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ABSTRACT: Since the discovery of CRISPR, the field of Molecular Genetics has revolutionized and has 

opened so many different doors to improve molecular techniques and interpret the early microbial life forms. 

The diversity found within the CRISPR-Cas systems has led to its application in various fields like 

diagnostics, medicine and also has given rise to an interesting field of genome engineering. The Nobel Prize 

in Chemistry was awarded to Emanuelle Charpentier and Jennifer Doudna for their work on CRISPR-Cas9 

and its application as a genome engineering tool. Scientists have been using the CRISPR-Cas9 system to edit 

genomes and cure various genetic diseases associated with mutations in the human genome. One such 

application is the use of CRISPR-Cas9 in cancer immunotherapy. The entire world has been known to be 

affected by the rapidly dividing cellular disease of cancer. Since cancer cells have different morphology, they 

are attacked by our immune system. Cancer cells possess the ability to camouflage themselves and avoid 

these immune responses and thereby proliferate and metastasize to a much greater extent. Scientists have been 

able to genetically engineer T-cells with the help of CRISPR-Cas9 genome editing tool which has shown 

promising results in the course of immunotherapy. On the 4th of June 2021, in India, the first patient 

underwent CAR-T Cell therapy setting a milestone for future treatments. In this review, we aim to evaluate 

the potential and diversity of the profound CRISPR-Cas systems and the application of CRISPR-Cas9 in 

immunotherapy for refractory cancer. 
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1. HISTORY OF CRISPR-CAS SYSTEM 

In 1987, Y. Ishino and team, from Osaka University, Japan, made the first description of CRISPRs 

while they were attempting to determine the nucleotide sequence of the iap gene which codes for alkaline 

phosphatase isozyme in Escherichia coli. An odd repeat sequence was detected in the 3'-end flanking region 

of the iap gene containing five homologous sequences of 29-nucleotide interspaced by 32-nucleotide 
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sequence. Initially, it was expected to be repetitive extragenic palindromic (REP) sequences commonly found 

in Escherichia coli and Salmonella typhimurium but no similarities were found between both these sequences, 

thus its existence in E. coli remained unexplained. Subsequently, similar repetitive sequences were identified 

in a few members of the Enterobacteriaceae such as S. dysenteriae, S. Enterica, and Mycobacterium 

tuberculosis as well as in other E. coli strains [1, 2]. 

A major advancement in its study came with the discovery of archaeal CRISPR repeats in 1993. 

During the investigation of understanding the regulatory mechanisms permitting halophilic archaea to adapt to 

highly saline conditions, Francisco Mojica identified regularly spaced repeats within a long DNA sequence in 

the genome of the archaeon Haloferax mediterranei. Nevertheless, the biological role of these repeats could 

not be explained. With the discovery of automated sequencing machines and new efficient procedures for 

DNA sequencing during the 20th century, scientists sequenced and analyzed genome sequences of several 

archaea and bacteria which showed the presence of these unusual sequences in most of the prokaryotes. In 

2002, the term CRISPR was given to these sequences by Jansen and team.  

By comparing the CRISPR regions in the genome of many organisms, four conserved genes (termed 

cas (CRISPR-associated genes) 1 through 4 or cas1 to cas4) were discovered regularly present adjacent to the 

CRISPR regions. The discovery of several clusters of genes similar to cas genes in the genomes of 

hyperthermophilic archaea and the absence of the same in mesophilic archaea and moderate thermophilic 

bacteria by Makarova and colleagues lead to the prediction that these proteins could be part of a peculiar 

uncharacterized DNA repair system specific to thermophilic organisms. A crucial breakthrough was achieved 

by two groups independently - Christine Pourcel and team in Orsay, France and Francisco Mojica and her 

colleagues in Alicante, Spain. They observed that the host strains containing similar spacer sequences in the 

CRISPR were immune to the infection by certain bacteriophages and conjugative plasmids. Thus, they 

proposed that the CRISPR sequences function as a biological defense system to protect the host from such 

foreign extrachromosomal elements and also could incorporate pieces of the foreign invading DNA into the 

CRISPRs providing a memory of past aggressions [2, 3]. Using the lactic acid bacterium, Streptococcus 

thermophilus, their studies were experimentally proven in 2007 by Barrangou and team. Thus, the CRISPR-

Cas system was identified to function as an acquired immune system in prokaryotes [2, 4]. In the later years, 

different CRISPR-Cas systems and their corresponding components were discovered and their role as immune 

defense systems was studied extensively in different hosts. Some of the prominent discoveries include 

matured crRNA guide interference for Type I systems, Type III-A system targets DNA, Type III-B Cmr 

complex cleaves ssRNA, CRISPR-Cas systems classified into three types and discovery of tracrRNA [3]. In 

August 2012, a major breakthrough in developing the CRISPR-Cas system as a tool for genome editing was 

made by researcher Jennifer Doudna, from the University of California, Berkeley with Emmanuelle 

Charpentier of the Hannover Medical School in Germany. They discovered that Cas9 (SpCas9) protein from 

the type II-A system of Streptococcus pyogenes could be used as crRNA guided DNA endonuclease to 

produce double stranded break at specific positions in the DNA. The study on another bacterium, 

Streptococcus thermophilus by Virginijus Siksnys and team further supported the former discovery. These 

two studies uncovered essential characteristics of the CRISPR- Cas9 system but could not explain how it 

could be used as a tool for genome editing in eukaryotic cells. Later in January 2013, four independent studies 

by Feng Zhang's group, George Church's group, Jenniffer Doudna's group and Jin‐Soo Kim's group showed 

that genomic sites in human cells could be efficiently cleaved by CRISPR and chimeric gRNA (guideRNA) 

can be substituted to replace the tracrRNA-crRNA complex. In the subsequent months, genome editing with 
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CRISPR-Cas systems were successfully reported in different species [5, 6]. After this phenomenal 

advancement, the CRISPR-Cas9 system became the most widely and extensively used genome editing tool 

with its application varying from repairing genetic defects to developing genetically modified mouse models 

for human disease. In the following years, different CRISPR-Cas system types and further subtypes were 

identified in various prokaryotic organisms. Although the CRISPR-Cas9 system was capable of gene editing 

in eukaryotes, several obstacles, such as off-target mutations in the host genome were present to perform 

successful gene editing. Currently, scientists are working to fill the knowledge gaps in understanding the 

diverse CRISPR-Cas systems and modifying them to apply in various fields [5].  

2. DIFFERENT TYPES OF CRISPR-CAS SYSTEMS 

In most archaea and many bacteria, CRISPR-Cas systems were established to function as an adaptive 

immune system. The operation of these systems involves three principal phases: (1) incorporating the foreign 

DNA (protospacers) into the CRISPR array or adaptation, (2) CRISPR array transcription, maturation of 

crRNA and formation of transRNA-crRNA complex to guide the Cas protein, (3) cleavage of the foreign 

DNA or RNA, (4) regulatory and other CRISPR associated functions. To perform these operations, the 

CRISPR-Cas system constitutes two principal modules - adaptation module, effector complex (expression and 

interference module) and ancillary module. The integration of spacers into the CRISPR cassettes is executed 

by the adaptor module while the effector complex is responsible for processing and crRNA maturation, 

identification of the target foreign DNA or RNA, and cleavage of the foreign genome. The ancillary module 

consists of different proteins and domains performing regulatory functions [7, 8]. These defense systems are 

constantly engaged in an endless battle against foreign extrachromosomal elements like viruses, plasmids etc., 

which results in rapid evolution of the cas genes and thus leads to diversification in the mechanism and 

structure of the systems. This huge variance of CRISPR-Cas systems found in prokaryotes have been 

classified on the criteria of signature cas genes, organization of genes in the CRISPR-cas loci, analogous 

sequences between multiple shared Cas proteins, structure of CRISPR and phylogeny of Cas1 protein [9]. All 

the identified CRISPR-Cas systems have been divided into two distinct classes 1 and 2, on the basis of 

different effector proteins encoded by the case genes [2].  

Class 1 systems include the presence of multi-subunit crRNA-effector complexes. Class 1 systems 

are classified into three different types, I, III, and IV, on the criteria of different architecture of the effector 

complex. Type I and III systems mostly occur in archaea and are less frequent in bacteria while the rare Type 

IV system occurs in bacteria [7-9].  

2.1. Type I CRISPR-Cas systems 

The principal gene for these systems is cas3 encoding for a ssDNA stimulated helicase capable of 

unwinding dsDNA and RNA-DNA duplexes. The HD family endonuclease domain is fused with the helicase 

domain and is involved in the cleavage of DNA. The domains are encoded by two genes, cas3″ and cas3′ 

respectively, on the same loci. Cascade or CRISPR-associated complex for antiviral defense is the effector 

complex in type I systems. The multi-subunit effector complex consists of paralogous RAMP’s Cas5 and 

Cas7, Cas6, a large subunit and a small subunit. The core fold of the RAMP (Repeat-Associated Mysterious 

Proteins) is a nucleic acid-binding domain called RNA-recognition motif (RRM). Cas6 is an active 

endonuclease involved in the processing of crRNA [7-9]. Seven subtypes, I-A to I-F and I-U have been 

identified in Type I systems [7, 8].  
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2.2. Type II CRISPR-Cas systems 

The signature gene for these systems is Cas9 which encodes a single multi-domain protein involved 

in the interference process, target DNA cleavage and adaptation process [7]. The Cas9 protein is composed of 

two lobes, REC (recognition) lobe and NUC (nuclease) lobe. The NUC lobe contains two nuclease domains, 

HNH and RuvC along with terminal PAM-interacting (PI) domain [2]. RNaseIII and tracrRNA are 

responsible for the processing of crRNA in these systems. The Type II systems are further divided into three 

subtypes, II-A, II-B, and II-C. The subtype II-A system comprises an additional gene, csn2 while subtype II-B 

comprises cas4 gene instead of csn2 [7, 8].  

2.3. Type III CRISPR-Cas systems  

Cas10 is the prominent gene encoding a multi-domain protein. It consists of two cyclase-like palm 

domains (RRM domain), helical domain comprising Zn-binding treble clef motif and a helical domain 

responsible for cleavage of target DNA [7, 8]. Cas6 in Type III systems are assumed to be associated with 

crRNA processing and are not a part of the multi-subunit crRNA-effector complex. Similar to Type I systems, 

these systems also consist of a larger subunit and a small subunit along with RAMP’s Cas5 and Cas7. The 

small subunit is α-helical protein while a cyclase-related enzyme makes the large subunit. The Type III 

systems have four subtypes, III-A, III-B, III-C, and III-D. The effector complex in the subtypes III-A and III-

D is known as csm while in case of subtypes III-B and III-C, it is known as cmr [8].  

2.4. Type IV CRISPR-Cas systems 

The Type IV system has been discovered in plasmids of several bacteria and has a unique minimalist 

effector complex architecture making it distinct from the other Class1 systems. The signature gene of this 

system is Csf1. The peculiar crRNA-effector complex consists of a highly reduced larger subunit, csf1, a 

presumed small subunit, RAMP’sCas5 and one Cas7 protein. This system is devoid of cas1 and cas2 genes 

responsible for spacer integration into CRISPR arrays [7, 8]. Type IV systems have two variants based on the 

presence of DinG family helicase [8].  

Class 2 systems include a single multidomain crRNA-effector complex. Class 2 systems are 

classified into three different types, II, V, and VI on the criteria of different signature cas genes. All the Class 

2 systems possess cas1 and cas2 proteins. The endonuclease activity of these proteins is requisite for the 

process of adaptation, that is, the integration of spacer into the CRISPR array [7, 8].  

2.5. Type V CRISPR-Cas systems 

Cas12 (formerly Cpf1) is the signature gene in Type V CRISPR-Cas systems. Cas12 is a single-

RNA-guided nuclease which can function in absence of tracrRNA. It’s a large protein composed of two 

RuvC-like nuclease domains along with TnpB protein. Some Type V systems also consist of Cas4 protein [2, 

8]. The Type V systems are classified into three main subtypes, V-A, V-B, and V-U [2].  

2.6. Type VI CRISPR-Cas systems 

The preeminent gene in these systems is Cas13 encoding a multidomain effector complex consisting 

of two HEPN domains which may possess RNase activity. The three subtypes of Type VI systems are VI-A, 

VI-B, and VI-C [2, 9].  
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3. CONSTITUENTS OF THE CRISPR-CAS9 SYSTEM 

Archaebacteria as well as the eubacteria have developed a specialized RNA guided adaptable 

immune system consisting of a two-component complex: CRISPR–Cas9 to fight against bacteriophages. 

Their genomes consist of unique CRISPR sequences or Clustered Regularly Interspaced Short Palindromic 

Repeats and spacer sequences [10]. Spacers are 17-84 nucleotide sequences that complement the invading 

foreign genome [11]. Successive transcription of the CRISPR system specifically the spacers produce many 

short mature CRISPR RNAs (crRNAs): 17-20 nucleotides long that complement the target DNA [12]. The 

CRISPR RNA consists of two prime ends; at the 5′ end it chains up the spacer sequences, whereas at the 3′ 

end it accomodates a segment of the CRISPR sequence. Small non-coding RNA, known as trans-activating 

crRNA (tracrRNA) associates with crRNA to construct a binary hybrid structure: Single guide RNA (sgRNA). 

The tracrRNA has two principal purposes: activation of pre-crRNA handling by RNase III and initiation of 

crRNA guide DNA cleavage by cas9 [13]. This sgRNA integrates the crRNA and tracrRNA into a single RNA 

code [14]. The single guide RNA is T-shaped which has one tetra-loop and two to three stem-loops [15]. 

3.1. The Cas9 Protein 

Cas9 is a protein built up of 1,368 amino acids. It is a DNA endonuclease that spilts the double-

stranded DNA (dsDNA) 3 bp above the PAM. The PAM or Protospacer Adjacent Motif is a 2-6 bp long 

nucleotide that contributes majorly to the ATP-independent cleavage of the viral DNA [16]. The cas9 protein 

is made up of six parts i.e., REC I, REC II, Bridge Helix, PAM Interacting, HNH and RuvC domains. REC I, 

II, or the recognition lobe works in the binding of the nucleic acids [17]. In the apostate, the structure of cas9 

comprises of two lobes i.e., the alpha-helically shaped recognition (REC) lobe and the nuclease (NUC) lobe. 

The nuclease lobe has HNH nuclease (named due to the presence of characteristic histidine and asparagine 

residues) and spilt RuvC nuclease domains along with the more variable C-terminal domain (CTD). The HNH 

nuclease domain contributes to the cleavage of the DNA strand complementary to the guide RNA with the 

help of other HNH endonucleases by forming ββα-metal fold also called as the one-metal-ion mechanism. 

The RuvC domain belongs to the retroviral integrase superfamily identified by an RNase H fold. It cleaves the 

DNA opposite to the complementary strand by a two-metal-ion catalytic mechanism. These two lobes are 

interconnected to each other aided by two components: the former formed by a bridge helix which is arginine-

rich and the latter by a disordered linker. The nucleic acids are bound by the two types of recognition lobes 

(nuclease and helical) to configure a four-way intersection that unzips the arginine-rich bridge helix [14].  If 

either HNH (H840A) or RuvC(D10A) domain is mutated, then cas9 is modified to a nickase. If both are 

mutated hindrance is not caused to the binding ability to the viral genome but it terminates the endonuclease 

activity. This cas9 is also called dead cas9 or dcas9 [13]. In type II CRISPR-Cas system, the cleavage of 

double-stranded DNA (dsDNA) of the viral genome by the cas9 protein allied with a single guide RNA which 

consists of a CRISPR RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA) by HNH and RuvC 

domains. 

3.2. Cpf1 - an additional RNA guided endonuclease 

Cpf1 is a RNA-guided nuclease observed in the CRISPR arrangement of Prevotella and Francisella. 

It is a 1,300 amino acid protein that does not require a tracrRNA hence, simplifying the cleavage process. 

Cpf1 associated CRISPR systems are transcribed to mature crRNAs. The cpf1-crRNA complex severs the 
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DNA by detecting a PAM that is T-rich and then instigates a double stranded break at a site away from the 

recognition site with a 4 or 5-nucleotide 5′ overhang and hence, forming a sticky end [18].  

4. MECHANISM OF THE CRISPR-CAS9 COMPLEX 

 The defense mechanism of the bacteria against invading foreign genome is further categorized into 

three phases: 

4.1. Adaptation phase 

 When the bacterial genome is exposed to the invading viral genome, small segments of the foreign 

DNA are incorporated into the CRISPR-spacer complex of the bacterial genome forming new spacers at the 

leading strand of the array. The leading region includes promoter, protein binding sites and elements required 

for spacer integration. Spacers build up the genetic memory of the cell by recording the infection and 

precluding future infection from the same virus. Hence, this phase is also known as ‘Adaptation’. Palindromes 

aid the process of integration of spacers into the CRISPR system by providing direction as well as position 

[15]. 

4.2. Expression of crRNA and Cas proteins 

 Subsequent transcription of the spacers yields small pre-crRNA which is further processed to form 

smaller units of crRNA. Interaction between the CRISPR RNA and the complementary viral target DNA 

sequence also called protospacer during the second invasion, triggers disintegration of the viral DNA [19]. 

Sometimes, the mature crRNA binds to tracrRNA together called single guide RNA (sgRNA) and conducts 

cas9 mediated cleavage of viral DNA. In type I and III CRISPR systems, multiple Cas protein complexes are 

involved in the cleavage of foreign DNA. Whereas, in type II CRISPR system, one protein: Cas9 is required 

for the destruction of the viral genome [20].  

4.3. CRISPR interference 

 The single guide RNA complex guides cas9 to cleave DNA carrying a complementary 20-nucleotide 

target sequence and adjacent PAM. It was experimentally found that seed sequences of RNA nucleotides 

within the crRNAs assist in target specification. This seed region is called PAM or Protospacer Adjacent 

Motif which is a 10-12 base pair sequence found at the 3′ end of the 20-nucleotide spacer in the type II 

CRISPR systems. PAM mutations severely impede target binding and cleavage [14]. The gRNA activates a 

significant conformational displacement in the Cas9 complex, which triggers a transformation from an 

inactive state to an active state of the protein [16]. The Cas protein consists of Recognition (REC) lobes and 

nuclease (NUC) lobes in addition to C-terminal domain (CTD), these simplify the identification and cleavage 

of viral DNA. The nuclease lobe comprises two domains namely HNH and RuvC domains. The 

complementary strand of DNA is cleaved by the HNH nuclease domain with a one-metal-ion mechanism 

signified by a conserved general base histidine. The RuvC domain slits the non-complementary DNA with the 

help of a two-metal-ion mechanism characterized by a conserved aspartate residue [21]. A positively charged 

furrow between the two lobes has the PAM duplex embedded in it. The C-terminal domain (CTD) 

accommodates the PAM-containing the non-target strand mainly through hydrogen-bonding interactivities 

with the phosphate spine of the PAM-holding the non-target DNA strand. NGG represents the PAM sequence 

with N being based twinned with its complement and does not interact with Cas9. The GG nucleotides are 
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processed in the major furrow by base-definite hydrogen-bonding interactions with two arginine residues 

(R1333 and R1335) located at a β-hairpin of the CTD [14] (Fig. 1). 

 

Figure 1. Mechanism of CRISPR-Cas9. 

5. THE CONFORMATIONAL REARRANGEMENT  

 Considerable number of interactions of Cas9 with guide RNA’s phosphate spine leads to the 

preordering of the 10-nucleotide RNA seed sequence essential for DNA recognition resulting in an A-form 

conformation. Additionally, the PAM-interacting sites R1333 and R1335, that are in charge of 5′-NGG-3′ 

PAM recognition is signaled prior to binding of the viral DNA so that formation of the sgRNA-Cas9 complex 

takes place. As soon as the sgRNA binds to the Cas9, an eminent conformational change is observed in the 

Hel-III domain of the REC lobe which moves by ∼65A° toward the HNH domain. This suggests most of the 

prominent conformational changes take place before DNA binding [14]. The manifestation of the 5′ end of the 

guide RNA inside the cleft formed between the HNH and RuvC nuclease domains is observed from the 

electron microscopy (EM) structure of the Cas9 protein bound to a sgRNA. The conclusion drawn is that the 

5′ end of the guide RNA is preserved from degradation, and a further conformational change is required so 

that the 5’ end is released during target DNA binding [14]. Three-dimensional collisions take place and target 

recognition is triggered as Cas9 alienates from the DNA with inappropriate PAM sequence. As soon as the 

target DNA is recognized, Cas9 triggers a local DNA melting at the PAM binding site. The canonical 5′-NGG-

3′ PAM nucleotide sequence is present on the non-target DNA strand resulting in a cleaved non target DNA 

strand and an untwined target DNA strand. Introduction of RNA strand builds an RNA-DNA hybrid. The local 

DNA melting is observed because of interactivities between the phosphate lock loop and +1 phosphate [16]. A 

noticeable sharp kink turn is observed in the target DNA strand (within the immediate vicinity of the PAM) to 

substantiate the binding of target DNA strand with the guide RNA instead of the non-target DNA strand. The 

+1-phosphate preserved by the phosphate lock loop ensures corroboration of the flipping and rotating of the 

first nucleobase of the target DNA towards the guide RNA. This explains how the presence of PAM on the 

non-target strand is essential in cleaving the single stranded DNA target strand [22]. It is the hydrophobic and 

van der Waals forces that hold the non-target strand. It laterally comes out through the positively charged 

tunnel betwixt the RuvC and HNH nucleases. This strand goes through a sharp kink turn at positions -2 and -3 
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(based on presence of PAM) where flipping occurs and then again at -4 position. These flipping of bases and 

kinks that occur in the untwined target strand and displaced non target strand (also called as R-loop) causes 

exposure of two seed nucleotides above the PAM to bulk solvents for initiating target DNA binding [22]. 

Thus, Cas9 cleaves the DNA strand preventing it from infecting the bacteria. The double stranded break 

(DSB) is repaired in two ways: 

1.      Non-homologous end joining (NHEJ) 

2.      Homology-directed repair (HDR) 

5.1. The Non-Homologous End Joining (NHEJ) 

 Non-homologous end joining is a repair mechanism which is error-prone in many organisms because 

it leads to frameshift mutation that is deletion or insertion of a base [23]. It requires nucleases to cut DNA 

sequences, polymerases to introduce new DNA sequences, ligases to join the sequences along with a lot of 

enzymes for repairing the double stranded break [24]. It rapidly repairs the DNA and is a predominant repair 

mechanism in most organisms. Activation of NHEJ is observed throughout the cell cycle [25]. Figure 2 

represents NHEJ.  

 

Figure 2. Non-homologous end joining. 

5.2. Homology-Directed Repair (HDR) 

 Homology-directed repair mechanisms have high fidelity, but it cannot function in absence of a 

homologue close to the location of the double stranded break [24]. The requirement of homologous DNA 

nucleotides either from sister chromatids or foreign DNA assures homology-directed repair to occur [23]. It is 

confined to the S and G2 phase of the cell cycle as sister chromatids are only accessible during these phases 

[25]. The high fidelity of the homology-directed repair mechanism allows scientists for insertion, deletion and 

substitution of single nucleotide sequences or considerable amounts of genomic DNA sequences. HDR-based 

gene editing methods are recently being developed, opening more possibilities for genomic editing [26]. 

Figure 3 represents HDR. 

6. CRISPR-CAS9: A GENOME EDITING TOOL 

Scientists manipulated the bacteria’s defense mechanism: CRISPR CAS9 as a meticulous genome 

editing tool. A guide RNA is designed by the scientists to complement the gene they desire to edit. This 

designed gRNA is attached to Cas9 which leads Cas9 to the target gene. Cas9 is a dual-RNA-guided double 

stranded endonuclease. It possesses the ability to cause double stranded breaks in the DNA at sequences that 
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match the sequences in the gRNA. The molecular scissors cut the target DNA sequence by undergoing several 

rearrangements in the protein. Hence, scientists can edit any DNA from a viral immune mechanism and its 

manipulation [15, 18].  

 

Figure 3. Homology-directed repair. 

7. WHAT IS CANCER? 

 An extremely intricate nexus of 30 trillion cells make up the human body, with each cell following a 

communal mechanism. Normal cells interact with each other to regulate proliferation by restricting its growth 

according to the needs of the body by contact inhibition. Contrarily, cancer cells defy the specialized 

instruction system. They reproduce obstreperously and can migrate from the site of their origin [27]. Cancer 

arises from malignant tumors. Tumor is an abnormally growing mass of cells that divides uncontrollably and 

there are three types of tumors. Benign tumors do not possess the ability to develop into cancer. They either 

cannot spread or grow. Premalignant tumors are tumors that are not yet cancerous but may develop into 

malignant tumors. Lastly, malignant tumors are cancerous; they can grow and spread to other parts of the 

human body. These cancer cells have the property of metastasis: a multitudinous process in which a series of 

steps is followed. The cancer cells must encroach the surrounding stroma, intravasate, endure in the 

circulatory system, extravasate, invade the matrix and subsequently proliferate in the target organ [28]. 

Sometimes, cancer does not respond to medical treatment and hence is called refractory cancer. This becomes 

resistant either from the first treatment procedure or progresses during the treatment. Therefore, refractory 

cancer is also called resistant cancer. Cancer cells tend to exhibit distinguishing characters which are referred 

to as hallmarks and are represented in the Figure [29].  
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Figure 4. The 10 hallmarks of cancer (Adapted from [29]). 

8. THE WARBURG EFFECT, DIFFERENCE BETWEEN NORMAL CELLS AND CANCER CELLS 

Only in the absence of oxygen, normal cells metabolize glucose into lactate. In aerobic conditions, 

mitochondrial oxidative phosphorylation (OXPHOS) produces ATP which yields carbon dioxide (CO2) and 

water (H2O) as the products. On the other hand, cancer cells adopt anaerobic glycolysis even in aerobic 

conditions. Hence, cancer cells are highly glycolytic. Excessive expression of membrane glucose transporters 

(GLUTs) and its several isoforms aid the uptake of glucose by the cancer cells. This was experimentally 

proven with the help of Positron Emission Tomography (PET) imaging, a widely used imaging technique for 

diagnosing cancer. This observation of a peculiar mechanism adopted by cancer cells was made by Otto 

Warburg nearly a hundred years ago. He observed that even under aerobic conditions tumor slices exhibited 

higher rates of consumption of glucose and secretion of lactate than the normal cells. This effect was named 

after the scientist as the Warburg effect [30]. In normal cells, growth controlling messages from the outer 

surface of the cell is sent deep into the nucleus by signal pathways. These messages are collected by a 

molecular apparatus called the cell cycle clock which decides that cell division should take place or not. Due 

to genetic mutations in cancer cells, either stimulatory pathways send excessive signals for division or the 

inhibitory pathways fail to send inhibiting signals which lead to uncontrollable division of cancer cells. A 

mutation in a component like growth factor receptor triggers excessive functioning of the stimulatory pathway 

independently without any commands. If a mutation is caused in cytoplasmic relay, the inhibitory pathway is 

arrested, and this interrupts the signaling chain [27].   

9. CANCER CELL CYCLE 

The cell cycle clock is a molecular apparatus composed of a network of interacting proteins in the 

nucleus. It coalesces messages from the stimulatory and inhibitory pathways and decides whether cells should 

divide or not. It is mainly built up of two crucial components: cyclins and cyclin dependent kinases (CDK’s). 
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These ally together and initiate the various stages of the cell cycle [27]. Multiple cyclin dependent kinases 

(CDK’s) and cyclin complexes are present but only certain types of CDK-Cyclin complexes directly 

contribute to the cell cycle. These comprise of: 

1. Three interphase CDK’s (CDK2, CDK4, and CDK6)  

2. CDK1-a mitotic CDK also called as a cell division control protein2 (CDC2)  

3. Other ten cyclins that mainly belong to four distinct classes of cyclins namely the A-, B-, D- and E-type of 

cyclins [31].  

With an upsurge in the level of cyclins: the D type, followed by E, A and lastly B type, the 

advancement through the four stages of the cell cycle takes place. In the late G1 phase, the cell determines 

whether to proceed to another division or enter a resting phase- quiescent stage (G0) at the restriction point 

(R). A molecular switch needs to be turned on for the cell to continue the cell cycle by entering the S phase 

and passing through the restriction point (R). These checkpoints regulate the cell cycle by identifying the 

defects caused during DNA synthesis. Mutations in the DNA are maybe caused by endogenous and exogenous 

genotoxic agents such as chemicals, free radicals, ionizing radiation, side products of the intracellular 

metabolism or medical therapy which is inspected by the DNA damage checkpoint. The spindle assembly 

checkpoint (SAC) is responsible for chromosomal segregation. Unequal inheritance of the genetic instruction 

is induced under the absence of SAC which may lead to tumor succession by congregating numerical 

chromosomal aberrations (CIN) [31]. The consequent upsurge in levels of cyclin D and E triggers the switch 

for inhibition by combining to and activating enzymes titled cyclin dependent kinases. These seize the 

phosphate groups from the molecules of cyclin D and hence prevent further cell division process [27]. 

Deregulation of cyclin-dependent kinases (CDKs) mainly cause three cell cycle defects: unscheduled 

proliferation, GIN (genomic instability) and CIN (chromosomal inability). Genomic instability (GIN) is 

caused when the genome encounters mutations and chromosomal abnormalities leading to debilitated repair 

of the cell’s genome. Chromosomal instability (CIN) is caused when numerical aberrations in the 

chromosomes are observed. These mutations lead to persistent proliferation or spontaneous recurrence in the 

cell cycle- two common properties of most tumor cells [31]. This further leads to excessive production of 

cyclins resulting in causing a lot of inhibitory pathways and, hence causing cancer. Some proteins such as 

pRB, p15, p16, p21, p53 also contribute majorly to the production of cancer cells [27].  

10. CANCER METASTASIS 

The process of metastasis is characterized by a malignant tumor cell migrating from a primary 

epithelial neoplastic lesion to a distant site through the circulatory system and establishing a secondary tumor 

which is no longer in contiguity with the primary tumor [32, 33]. Metastasis includes a course of discrete 

steps involving Epidermal-Mesenchymal transition (EMT), dissociation from bulk tumor, angiogenesis, 

invasion, intravasation, transport or cell migration and finally extravasation into a new distant site [34]. Most 

tumors originate from epithelial tissues which are composed of cells laid in sheets with lateral belts of cell-to-

cell adhesion complexes and are cemented to a non-cellular basement membrane. The process of EMT helps 

the tumor cell migrate from the bulk tissue to the secondary site. During EMT, the tumor cells activate genes 

necessary for differentiation into mesenchymal cells. It is characterized by the upregulation of transcription 

factors like SNAI1/snail, SNAI2/slug, ZEB1, ZEB2, TWIST1, TWIST2 as well as E12/E47. These factors get 

activated through multiple pathways like Receptor Tyrosine Kinases (RTK); HIF1, HIF2, Notch signaling 

pathway in response to hypoxia and NF-κB, TGF-β for an anti-inflammatory response. TGF-β or 
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Transforming growth factor beta is responsible for activating snail and down regulating CDH16 gene 

encoding cadherin-16 (calcium dependent glycoprotein) and HNF-1β. Snail up-regulates Akt (protein kinase 

B) and Bcl-xL to restrict apoptosis induced by transcription growth factor. Along with this, Snail also down-

regulates Cyclin D2 to restrict cell cycle progression [34, 35]. Expression of EMT inducing genes leads to the 

downregulation of epithelial proteins (like E-cadherin, occludin, claudins, cytokeratins or catenins) and 

upregulation of mesenchymal proteins (like N-cadherin, vimentin, tenascin C, laminin β1 or collagen type VI 

α) [34]. E-cadherin (epithelial cadherin) is a transmembrane protein linked with the actin cytoskeleton by α-

catenin and β-catenin, involved in formation of adherens junctions and anchoring neighboring cells together. 

The crucial step in metastasis is the loss of E-cadherin. E-cadherin promoter genes are silenced through 

hypermethylation and histone deacetylation by E-cadherin repressors like snail, twist, zeb etc. 

Phosphorylation of β-catenin or proteolytic cleavage inactivates the existent E-cadherin proteins on the cell 

surface and transport of E-cadherin to the cell membrane is inhibited by the o-glycosylation of the protein 

post-translation process [35]. Integrins along with FAK (focal adhesion kinase) signaling and SRC signaling 

are essential for cell migration and inhibiting anoikis during EMT. PTK2 protein tyrosine kinase 2 (PTK2) or 

FAK is a type of protein kinase that phosphorylates β-catenin leading to detachment from E-cadherin and 

thus, dissociation from the bulk tumor. Actin–myosin 2-mediated cell contraction and adhesion to ECM 

(extracellular matrix) and release of adhesion mediated by integrin- and FAK-containing complexes are 

responsible for cell migration. The programmed cell death of anchorage-dependent cells upon detachment 

from ECM is called Anoikis. Thus, anoikis suppression plays an integral role in metastasis. Activation of 

integrins leads to its binding with ECM molecules and triggers an intracellular signaling cascade via FAK and 

SRC family kinases which suppresses anoikis [34, 35]. To invade the neighboring cells by breaking through 

the basement membrane, metastatic tumor cells secrete zinc dependent endopeptidases called MMP (Matrix 

metalloproteinases) which help in the degradation of components of ECM and cleavage of cell surface 

proteins [35, 36]. Cleavage of E-cadherin by MMP’s results in the formation of a smaller fragment, sE-cad, 

which is responsible for maintaining EMT [36]. To produce distant metastases, malignant tumor cells invade 

tumor associated vasculature to reach distant sites which is facilitated by the process of angiogenesis or 

generation of new blood vessels. This particular feature termed as an angiogenic switch represents a crucial 

step in the process of producing secondary metastases [33, 34]. During angiogenesis, tumor cell promotes 

vascularisation and growth occurs past its diffusion limit as a result of the delicate balance between 

angiogenic activators [such as VEGF A (vascular endothelial growth factor A), FGFs (fibroblast growth 

factors), PDGFs (platelet derived growth factors or heparin binding growth factors) and EGFs (epidermal 

growth factors)] and angiogenic inhibitors (such as thrombospondin 1, angiostatin, endostatin, and tumstatin) 

tipping over to the pro-angiogenic side. A vital role in activating the angiogenic switch is performed by 

numerous tumor cell-intrinsic factors and stromal cells, particularly myeloid cells [34]. This process also 

involves the interactions of endothelial cells, tumor cells and extracellular matrix. Serine proteases and 

metalloproteinases mediate these interactions and are also affected by angiogenic factors [33]. Intratumor 

hypoxic conditions also support induced angiogenesis leading to invasive metastatic tumor and some hypoxia-

inducible factors such as HIF1A, HIF2A play a vital part in the process [34]. Angiogenesis is followed by 

intravasation of malignant cells and then transported through the vessels to the secondary site. The process of 

intravasation involves local proteolysis of the extracellular matrix, followed by the pseudopodial extension, 

and cell migration. Certain factors affect the motility of tumor cells during intravasation. These factors include 

autocrine motility factors, matrix proteins, and host-secreted growth factors. The autocrine motility factors 
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such as hepatocyte growth factor/scatter factor (HGF/SF), insulin like growth factor II (IGF-II) and autotaxin 

(ATX) are secreted by the tumor cells while matrix proteins are extracellular matrix proteins (such as 

vitronectin, fibronectin, laminin type I collagen, type IV collagen and thrombospondin) that stimulate 

movement towards chemical gradient known as chemotaxis and motility stimulation towards a bound 

substrate known as haptotaxis. Host secreted growth factors or paracrine motility factors, such as insulin like 

growth factor I, interleukin 8, and histamine, are host secreted growth factors which are responsible for the 

motility of tumor cells towards the specific organ producing the factors. Cell shape, cytoskeletal 

rearrangements, and changes in cell adhesion and/or membrane fluidity are some of the changes that these 

motility factors cause through various mechanisms [33]. The mechanisms involved in tumor cell extravasation 

from the blood vessels into the organ may be similar to those contributing to invasion [32]. 

11. SEED-SOIL HYPOTHESIS 

Stephen Paget, an English surgeon, published a seminal paper to explain the definite pattern of 

metastasis in 1889 called seed-soil hypothesis. He analyzed autopsy records of more than 900 patients with 

different primary tumors which revealed a peculiar nonrandom pattern of the process of metastasis to bones 

and visceral organs [37]. He observed low incidence of metastasis in the spleen as compared to the liver, 

ovary and specific bones and this disproportion was less pronounced in melanoma as compared to breast and 

uterine cancer. This led to the proposal of the ‘seed and soil’ principle which stated that seeds which fall on 

congenial soil will live and grow even though they are carried in all directions. The “seed” can be considered 

as a progenitor cell, cancer stem cell, or metastatic cell, while the “soil” as host factors, stroma, or the organ 

microenvironment which is suitable for the progenitor cell to grow [38, 39]. In 1929, James Ewing challenged 

Paget’s theory of ‘seed and soil’ principle by theorizing that dissemination of metastasis is ensued by 

mechanical factors which are determined by the vascular system’s anatomical structure but this was proved 

false in 1970’s and thus the ‘Seed soil hypothesis’ remains the more widely accepted theory [39]. Figure 4 

represents an example of the seed and soil hypothesis. 

 

Figure 4. Seed and soil hypothesis. 
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12. ONCOGENES  

Mutations in oncogenes, anti-oncogenes, and microRNAs cause cancer. The primary transformed cell 

undergoes secondary or tertiary genetic mutations and hence cytogenetically different clones of tumors are 

formed. Tumors can also encompass progenitor cancer cells besides the initial clone and subclones. These 

cells comprise a spectrum of cells with discrete genetic modifications and states of differentiation causing 

cancer [40]. Studies of Burkitt’s lymphoma provide the first corroboration that cancer emerges from somatic 

genetic mutations. On chromosome 8q24, a MYC oncogene is translocated to one of the loci for 

immunoglobulin genes. Other translocating partners- chromosome 14q, 22q, and 2p bear enhancer elements in 

the immunoglobulin loci which activates the MYC oncogene [41]. Hence, every malignant lymphocyte 

undergoes MYC translocation. In chronic myelogenous leukemia, a reciprocal t (9;22) chromosomal 

translocation fuses the ABL protooncogene to the BCR gene. An oncogenic ABL fusion protein is produced 

from the fusion gene with excess tyrosine kinase activity. This chromosomal alteration is a characteristic of all 

the leukemic cells [42]. The function of oncogenes is to encode proteins that regulate cell proliferation, 

apoptosis, or both. Structural modifications caused by mutations, gene fusion, association with enhancer 

elements or amplification activate oncogenes. Translocations and mutations can transpire either as an 

initiating event or during tumor progression. On the other hand, amplification takes place during tumor 

progression. There are six broad groups of products yielded by oncogenes: transcription factors, chromatin 

remodelers, growth factors, growth factor receptors, signal transducers, and apoptosis regulators [40].  

 

Table 1. Products of oncogenes in brief. 

Products of 

oncogenes 
Description Reference 

Transcription 

factors 

Transcription factors are constituents of multigene families that comprise of common 

structural domains. Interaction of these with other proteins is necessitated. For 

example, the AP1 transcription factor is formed by the dimerization of the Fos 

transcription protein and the Jun transcription factor which amplifies the expression of 

genes that control cell division. In lymphoid cancers, chromosomal translocation 

activates transcription factor genes and at times in solid tumors (e.g., prostate cancers). 

In Ewing’s sarcoma, gene fusion of the EWS gene and the partner genes leads to 

anomalous transcriptional activity of the fused proteins 

[40, 43] 

Chromatin 

remodelers 

The extent of condensation of chromatin is a factor in control of gene expression, 

replication, and repairing and of chromosome segregation. The chromatin is remodeled 

by two types of enzymes: ATP- dependent enzymes and enzymes that alter the N- 

terminal tails of histones. The structure of chromatin and its transcriptional activity is 

directed by the interactions between the nucleosomes and chromatin-associated 

proteins. These interactions are determined by an epigenetic code encrypted in the 

form of histone alteration 

[44, 45] 

Growth 

factors 

When growth factor genes are activated, it leads to the malignancy of the cells. The 

phosphorylation of β-catenin is ceased by the WNT family of secreted glycoproteins. 

β-catenin adheres cells to cells, activates signal-transduction pathways, and is regulated 

by the APC protein. Mutations in the APC occlude the degradation of β-catenin by 

inhibiting the phosphorylation in familial adenomatous polyposis. The free β-catenin in 

the cytoplasm displaces to the nucleus, where genes involved in cell proliferation and 

invasion are activated. 

 

[46] 

Growth 

factor 

receptors 

Epidermal growth factor receptor (EGFR), a transmembrane protein with tyrosine 

kinase activity is triggered by the deletion of the ligand-binding domain and hence 

absence of ligand binding in many tumors. Phosphorylation of tyrosine occurs in the 

intracellular domain of the receptor, providing interaction sites for cytoplasmic 

proteins containing the SRC homology domain and other binding domains. This leads 

to deregulation of signaling in several pathways. Hypoxia-dependent control of gene 

transcription is modulated by vascular endothelial growth factor (VEGF). It triggers 

angiogenesis in several cancers. 

[40] 
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Products of 

oncogenes 
Description Reference 

Signal 

transducers 

Autophosphorylation of tyrosine residues occur in the intracellular part of the receptor 

upon its reorganization caused by binding of receptor tyrosine kinases to appropriate 

ligand. This intensifies the kinase activity of the receptor or stimulates the interaction 

of the receptor with domains of cytoplasmic proteins (e.g., the SRC homology 2 

domain) that act as effectors and regulators of intracellular signaling. Upon mutations, 

oncogenes cipher members of signal transduction pathways, which are divided into 

two major groups: non-receptor protein kinases and guanosine-triphosphate–binding 

proteins 

[47, 48] 

Apoptosis 

regulators 

The BCL2 gene, the initiator of almost all follicular lymphomas and some diffuse large 

B-cell lymphomas, chronic lymphocytic leukemia and lung cancer produces a 

cytoplasmic protein that localizes to mitochondria and escalates cell survival by 

inhibiting apoptosis. Apoptosis can be achieved by two different pathways: stress 

pathway and the death-receptor pathway. The former is activated proteins that contain 

the BCL2 homology 3 domain which disables inactivates BCL2 and BCL-XL and 

hence, stimulating apoptosis. The latter is stimulated by the binding of Fas ligand, 

TRAIL, and tumor necrosis factor α, to their corresponding (death) receptors on the 

cell surface. This causes cell death 

[40, 49] 

13. ONCOGENE ACTIVATION 

Chromosomal rearrangements, mutations, and gene amplification are three mechanisms that activate 

oncogenes by either causing a mutation in the oncogene structure or an upsurge in or demodulation of its 

expression. This highly increases the survival of cells with such modifications [50]. 

 

Table 2. Oncogene activation. 

Mechanisms 

of oncogene 

activation 

Description Reference 

Chromosomal 

rearrangements 

The characteristic cytogenetic abnormalities in cancerous cells are chromosome 

inversions and translocations. These amplify or demodulate transcription of the 

oncogene in hematopoietic cancers and solid tumors. Translocation of a gene that 

bears a promoter that is continually active in the target cells with a gene that has 

oncogenic activity (e.g., ERG1) occurs in prostate cancer. In cancers of B- and T- 

cells, activation of oncogenes is stimulated by MYC deregulation. On the other hand, 

gene fusion activates oncogenes in myeloid cancers and soft-tissue sarcomas. 

[51] 

Mutations 

Different types of mutations take place in oncogenes. These modify the structure of 

the encoded protein thereby, strengthening its transforming activity. The RAS 

oncogenes (KRAS, HRAS, and NRAS) encrypt proteins with guanosine nucleotide–

binding activity and intrinsic guanosine triphosphatase activity. Mutations in codon 

12, 13, or 61 results in a protein, which constantly transports signals by linking 

tyrosine kinases to downstream serine and threonine kinases. This further leads to 

ceaseless cell growth. Carcinomas of the lung, colon, and pancreas commonly have 

mutated KRAS gene. In acute myelogenous leukemia and the myelodysplastic 

syndrome, the NRAS gene undergoes mutation. 

[40] 

Gene 

amplification 

In methotrexate-resistant acute lymphoblastic leukemia, amplification of the 

dihydrofolate reductase gene (DHFR) is commonly observed during the progression 

of tumor. Along with amplification of DHFR, cytogenetic mutations take place that 

mimic amplification of oncogenes. Often mutations occur in four different oncogene 

families: MYC, cyclin D1 (or CCND1), EGFR, and RAS. In small-cell lung cancer, 

breast cancer, esophageal cancer, cervical cancer, ovarian cancer, and head and neck 

cancer, amplification of MYC gene is noticed. 

[40] 

14. CRISPR-ENGINEERED T CELLS IN REFRACTORY CANCER PATIENTS 

Myriad diseases have loomed over humans since time immemorial, but gene editing carries the 

budding potential to repair DNA alterations and hence, eliminate several genetic diseases. Demonstration of 

gene editing was first observed in mammalian cells when double-stranded DNA breaks were repaired by 

homologous and non-homologous recombination by an endonuclease. Some of the few edited nucleases 
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which have tremendous applications are homing endonucleases, zinc finger nucleases, CRISPR-Cas9 

(clustered regularly interspaced short palindromic repeats associated with Cas9 endonuclease) and 

transcription activator-like effector nucleases. Recent progression in the CRISPR-Cas9 technology offers 

promising advancement in cancer therapy by causing DNA alterations in human T cells [55].  

14.1. T-cell: killers of the immune system 

T-cell, the specialized killer of the immune system is the heart of modern cancer immunotherapy. The 

T cell receptor (TCR) complex is superficially placed on the T cell. It is responsible for acknowledging 

foreign antigens/peptides attached to MHC-molecules causing anti-tumor responses. In adoptive cell therapy, 

T cells from patients are genetically edited and reinstalled in the body to produce a transgenic TCR that can 

destroy the tumor cells. Two genes, TCRα (TRAC) and TCRβ (TRBC) encode the endogenous T cell receptor 

(TCR) chains. Once the transgenic TCR is infused in the patient it exhibits mispairing and/or competition 

with alpha and beta chains of the endogenous TCR for expression. Mispairing of the therapeutic TCR alpha 

and beta chains with endogenous alpha and beta chains leads to excessive production of self-reactive TCRs 

and diminished expression of transgenic surface TCR. To eliminate this downfall, TCRα (TRAC) and TCRβ 

(TRBC) were knocked out in T cells which enhanced the expression of a synthetic, cancer-specific TCR 

transgene (NY-ESO-1). Another gene namely PDCD1 encoding PD-1 was deleted to enhance anti-tumor 

immunity. Mice with chronic lymphocytic choriomeningitis virus infection and PD-1 deficient T cells 

exhibited improved cytotoxicity and enhanced accumulation of terminally differentiated T cells. Antibody 

blockage of PD- 1 lead to improved chimeric antigen receptor (CAR) or TCR T cell-mediated killing of tumor 

cells in vitro and enhanced elimination of PD-L1+ tumor xenografts in vivo [55]. 

14.2. CAR (chimeric antigen receptor) T-cells 

CARs or chimeric antigen receptors enable T cells to identify and produce an immune response 

against antigen that expresses cancer cells [56]. The antigen binding component and a spacer are the 

components that make up the extracellular domain of the CAR. Several antigen binding moieties present 

could be: 

1. scFv (single-chain fragment variable) acquired from mouse monoclonal antibodies(mAbs), humanized 

Abs or fully human Abs is a variable monoclonal antibody fragment. It mainly identifies and binds to 

tumor-associated antigens (TAAs), expressed on the tumor cell surface. 

2. A human Fab fragment, chosen from phage display libraries. 

3. Nature ligands that engage their cognate receptor. 

In contrast to TCRs, CARs identify the antigens, carbohydrate, and glycolipid structures (found on 

tumor cell surface) without the need of MHC. In CAR T-cell therapy, patient’s T-cells are genetically edited to 

express a chimeric antigen receptor (CAR) for a tumor antigen, followed by ex vivo cell expansion and lastly 

re-infusion of the engineered T cells [57]. In B cell malignancies i.e., B cell acute lymphoblastic leukemia (B-

ALL), B cell non-Hodgkin’s lymphoma (BNHL), chronic lymphocytic leukemia (CLL), and Hodgkin’s 

lymphoma (HL), CAR T- cell therapy has shown spectacular results. This is mainly achieved by targeting 

CD19, CD2O or CD30. In CD19 specific CAR T-cells for B-ALL 70~94% of high complete remission (CR) 

rates have been observed [58].  

Six patients were enrolled at first out of which four were subjected to detailed release criteria testing 

as specified in the FDA accepted Investigational New Drug (IND) application. One patient among the four 

unique patient number (UPN) 27 experienced rapid clinical progression and was not eligible for infusion due 
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to mandated safety protocols. Two among these three, had refractory advanced myeloma and one had a 

refractory metastatic sarcoma unaffected by multiple other therapies. Lymphodepleting chemotherapy with 

cyclophosphamide and fludarabine on days -5 to -3 (i.e., prior to administration with CRISPR-Cas9 

engineered T cells) and a single infusion of 1×108 manufactured CRISPR-Cas9 engineered T cells per kg on 

day 0 of the protocol was given to patients. There was no administration of cytokines given to them [55].  

14.3. Manufacturing of the T-cell product 

Incubation of protein with gRNA at a molar ratio of 1:1 at 25°C for 10 minutes done immediately 

prior to electroporation resulted in Cas9 Ribonucleoprotein complex (RNP). Manufacturing of the T cell 

product was done by electroporation of ribonucleoprotein complexes (RNP) consisting of recombinant Cas9 

loaded with equimolar mixtures of sgRNA for TRAC, TRBC and PDCD1. Further, lentiviral transduction of 

the transgenic TCR was done by Adoptive cell therapy was conducted where patient’s T cells were extracted, 

engineering and infused back. The engineered T cell product was named as “NYCE” (NY-ESO-1 transduced 

CRISPR 3X edited cells). Expansion of all products to >1 × 1010 T cells was done by the time of harvest [55].  

15. WAYS TO GENETICALLY ENGINEER T-CELLS 

To genetically engineer T-cells, viral and non-viral transfection methods with high transgene 

expression, less toxicity and less oncogenic adverse effects can be adopted. 

15.1. Viral transduction 

Due to ease of manufacturing, production, enhanced the ability of stable integration of genetic 

component into the host genome, viral vectors of the family Retroviridae (lentivirus and γ-retrovirus), 

adenovirus and adeno-associated viruses are used. According to clinical safety standards, viral vector 

platforms should exhibit replication incompetence, low genotoxicity, and low immunogenicity. The genes 

required to produce a CAR vector are gag, pol; and env, rev (for lentivirus). These are eliminated from the 

viral backbone. For viral production, they are provided in trans in helper plasmids. To create a stable virus- 

producing cell line for large-scale production, transfection of a packaging cell line is done with CAR 

transgene and the helper plasmids (with gag, pol, and env genes). Incubation of stimulated T-cells (with 

OKT3/CD28 beads) with retroviral particles is practiced for genomic incorporation. The virion core that is 

formed upon the unification of viral and host membrane is emancipated into the cytosol, followed by 

conduction along the microtubules to reach the nucleus. This method allows the production of T-cells with 

high amount of CAR [57].  

15.2. Transposons 

Transposons, the mobile genetic elements mainly consist of: 

• One plasmid having the CAR (transposon) 

• Another plasmid containing the transposase.  

This dual component system enables stable integration of a transgene. The transposase acts on the 

inverted terminal repeats (ITRs) which leads to fringing of the CAR sequence. This further leads to excision 

and subsequent integration at a TA nucleotide sequence in the target cell genome. Electroporation of DNAs 

plasmid containing the CAR (transposon) and the transposase is done into the T-cells. After the transposition 

and stable genomic incorporation, the CAR is expressed on the T-cell surface [57]. 
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15.3. CRISPR/Cas9 

The short guide RNA (gRNA) that functions as an endonuclease can be transferred by liposome-

mediated transfection, electroporation, chemical transductionor as part of a viral genome in the form of Cas9 

protein/gRNA ribonucleoprotein (RNP), or in the form of a plasmid, driven by either U6 or H1 promoters for 

transcription after transfection of mammalian cells. A donor template in a plasmid form incorporates the 

desired transgene by homology-directed repair (HDR). An alternative non-viral method is adopted through 

nanomaterials. One of these approaches includes the biotin-streptavidin conjugate and the transport and 

binding of the templates from the donor to the Cas9 modified human cells. This increases the rates and 

efficiency up to 5 times more than traditional methods [57]. 

15.3.1. Observed responses after infusion of the NYCE 

The three patients were given 1 × 108 cells/kg but due to variation in TCR transduction efficiency the 

number of infused engineered T cells ranged from 6.0 × 107 to 7.1 × 108 cells. No development of humoral 

response to Cas9 was observed in the three patients tested at different time points after the infusion. The 

infusions of engineered T cells had no adverse effects such as cytokine release syndrome which is quite 

common in cancer immunotherapies. Endurance of the infused cells, low content of Cas9 in the infused 

product and/or immunodeficiency in the patients due to substantial previous treatments can be responsible for 

the lack of immunization to Cas9. Chip-based digital PCR was used to ascertain the engraftment frequency of 

the CRISPR-Cas9 gene-edited cells. Patient UPN35 with the lowest transduction efficiency, had the lowest 

amount of steady state engineered T cells. The stability period of the transduced T cells varies from three to 

nine months after infusion i.e.,5 to 50 cells per μl of blood. Biopsy of the bone marrow in myeloma patients 

and tumor in the sarcoma suggested crowding of the engineered T cells to the tumor. One patient had a 50% 

decrease in a huge abdominal mass that was persistent for four months, along with lesions. Until December 

2019, two are receiving additional therapies and one (UPN07) deceased due to progressive myeloma. 

Genetics modifications at the TRAC and PDCD1 locus were observed in all the patients. In patients UPN39 

and UPN07, genetics edits were persistent at the TRAC and PDCD1 locus at the frequency of 5 to 10% of 

circulating peripheral blood mononuclear cells (PBMC). Edits at the TRBC locus were the lowest in 

frequency and barely detectable. Hence, the TRBC locus contains the lowest level of editing efficiency [55]. 

15.3.2. Efficiency of the CRISPR-Cas9 genome editing 

To inspect the Cas9-mediated cleavage specificity, the iGUIDE method was adopted- a moderation 

of the GUIDE-seq method. On and off- target editing efficiency was evaluated in the NYCE cells at the end of 

product manufacturing. An impediment caused during assays is that DNA double-strand breaks are formed 

incessantly during cell division at high rates in the absence of added nucleases, which surges the background 

in assays of off-target cleavage. Majority of the off-target mutations were detected for TRBC than for other 

loci out of the three sgRNA. Less number of off-target edits were detected in over 7000 sites of cleavage in 

the sgRNA of PDCD1. Fewer off-target edits were observed at the TRAC1 and TRAC2 loci. Relatively lower 

mutations were identified within the transcriptional unit of CLIC2 (chloride intracellular channel 2) for the 

TRAC sgRNA. Whereas, for the TRBC sgRNA off-target reads were detected in genes encoding a 

transcriptional regulator (ZNF609) and a long intergenic non-protein coding RNA (LINC00377) [55].  
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15.3.3. Identification of chromosomal translocations in the engineered T cells 

Detection of translocations at frequencies 10-4 to 10-2 was observed in gene editing of TRAC and 

CD52 using transcription activator-like effector nucleases (TALENs) in the preclinical studies. In successive 

clinical report using TALENs, chromosomal rearrangements have been determined in 4% of infused cells. To 

look at the protection and genotoxicity of multiplex CRISPR-Cas9 genome editing on three chromosomes, 

stringent launch standards of the synthetic cells and assays to identify translocations were adopted. Certified 

qPCR assays were used to quantify the twelve likely translocations that would arise with the simultaneous 

modifications of four loci: TRAC, TRBC1, TRBC2, PDCD1. Translocations were identified in all 

manufactured products, but the translocations have been on the restriction of detection for the assay in patient 

UPN39. 

TRBC1:TRBC2 was the most plentiful rearrangement, ensuing in a 9.3 kB deletion. The deletion and 

translocations peaked on days five to seven of producing after which declined in frequency until cell harvest. 

The translocations and the TRBC1:TRBC2 deletion were perceptible in the three patients among 10 days after 

infusion and 30 to 170 days after infusion. Frequency of rearrangements diminished in vivo implying that no 

proof of a growth advantage over many generations of expansion in the patients on this trial. At day 30, 150 

and 170 in UPN07, UPN35 and UPN39, chromosomal translocations have been on the limits of detection are 

now no longer detected for all rearrangements besides for the 9.3 kB deletion for TRBC1:TRBC2 [55].  

16. EVOLUTION OF ENGINEERED T-CELLS OVER TIME IN PATIENTS 

To analyze the transcriptomic phenotype and the evolution of the engineered T-cells over time single 

cell RNA sequencing (scRNAseq) was employed in patient UPN39. UPN34 was selected as there was 

evidently the highest level of cell engraftment in the patient. Hence, tumor regression was clearly perceptible. 

The patient UPN39 was infused with CRISPR-Cas9 engineered T cells, after which recovery was achieved 

from the blood on day 10 (D10) and at ~4 months (day 113). For each sample (infusion product, D10 and 

D113), T cells had been organized primarily based upon the expression of CD4 or CD8. Further, processing 

was done using the droplet-based 5' scRNAseq. To genotype single cells as wild-type or mutant, PCR was 

utilized to amplify the cellular cDNA alike to the NY-ESO-1 TCR transgene from the gene expression 

libraries. Cells with mutations in all three target sequences were detected in the infusion product. TRAC was 

accepted as the most mutated gene. Around 10% of the T cells were triple-mutated at the target sequences, 

20%: double-mutated at the target sequences, 30% of cells had no detectable mutations whereas, ~40% had 

one mutation [55]. 

17. CONCLUSION 

Since the advancement in technology and developments in the field of diagnostics and medicine, 

there have been various studies to analyze and fight the deadly disease, cancer. Scientists have still been 

exploring every nook and corner to fight and ultimately cure cancer. From peptides extracted from bacteria 

[59] to the use of micro-RNAs as therapeutics [60], apart from chemotherapy and radiation, scientists have 

been working hard to contract cancer. Since the past few years, scientists have started using CRISPR-Cas9 to 

improve the genetic aspects in various fields, one of them being cancer therapeutics. Using this engineered T-

cell to fight cancer is a novel idea and further improvement and perfection in this technique can lead to the 

production of T-cells that can be administered to most of the cancer types and ultimately help combat this 

ailment in a better way. 
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