2

4mM
,

that is ∣∣∣Φ(e)− Φ
(
Ã(λ)

)
Φ
(
Ã−1(λ)

)∣∣∣ ≤ (M −m)2

4mM
,

whence ∣∣∣Φ(Ã(λ)
)

Φ
(
Ã−1(λ)

)∣∣∣ ≤ 1 +
(M −m)2

4mM
=

(M +m)2

4Mm

for all λ ∈ Ω, which yields (3.2).
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Corollary 2. Let Φ : B(X ) → B(X ) be a unital positive linear map. If
A ∈ B(X ) is an operator satisfying 0 < mI ≤ A ≤MI for some scalars m,M
then

sup
λ∈Ω

[
Ã(λ)Ã−1(λ)

]
≤ (M +m)2

4Mm
. (3.3)

Proof. The proof is immediate from Theorem 1. Indeed, take A = B = C.
The only positive linear mapping Φ : C→ C is the identity mapping. For any
λ ∈ Ω and k̂λ = kλ

‖kλ‖ , we obtain (3.3) from (3.2).

4. A Kantorovich inequality via the operator geometric
mean and a Berezin number inequality

In this section, we use λ-parametrization for proving a generalization of
the Kantorovich inequality in the context of Hilbert C∗-modules which can
be viewed as extension of Theorem 1 and an inequality due to Nakamoto and
Nakamura [35].

Recall that for positive invertible elements a, b ∈ A, we can use the follow-
ing characterization of operator mean due to Ando [1] as follows

a]b = max

{
x ∈ A : x = x∗,

[
a x
x b

]
≥ 0

}
,

where a]b = a
1
2

(
a−

1
2 ba−

1
2

) 1
2
a

1
2 . This is easily obtained from a = (a]b)b−1(a]b)

and the fact that a ≥ xb−1x∗ if and only if

[
a x
x∗ b

]
≥ 0, where x ∈ A.

Theorem 2. Let A, B be unital C∗-algebras, X = X (Ω) be a reproducing
kernel Hilbert space with reproducing kernel kλ which is an A-module and
A ∈ B(X ) such that MI ≥ A ≥ mI > 0 for some scalars m,M . Then, for
every f ∈ X for which 〈f, f〉 is invertible and every positive linear mapping
Φ : A → B it holds:

sup
λ∈Ω

Φ
(〈
k̂λ, k̂λ

〉)
≤ sup

λ∈Ω
Φ
(
Ã(λ)

)
]Φ
(
Ã−1(λ)

)
≤ M +m

2
√
mM

sup
λ∈Ω

Φ
(〈
k̂λ, k̂λ

〉)
.

(4.1)

Proof. The proof is based in the similar proof of [34, Theorem 3.1]. Indeed,

first note that for any λ ∈ Ω,
〈
k̂λ, k̂λ

〉
is invertible. Therefore, for a :=
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mM
〈
A−1k̂λ, k̂λ

〉
and b :=

〈
Ak̂λ, k̂λ

〉
, a ≥ m

〈
k̂λ, k̂λ

〉
and b ≥ m

〈
k̂λ, k̂λ

〉
, so

a and b are positive and invertible. Since Φ is positive and unital, Φ(a) and
Φ(b) are also positive and invertible. Observe now that M −A and 1

m −A
−1

are positive commuting elements of the C∗-algebra B(X ), which implies that
(M −A)( 1

m −A
−1) ≥ 0. Hence

mMA−1 +A ≤ (m+M) .

Then, for every λ ∈ Ω,

mM
〈
A−1k̂λ, k̂λ

〉
+
〈
Ak̂λ, k̂λ

〉
≤ (m+M)

〈
k̂λ, k̂λ

〉
from which we have

mMΦ
(〈
A−1k̂λ, k̂λ

〉)
+ Φ

(〈
Ak̂λ, k̂λ

〉)
≤ (m+M)Φ

(〈
k̂λ, k̂λ

〉)
.

5. Refinement of Schwartz inequality and
Berezin number inequality

In his paper [11], Dragomir obtained some new improvements of classical
Schwarz inequality in complex Hilbert space H as follows.

Lemma 3. Let x, y, e ∈ H with ‖e‖ = 1. Then we have the following
refinement of Schwarz inequality

‖x‖2 ‖y‖2 − |〈x, y〉|2 ≥

det

 |〈x, e〉|
(
‖x‖2 − |〈x, e〉|2

) 1
2

|〈y, e〉|
(
‖y‖2 − |〈y, e〉|2

) 1
2




2

. (5.1)

Recall that for A ∈ B(H), its Crawford number c(A) is defined by

c(A) := inf {|〈Ax, x〉| : x ∈ H and ‖x‖ = 1} .

In [39], the authors introduced the numbers b̃(A) and c̃(A) defined by

c̃(A) := inf
λ∈Ω

∣∣∣Ã(λ)
∣∣∣ and b̃(A) := inf

λ∈Ω

∣∣∣Ã(λ)
∣∣∣∥∥∥Ak̂λ∥∥∥ .
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It is easy to see that b̃(A) ≤ 1 and c(A) ≤ c̃(A) ≤ ber(A). These, and

other related numerical characteristics, are useful in studying bounded linear

operators (see [39] and its references). Note that the Hardy space H2 =

H2(D) over the disc D = {z ∈ C : |z| < 1} is the RKHS with the normalized

reproducing kernel k̂λ(z) :=
(1−|λ|2)

1/2

1−λz , λ, z ∈ D. For definitions and more facts

about this space, we recommend the book of Hoffman [23]. In this section, by

applying Lemma 3, we prove Berezin number inequality. Namely, we prove

the following theorem.

Theorem 3. If f, g : J → (0,+∞) are continuous functions on some seg-

ment J ⊂ [0,+∞), then

(i) f̃2(A)(λ) + g̃2(B)(µ) + 2f̃4(A)(λ)g̃4(B)(µ)+

+ 2f̃3(A)(λ)g̃3(B)(µ)
(
I − f2(A)

) 1
2̃ (λ)

(
I − g2(B)

) 1
2̃ (µ)

≥ g̃2(B)(µ)f̃4(A)(λ) + g̃4(B)(µ)f̃2(A)(λ)

for any self-adjoint operators A,B ∈ B(H2) with spectra in J such that

I − f2(A) and I − g2(B) are positive and for all λ, µ ∈ D;

(ii) ber(f2(A)) + ber(f4(A))2 + ber(f3(A))2
(

ber
((
I − f2(A)

) 1
2

))2

≥ sup
λ∈D

[
f̃2(A)(λ)f̃4(A)(λ)

]
.

(iii) If
∥∥I − f2(A)

∥∥ < 1, then

ber(f4(A))2 + ber(f3(A))2 ≥ ber(f2(A))
(
c̃(f4(A)− 1

)
.

Proof. (i) We set

D :=

{
(λ, µ) ∈ D× D : Re(λµ) =

1

2

}
.

Putting now H = H2(D) (the Hardy space), x = k̂λ, y = k̂µ and e = I in the

formula (5.1) with (λ, µ) ∈ D, we have
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1−
∣∣∣〈k̂λ, k̂µ〉∣∣∣2 ≥

det


〈
k̂λ, I

〉 (
1−

∣∣∣〈k̂λ, I〉∣∣∣2) 1
2

〈
k̂µ, I

〉 (
1−

∣∣∣〈k̂µ, I〉∣∣∣2) 1
2




2

=

det


(

1− |λ|2
) (

1−
(

1− |λ|2
)) 1

2(
1− |µ|2

) (
1−

(
1− |µ|2

)) 1
2




2

=

det


(

1− |λ|2
) 1

2 |λ|(
1− |µ|2

) 1
2 |µ|




2

=

(
|µ|
(

1− |λ|2
) 1

2 − |λ|
(

1− |µ|2
) 1

2

)2

= |λ|2 + |µ|2 − 2 |λ|2 |µ|2 − 2 |λ| |µ|
(

1− |λ|2
) 1

2
(

1− |µ|2
) 1

2
,

hence

1−

∣∣∣∣∣∣∣
〈(

1− |λ|2
) 1

2

1− λz
,

(
1− |µ|2

) 1
2

1− µz

〉∣∣∣∣∣∣∣
2

≥ |λ|2 + |µ|2 − 2 |λ|2 |µ|2 − 2 |λ| |µ|
(

1− |λ|2
) 1

2
(

1− |µ|2
) 1

2

that is

1−

(
1− |λ|2

)(
1− |µ|2

)
∣∣1− λµ∣∣2

≥ |λ|2 + |µ|2 − 2 |λ|2 |µ|2 − 2 |λ| |µ|
(

1− |λ|2
) 1

2
(

1− |µ|2
) 1

2
,

and thus

1− 2 Re(λµ) + |λ|2 + |µ|2

1− 2 Re(λµ) + |λ|2 |µ|2

≥ |λ|2 + |µ|2 − 2 |λ|2 |µ|2 − 2 |λ| |µ|
(

1− |λ|2
) 1

2
(

1− |µ|2
) 1

2
.
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Since (λ, µ) ∈ D, we have that 1− 2 Re(λµ) = 0, and hence

|λ|2 + |µ|2

|λ|2 |µ|2
≥ |λ|2 + |µ|2 − 2 |λ|2 |µ|2 − 2 |λ| |µ|

(
1− |λ|2

) 1
2
(

1− |µ|2
) 1

2

whence

|λ|2 + |µ|2 + 2 |λ|4 |µ|4 + 2 |λ|3 |µ|3
(

1− |λ|2
)(

1− |µ|2
) 1

2

≥ |λ|4 |µ|2 + |λ|2 |µ|4

for any pair (λ, µ) ∈ D. We let |λ| = a > 0, |µ| = b > 0. Since (λ, µ) ∈ D
is arbitrary, the numbers a and b are also arbitrary. Therefore there exist
x, y ∈ J such that f(x) = a and g(y) = b. Then, we have from the last
inequality that

f2(x) + g2(y) + 2f4(x)g4(y) + 2f3(x)g3(y)
((

1− f2(x)
) (

1− g2(y)
)) 1

2

≥ f4(x)g2(y) + f2(x)g4(y)

for all x, y ∈ J . From this inequality, by using Kian’s method [27], we have

f2(A) + g2(y) + 2f4(A)g4(y) + 2f3(A)g3(y)
((

1− f2(A)
) (

1− g2(y)
)) 1

2

≥ f4(A)g2(y) + f2(A)g4(y) (5.2)

for all y ∈ J and for any self adjoint operator A ∈ B(H2) with σ(A) ⊂ J such
that I − f2(A) ≥ 0. It follows from (5.2) that〈

f2(A)k̂λ, k̂λ

〉
+ g2(y) + 2g4(y)

〈
f4(A)k̂λ, k̂λ

〉
+ 2g3(y)

〈
f3(A)k̂λ, k̂λ

〉((
1− g2(y)

) 1
2

〈(
I − f2(A)

) 1
2 k̂λ, k̂λ

〉)
≥ g2(y)

〈
f4(A)k̂λ, k̂λ

〉
+ g4(y)

〈
f2(A)k̂λ, k̂λ

〉
,

or equivalently,

f̃2(A)(λ) + g2(y) + 2g4(y)f̃4(A)(λ)

+ 2g3(y)f̃3(A)(λ)
(
1− g2(y)

) 1
2
(
I − f2(A)

) 1
2̃ (λ)

≥ g2(y)f̃4(A)(λ) + g4(y)f̃2(A)(λ), for each λ ∈ D.
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Now, by applying the functional calculus for a self-adjoint operator B ∈ B(H2)
with spectrum in J with respect to the variable y, we get

f̃2(A)(λ) +
〈
g2(B)k̂µ, k̂µ

〉
+ 2f̃4(A)(λ)

〈
g4(B)k̂µ, k̂µ

〉
+ 2f̃3(A)(λ)

〈
g3(B)k̂µ, k̂µ

〉 (
I − f2(A)

) 1
2̃ (λ)

(
I − g2(B)

) 1
2̃ (µ)

≥ g̃2(B)(µ)f̃4(A)(λ) + g̃4(B)(µ)f̃2(A)(λ)

that is

f̃2(A)(λ) + g̃2(B)(µ) + 2f̃4(A)(λ)g̃4(B)(µ)

+ 2f̃3(A)(λ)g̃3(B)(µ)
(
I − f2(A)

) 1
2̃ (λ)

(
I − g2(B)

) 1
2̃ (µ)

≥ g̃2 (B) (µ) f̃4 (A) (λ) + g̃4 (B) (µ) f̃2 (A) (λ) (5.3)

for all λ, µ ∈ D and every pair of self-adjoint operators A,B ∈ B(H2) with
spectra in J such that I − f2(A) and I − g2(B) are positive. This proves (i).

(ii) We particularly obtain from inequality (5.3) for B = A, g = f and
µ = λ that

2f̃2(A)(λ) + 2
[
f̃4(A)(λ)

]2
+ 2

[
f̃3(A)(λ)

]2
[(
I − f2(A)

) 1
2̃ (λ)

]2

≥ 2f̃2(A)(λ)f̃4(A)(λ)

and thereby, we obtain that

ber(f2(A)) +
(
ber(f4(A))

)2
+
(
ber(f3(A))

)2 (
ber(I − f2(A))

1
2

)2

≥ sup
λ∈D

[
f̃2(A)(λ)f̃4(A)(λ)

]
, (5.4)

which proves (ii).

(iii) Is an immediate consequence of inequality (5.4). Indeed, the operator
f2(A) is invertible because

∥∥I − f2(A)
∥∥ < 1. Then∥∥∥f2(A)k̂λ

∥∥∥ ≥ 1∥∥∥(f2(A))−1
∥∥∥
∥∥∥k̂λ∥∥∥ =

∥∥∥(f2(A)
)−1
∥∥∥−1
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and ber
(
I − f2(A)

)1/2 ≤ ∥∥I − f2(A)
∥∥ < 1, hence〈

f2(A)k̂λ, f
2(A)k̂λ

〉1/2
=
〈(
f2(A)

)∗
f2(A)k̂λ, k̂λ

〉1/2

=
〈
f4(A)k̂λ, k̂λ

〉
(since f2(A) is self-adjoint)

= f̃4(A)(λ) ≥
∥∥∥(f2(A)

)−1
∥∥∥−1

,

which means that c̃(f4(A)) ≥
∥∥∥(f2(A)

)−1
∥∥∥−1

> 0. Therefore, we obtain from

(5.4) the desired inequality, which proves (iii).

Note that the Berezin symbol is not multiplicative, i.e., ÃB(λ) 6= Ã(λ)B̃(λ)
in general, see Kiliç [28].
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