
Electronic Communications of the EASST
Volume 58 (2013)

Proceedings of the
12th International Workshop on Graph Transformation

and Visual Modeling Techniques
(GTVMT 2013)

Monitor-Oriented Compensation Programming Through Compensating
Automata

Christian Colombo and Gordon J. Pace

12 pages

Guest Editors: Matthias Tichy, Leila Ribeiro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Monitor-Oriented Compensation Programming Through
Compensating Automata

Christian Colombo1 and Gordon J. Pace2

1 christian.colombo@um.edu.mt 2 gordon.pace@um.edu.mt
Dept. of Computer Science, University of Malta, Malta

Abstract: Compensations have been used for decades in areas such as flow man-
agement systems, long-lived transactions and more recently in the service-oriented
architecture. Since compensations enable the logical reversal of past actions, by
their nature they crosscut other programming concerns. Thus, intertwining compen-
sations with the rest of the system not only makes programs less well-structured,
but also limits the expressivity of compensations due to the tight coupling with the
system’s behaviour.

To separate compensation concerns from the normal system behaviour, we pro-
pose compensating automata, a graphical specification language dedicated to com-
pensation programming. Compensating automata are subsequently employed in a
monitor-oriented fashion to program compensations without cluttering the actual
system implementation. This approach is shown applicable to a complex case study
which existing compensation approaches have difficulty handling.

Keywords: compensations, runtime verification, monitor-oriented programming

1 Introduction

Computer systems have been growing in size and complexity for decades, making it virtually
impossible for such systems to be faultless. On the other hand, their role in sensitive human ac-
tivities have put higher pressures on their correctness. Consequently, fault tolerance techniques
such as backward error recovery [RLT78] started being incorporated so that systems could with-
stand failures. Backward recovery (e.g., rollback in traditional databases) has the advantage of
being automatable but cannot be used when a system interacts with real-life processes (e.g., a
bank transfer) — such processes cannot be simply undone and forgotten. In such cases, instead
of undoing some actions, one might actually need to execute further “counter-actions”, better
known as compensations. For example in the case of a bank account transfer, one might have
to add a processing fee over and above the return of funds to the original account. Compensa-
tions have thus become particularly useful in areas which program real-life processes such as in
flow management systems, long-lived transactions, and more recently web services. To facili-
tate programming such interactions, several approaches have been proposed along the years with
the current de facto industry standard being the Business Process Execution Language (BPEL)
[AAB+07]. Moreover, extensive research [CP12] has been conducted in the area, particularly
by suggesting formal models of compensation [BF04, BHF04, LMMT08] and defining BPEL
semantics (e.g., [HZWL08]) in which compensations play a crucial role.

1 / 12 Volume 58 (2013)

mailto:christian.colombo@um.edu.mt
mailto:gordon.pace@um.edu.mt

Monitor-Oriented Compensation Programming

Since compensations enable the logical reversal of past actions and are, by their nature,
history-based, while typical recovery is usually programmed statically (e.g., try-catch-block),
compensation programming has to be programmed dynamically to take into consideration the
current execution path (which is to be reversed). Programming compensations statically is pos-
sible but limits their expressivity [LVF10]. On the other hand, programming compensations
dynamically using traditional means of code organisation results in unstructured code which has
to continuously keep track of the history. A recurring approach for compensation programming
[CP12] involves associating compensation blocks to corresponding system blocks in a try-catch-
block fashion which cannot handle complex compensation logic [GFJK03].

A natural way of programming dynamic elements while preserving separation of concerns is
runtime verification [BGR07, MJG+12]. The main contribution of this paper is an instantiation
of the monitor-oriented programming (MOP) paradigm [MJG+12] for compensation program-
ming: monitor-oriented compensation programming (MOCP) (§ 2) in which compensations are
programmed separately from the system, and incorporated within a compensation monitor which
listens for relevant system events and programs compensations accordingly. A central aspect of
MOCP is the specification language which programs the monitor. Due to the advantages that au-
tomata bring to monitoring, namely that monitoring states are directly programmable/visible to
the user, we propose compensating automata (§ 3) — a novel graphical compensation notation.
Finally, we show how MOCP can be applied to a sophisticated e-procurement system from the
literature (§ 4) which existing compensation notations have difficulty in handling [GFJK03].

2 Programming Compensations

To highlight the challenges of programming compensations we use the e-procurement system
(EPS) case study presented in [GFJK03]. Interestingly, programming the EPS when everything
“works fine” is relatively straightforward but it quickly becomes complex when handling “unex-
pected” behaviour e.g., cancellation by a customer, an unavailable third party system, software
or hardware crashes, etc.. This observation leads us to believe that strictly separating normal
behaviour from abnormal behaviour helps to keep the complexity manageable. By extension,
we also propose separating abnormal compensations from other recovery code which is not
compensation-based since there is a significant difference in their programming. To this effect,
using a strict interpretation of “compensations”, i.e., that they are logical reverses of correspond-
ing activities, a substantial number of the failure handling aspects of the EPS do not fall within
the remit of compensations (e.g., stopping or pausing a business process or trying an alterna-
tive transport company). On the other hand, giving a refund, and returning shipped goods are
compensations. In fact, by our definition, compensation features of the EPS can be described in
three points: (i) If a user cancellation is received after goods have been reserved and transporta-
tion arranged but before an invoice has been sent and the goods shipped, then the order can be
cancelled by running compensations in reverse chronological order for those activities that have
successfully executed; (ii) If an order is cancelled, then the cancellation fee is dependent on the
state of the delivery: if there is a fee for the cancellation of delivery, then the costs are passed
onto the customer; if an invoice has not been sent, then an invoice for the cancellation fee is sent
to the customer; instead, if an invoice has been sent and payment has been received, then a partial

Proc. GTVMT 2013 2 / 12

ECEASST

refund is sent to the customer; (iii) If goods were delivered to the wrong address, the shipment
should be returned.

To facilitate programming of compensations we propose a complete separation of concerns
with the system not keeping track of how and what to compensate but simply knows when com-
pensations are to be triggered. Such a design pattern necessitates a compensation monitor which
listens for system activities and programs compensations accordingly. As soon as the system
communicates with the compensation monitor that it needs to start compensating, the compen-
sation monitor takes over and communicates to the system which (compensating) actions need
to be executed. The figure below shows the overall setup with the system communicating events
to the compensation monitor and the latter communicating compensations if it receives a signal
on the compensate line.

Compensation

Compensation

events

System
compensations

program

Monitorcompensate

In order to program the compensation monitor, we propose a dedicated formalism which is
solely concerned with programming compensations. Based on the literature [CP12], a compen-
sating formalism should support two main activities: that of programmatically collating com-
pensations and that of activating them. Collating compensations usually involves installing com-
pensations with the possibility of replacing previously installed compensations. Once compen-
sations are activated, the mechanism should allow for an indication that the compensations have
been applied, and that the system can resume execution (and the compensation monitor to revert
back to collating compensations). In what follows we informally introduce and motivate the
constructs of the proposed compensation notation, compensating automata:
Basic compensation installations The formalism should allow actions to be designated as com-
pensations for other actions. Subsequently, upon completion of an action, the corresponding
compensation is pushed onto a stack. If compensation is invoked, the actions on the stack are
executed in the reverse order of their counterparts. In the EPS, this corresponds to a number of ex-
amples such as “unreserving” previously reserved goods. This is depicted in Fig. 1(a)[left]1where
the automaton transitions upon the ReserveGoods event while installing the compensation Un-
reserveGoods. Some activities such as sending a quotation might not have a compensation (e.g.,
Fig. 1(a)[middle]). Similarly, we allow automatic installation of compensations with no associ-
ated event by annotating the forward arrow with τ (see Fig. 1(a)[right]).
Replacing compensations Compensations may have to be replaced at some point and therefore
it should be possible to delimit compensation patterns which upon being matched are replaced by
another compensation. For example, as soon as the goods are shipped, then it no longer makes
sense to cancel the transport arrangement. Instead, this is replaced by the shipment back of
the goods once they reach their destination. Compensation replacement is depicted in Fig. 1(b)
where an automaton monitoring transport arrangement is scoped so that when the goods are
shipped, any accumulated compensations (CancelA or CancelB) are discarded and replaced by
the ReturnGoods.
1 We use the following abbreviations: trans (transport), canc (cancellation), addr (address), unv (unavailable), notf
(notification), rec (receive), gds (goods), delv (delivery), ack (acknowledgement), pay (payment).

3 / 12 Volume 58 (2013)

Monitor-Oriented Compensation Programming

(a)

ReserveGoods?

UnreserveGoods!
SendQuote?

transCancOk!

τ

(b)

ArrangeTransA?

CancelA!

ArrangeTransB?

CancelB!

ShipGoods?

ReturnGoods!

(c)

CorrectedAddr?

same as (b) SendGdsNotf? RecGdsDelvAck?

UnvAddr?
AddrWasOk?

(d)

ReturnGoods!

τ

charge!

GoodsReturned? InspectionOk?

(e)

ShipGoods?

CancelA!

ArrangeTransB?

CancelB!

done?

done!

done!

ArrangeTransA?

(f)

τ ArrangeTrans?

charge! Cancel!

transCancOk!transCancOk?
charge? Refund!

RecPay? ShipGoods?

Figure 1: Examples of different compensation constructs

Proc. GTVMT 2013 4 / 12

ECEASST

Stopping compensation activation Sometimes a business process should not be reversed com-
pletely. For example if goods have been shipped, but returned (e.g., the goods notification re-
mains unacknowledged), the system checks whether the reason is a wrong address. If it is the
case, the compensation should be temporarily suspended — deviated to another state — until
the system attempts to verify the address was correct. If the address was correct then the sys-
tem signals the monitor to continue compensating. Otherwise, the system should continue by
re-attempting shipping to the corrected address while the compensation monitor continues to
collate compensations from the “deviated-to” state onwards. A deviation is shown in Fig. 1(c)
as a bold line with two outgoing arrows: a plain arrow which is taken on the first traversal and a
double arrow taken on a deviation.
Compensations having compensations Compensation actions may have compensations them-
selves. For example, while goods are being shipped back (the compensation in the previous
point), compensations might still be needed since the process might also fail at some stage. As
depicted in Fig. 1(d), the ReturnGoods action is expected to give rise to a number of system
events including the shipment of the goods back to the supplier and inspecting the goods to en-
sure that they are as expected. Note that if inspection fails, then the compensation of the shipment
would involve a charge to the customer.
Concurrent communicating compensation handlers To enable better decomposition of com-
pensations, concurrent compensation handlers can synchronise. For example a more efficient
way of booking transport is to start the booking process with the two shipping companies and
then cancel one as soon as the other is confirmed. Known as speculative choice, this can be
encoded by communicating automata as shown in Fig. 1(e). Communication can also be used
during compensation execution. In our example, the refund operation has to wait for the trans-
port cancellation (if this has taken place) so that any fees incurred can be passed on to the user.
Fig. 1(f) shows the payment and the transport automata where the Refund has to wait for either
charge or transCancOk (signifying transport cancellation charge and no charge respectively).

Following from this informal introduction, the next section gives the formal syntax and se-
mantics of compensating automata.

3 Formalising Compensating Automata

A compensating automaton (CA) is intended to enable the user to program the compensation
monitor so that depending on the sequence of system events, compensations are collated and
possibly later executed if the system signals compensate. As such a CA should not only be
aware of, but also able to affect system activities.

Definition 1 A CA event I is a non-empty subset of activities in an alphabet Σ, I ⊆ Σ, and
triggers if one of the activities i ∈ I is observed by the monitor. We take τ to be a special event
which immediately triggers without external stimulus, and use Στ to denote Σ∪{τ}. A CA action
O is a set of monitor-executable activities, O ⊆ Σ, which are carried out concurrently. CAs can
run concurrently and may need to communicate. This is achieved by distinguishing between the
set of system activities ΣS and the set of local activities ΣL (where ΣS ∩ΣL = ∅ and ΣS ∪ΣL = Σ).

Once a system event is detected by the monitor, a CA takes transitions to move through the

5 / 12 Volume 58 (2013)

Monitor-Oriented Compensation Programming

q0

Event1?

Comp1!

Event2?

q4

τ

Comp3!

Event3?
q3

Comp2!q5

q1 q2

Figure 2: An example of a compensating automaton

automaton states. For such an event, a transition defines a compensation which should be in-
stalled to compensate for it. To enable local communication, transitions can also trigger over
local events and can dually trigger local events themselves. Moreover, transitions may some-
times specify a third state to support deviation. CAs’ states may be of two types: basic or nested.
Nested states support compensation scoping, i.e., compensations which expire and are thus dis-
carded and replaced with a specified compensation. Finally, a compensation in the context of
CAs is an action, which may include both system and local activities, and may itself have pro-
grammed compensations in terms of CAs.2

Definition 2 A CA is a quintuple A = (Στ,Q, δ,q0,F): an alphabet Στ, a set of states Q, a set of
transitions δ, an initial state q0 ∈ Q, and a set of final states F ⊆ Q. We useA to represent the set
of CAs and Â for the set of vectors of CAs. We will use variables A, A′ ∈ A to range over CAs
and Â, Â′ ∈ Â to range over vectors of CAs. Furthermore, Q = B∪N where N and B represent
nested states and basic states respectively. q ∈ N is a tuple Â×C where C is the compensation
used for replacing the compensations of the nested vector.

A transition t ∈ δ is a quintuple: a source state, an event-action tuple together with their com-
pensation, and a destination state — t ∈ (Q×2Στ ×2ΣL ×C×Q). A deviating transition t′ is a
sextuple consisting of a source state, an event-action tuple together with their compensation, a
deviation state, and a destination state — t′ ∈ (Q×2Στ ×2ΣL ×C×Q×Q). To simplify the pre-
sentation of the semantics, we represent non-deviating transitions as deviating transitions with
blank state ◦. Using D = Q∪ {◦}, the set of transitions δ is a subset of the Cartesian product
(Q×2Στ ×2ΣL ×C×D×Q). We will write event(t) and src(t) to respectively refer to the event
and source state of a transition t. Finally, a compensation c ∈ C is an element of: (2ΣLτ ×2Σ×Â).

Example 1 As an example of a CA we consider Fig. 2 where state q5 contains a nested automa-
ton with initial state q1, final state q2 and a single transition with event Event2, no action, and
no compensation. The parent automaton has three basic states, q0, q3, and q4 and a nested state.
Furthermore, it has three transitions one of which is a deviation connecting q0 to the nested state
and q3 as the deviating state. Note that compensation Comp1 is installed upon receiving Event1,
Comp2 upon completion of the nested automaton, and Comp3 upon receiving Event3.

Since a CA may have nested vectors of automata, its configuration should be correspond-

2 For a more detailed presentation the reader is referred to [Col12]

Proc. GTVMT 2013 6 / 12

ECEASST

ingly nested by a vector of configurations. Each basic (non-nested) configuration has to keep
track of: (i) the automaton and the state it is in; (ii) the execution “direction” — whether it is
currently collating compensations (conceptually the system state is progressing forward) or ac-
tivating compensations (conceptually the system state is progressing backwards); and (iii) the
collated compensation in terms of a stack, including the installed compensations and deviations.
The execution direction is represented by R def

= {S,R}, signifying forward and backward execution
respectively, while a stack S ∈ S is a sequence of stack elements S def

= Stack∗ where each element
of type Stack can either be a compensation or a deviation, Stack ::= C | D.

Definition 3 A configuration is defined as: BConf ::= Basic(A×Q×R×S)

NConf ::= BConf | Nest(BConf ,Conf) Conf ::= Vect(seq NConf)

To abbreviate we drop A when clear from the context and use (q,S)r to denote Basic(A,q,r,S)
where r ∈ R (e.g., if r = S, (q,S)S is a forward-executing configuration); and (q,S)r

cf to denote
Nest(Basic(A,q,r,S),cf). The initial configuration of a vector of CAs is given by the in function
which starts each automaton from its respective initial state:

in(Â) def
= [(q01, [])

S
in(q01), (q02, [])

S
in(q02), . . . , (q0n, [])

S
in(q0n))]

Note that to handle state nesting we call the in function overloaded to states: if the state is
nested, the configuration of the nested vector of automata is obtained by calling in once more,
otherwise in returns an empty configuration.

in(q) def
=

{
in(Â′) if q = (Â′,c)
[] otherwise

A configuration reaches a point where it cannot proceed further when either the automaton has
reached a final state during forward execution, i.e., no further installations can occur, or all the
compensations have been activated during backward execution.

Definition 4 A basic configuration cf is said to be terminated, written �(cf), if and only if
it has reached a final state and it is in forward direction: �((q,S)r) def

= q ∈ F ∧ r = S. A basic
configuration cf is said to be compensated, written �(cf), if and only if it has an empty stack
and it is in backward direction: �((q,S)r) def

= S = [] ∧ r =R. Nested configurations are neither
terminated nor compensated since execution continues with the parent. A vector configuration
is said to have terminated if all sub-configurations are either terminated or compensated and at
least one has terminated3:

�([cf1,cf2, . . . ,cfn]) def
= ∃i ∈ 1..n ·�(cfi)∧∀ j ∈ 1..n ·�(cf j)∨�(cf j)

On the other hand, a vector configuration is said to have compensated if all sub-configurations
have compensated: �([cf1,cf2, . . . ,cfn]) def

= ∀i ∈ 1..n ·�(cfi).

Definition 5 The push operation on stacks, denoted s#S , adds an element s onto the top of
stack S where s is either a compensation c ∈ C or a deviation d ∈ D:

3 The decision to consider a vector configuration as terminated even if only one of the sub-configurations has termi-
nated, is based on the fact that frequently, in various typical examples (such as the speculative choice in Fig. 1(e)) one
would still want to continue programming compensations if some of the branches have compensated.

7 / 12 Volume 58 (2013)

Monitor-Oriented Compensation Programming

c#S def
= c :S d#S def

=

{
S if d = ◦

d :S otherwise

To ensure monitoring remains cheap, CAs should be deterministic.

Definition 6 A CA, (Σ,Q, δ,q0,F), is said to be deterministic if and only if: (i) if a state has an
outgoing τ transition, then it may have no other outgoing transitions:

∀t, t′ ∈ δ · (t , t′∧ src(t) = src(t′)) =⇒ τ < event(t)
(ii) there are no outgoing transitions with shared labels from the same state:

∀t, t′ ∈ δ · (t , t′∧ src(t) = src(t′)) =⇒ event(t)∩ event(t′) = ∅

(iii) once a final state is reached, no further transitions may be taken: ∀t ∈ δ · src(t) < F.
Furthermore, a CA is said to be well-formed if it contains no loops made up of transitions with

labels over ΣL∪τ.

3.1 Semantics

We give the semantics of CAs in SOS style [Plo81] in terms of a labelled transition system where
states are configurations.

Definition 7 The semantics of a vector of CAs is given by the least transition relation
x
−→

(with
x
−→⊆ Conf ×Trace×Conf) satisfying the rules in Fig. 3 (using ++ to denote vector concate-

nation) where an element of Trace is either (i) an automaton transition, i.e., an activity triggering
local action in Στ × 2ΣL ; (ii) a compensation action, i.e., a local activity triggering an action in
ΣLτ × 2Σ; (iii) a compensate signal � which switches the automaton from collating to activating
compensations; and (iv) a silent transition, τ, representing the rest of the automaton activities.
Thus, we define Trace as: Trace ::= Forw(Στ×2ΣL) | Back(ΣLτ×2Σ) | � | τ.

The first rule, Suc, deals with the basic automaton transitions such that if the transition event
triggers, then the action is carried out and the compensation and deviation are pushed onto the
stack. If the destination state (q′) is nested, then the corresponding nested initial configuration
is given by calling the in function. When a CA receives the compensate signal, denoted �, rule
Fail turns the execution mode of the automaton from forward to backwards. Once the execution
direction is backwards, if the topmost stack element is a compensation, then rule Comp pops it
from the stack and activates it. Recall that each compensation action has an associated (possibly
empty) vector of automata as compensation. Thus the resulting configuration is a nested con-
figuration including the configuration for the compensation of the compensation. If the topmost
stack element is a deviation, then the automaton should stop activating compensations and re-
sume collating them. Rule Dev deviates the execution by reverting the configuration direction
from backwards to forwards and sets the deviation state as the new configuration’s state. Since
this state may be nested, the resulting configuration is nested.

Upon successful completion of a nested vector of automata, i.e., its configuration is terminated,
rule NestSuc is responsible to pass control back to the parent by discarding the corresponding
configuration and installing the programmed compensation. In case the nested configuration is
compensated, then the parent configuration starts compensating itself. This scenario is handled
by the NestFail by discarding the nested configuration and changing the parent’s direction to

Proc. GTVMT 2013 8 / 12

ECEASST

Suc
(q,S)S

iO
−→ (q′,d#c#S)Sin(q′)

(q, I,O,c,d,q′) ∈ δ
i ∈ I Fail

(q,S)S
�
−→ (q,S)R

Comp
(q,c#S)R iO

−−→ (q,S)R
in(Â)

c = I,O, Â
i ∈ I Dev

(q,d#S)R
τ
−→ (d,S)Sin(d)

NestSuc
(q,S)Scf

τ
−→ (q,c#S)S

q = Â,c
�(cf)

NestFail
(q,S)Scf

τ
−→ (q,S)R

�(cf)

NestComp
(q,S)Rcf

τ
−→ (q,S)R

�(cf)∨�(cf) Nest
cf

x
−→ cf ′

(q,S)r
cf

x
−→ (q,S)r

cf ′

Vect
cf

x
−→ cf ′

α++[cf] ++β
x
−→ α++[cf ′] ++β

Figure 3: The semantic rules for compensating automata

backwards. When the parent configuration has a backward direction and the nested configuration
is terminated or compensated, rule NestComp triggers and passes control back to the parent so
that the latter continues with its compensation. Whenever a nested configuration is reached, the
Nest rule is required to enable nested configurations to progress. Similarly, the Vect rule enables
individual configurations within a vector to progress independently (α,β : seq Conf).

Example 2 Referring back to the previous example, upon receiving Event1, the transition from
q0 proceeds to q1 through rule Suc which pushes the compensation and deviation onto the stack
and invokes the in function on state q5. More interestingly, upon reaching q2 with configuration
(q5, [q3, ({τ}, {Comp1}, [])])S(q1,[({τ},∅,[])])S

, rule NestSuc triggers and installs compensation Comp2
while discarding the nested configuration. This leads to configuration
(q5, [({τ}, {Comp2}, []),q3, ({τ}, {Comp1}, [])])S.

An interesting change occurs if the failure event occurs, triggering the Fail rule. In this case
the configuration direction turns backwards to (q5, [({τ}, {Comp2}, []),q3, ({τ}, {Comp1}, [])])R and
subsequently rule Comp begins consuming and triggering the compensations on the stack. Af-
ter triggering compensation Comp2, the resulting topmost stack element is a deviation. This
causes rule Dev to trigger and the configuration is turned into forward direction once more:
(q3, [({τ}, {Comp1}, [])])S.

Upon observing system activities, the compensating monitoring system relays them to the
compensating automata which potentially perform a number of steps based on the rules pre-
sented above. Importantly, these steps should respect three properties which are crucial in the
context of compensation programming and runtime monitoring: (i) self-cancellation — a stan-

9 / 12 Volume 58 (2013)

Monitor-Oriented Compensation Programming

dard way of checking that a compensation formalism is sane [BHF04], by ensuring that the
monitor-triggered compensations are the correct compensation for the actions carried out by the
system, i.e., assuming perfect compensations the outcome of the system behaviour plus the exe-
cution of compensations would be logically equivalent to performing no action4; (ii) stability —
it is crucial that the monitor does not contain live loops which would result in keeping the sys-
tem waiting forever; and (iii) determinism — deterministic monitoring ensures that the monitor
produces the same result under equivalent observations. While the proofs for these properties
cannot be included here due to space limitations, these have been carried out in full [Col12].

4 Programming with Compensating Automata

The compensation logic for the EPS has been programmed as a vector of five automata whose
monitoring logic applied to the EPS would satisfy all the compensation features as described in
[GFJK03]. Here we only present the part of the EPS which deals with transporting the order
while giving the full detail in [Col12]. The compensation logic modelled in the compensating
automaton shown in Fig. 4 can be summarised as: (i) if the process fails before the goods have
been shipped, then the transport arrangement is simply cancelled; (ii) if the process fails after
the goods have been shipped, then the goods are returned (using compensation scoping); (iii) if
the return of the goods fails, then returnFailed communicates with the compensating automaton
handling the order so that the action which restores the goods back to stock is discarded (through
the compensation of the compensation); (iv) if the return of the goods fails, then charge! com-
municates with the compensating automaton handling the payment (not shown here) so that the
customer would still pay for the items (through the compensation of the compensation); and (v)
if the failure occurred due to an incorrect address which is later corrected, then the transport is
reattempted without affecting the procurement further.

5 Related Work and Conclusion

Compensation concerns often crosscut other programming concerns and thus attempting to pro-
gram compensations within the main flow of a program would clutter the program and also limit
the expressivity of compensation programming. In this paper, we have presented an alterna-
tive approach to compensation programming through the use of runtime monitoring techniques
— monitoring system activities to instantiate compensations. The contributions of this paper in-
clude: (i) an instantiation of the MOP framework to compensations, advocating complete separa-
tion of compensation concerns; (ii) a compensation programming notation, CAs, which includes
a new compensation construct, the deviation, used to redirect compensation; (iii) formalisation
of the syntax, semantics, and self-cancellation of these automata; and (iv) programming com-
pensations for an EPS — showing CAs to be useful for handling non-trivial compensation logic.

Our work is mainly inspired by the MOP framework [MJG+12] which has been proposed
as a means of separating programming concerns. In this paper, we have instantiate MOP to
compensation programming, i.e., monitor-oriented compensation programming.
4 Note that this definition can be considered at various levels of abstraction. In our case, we assume that the user
supplies a correct list of actions and their corresponding counteractions and use this as the basis of our reasoning.

Proc. GTVMT 2013 10 / 12

ECEASST

AddrOk?

ArrangeTransA?

charge! CancelA!

ArrangeTransB?

charge! CancelB!

ShipGoods?

GoodsReturned? InspectionOk?

returnFailed!
charge!

startTransport?

ReturnGoods!

τ

SendGoodsNotf?

RecGdsDelvAck?

CorrectedAddr?

UnavailableAddr?

Figure 4: The compensating automaton for the transportation aspect of the EPS

Monitoring and steering of loosely coupled systems is not new [ACM+07, BG11] and has
been mostly motivated by the need for autonomous adaptation and self-healing in the context
of the highly dynamic service-oriented architecture. Our work differs in that while all these
approaches support monitor-triggered compensations, they do not separate compensations from
other concerns such as exception handling. Our strict separation of concerns allows the use
of more dedicated compensation constructs such as the deviation, enabling a fine interplay of
normal and compensation execution.

There are numerous formalisations and notations [bpm08, BF04, BHF04, HZWL08, LMMT08]
which support compensations including some which are pictorial (e.g., Petri net-based for-
malisms [HZWL08], communicating hierarchical transaction-based timed automata (CHTTA)
[LMMT08], and BMPN [bpm08]). None of these formalisms are designed to support monitoring-
orientation, nor do they support a notion similar to deviation.

A limitation of the current approach is that the system has a single feedback line through
which it can signal compensations. This is a limitation when there are several different potential
compensations from which the system can choose (for example see [BF04]). In the future we
aim to lift this limitation by using monitoring techniques to decide which compensation should
be run in the given runtime context.

Bibliography

[AAB+07] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu,
S. Thatte, P. Yendluri, A. Yiu. Web Services Business Process Execution Language
Version 2.0. 2007. OASIS Standard.

11 / 12 Volume 58 (2013)

Monitor-Oriented Compensation Programming

[ACM+07] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, P. Plebani. PAWS: A Framework
for Executing Adaptive Web-Service Processes. IEEE Software 24:39–46, 2007.

[BF04] M. J. Butler, C. Ferreira. An Operational Semantics for StAC, a Language for Mod-
elling Long-Running Business Transactions. In COORDINATION. LNCS 2949,
pp. 87–104. 2004.

[BG11] L. Baresi, S. Guinea. Self-Supervising BPEL Processes. Software Engineering,
IEEE Transactions on 37(2):247 –263, 2011.

[BGR07] H. Barringer, D. Gabbay, D. Rydeheard. From Runtime Verification to Evolvable
Systems. In RV. LNCS 4839, pp. 97–110. 2007.

[BHF04] M. J. Butler, C. A. R. Hoare, C. Ferreira. A Trace Semantics for Long-Running
Transactions. In 25 Years CSP. LNCS 3525, pp. 133–150. 2004.

[bpm08] Business Process Modeling Notation, v1.1. 2008. http://www.bpmn.org/

Documents/BPMN 1-1 Specification.pdf (Last accessed: 2010-02-17).

[Col12] C. Colombo. Runtime Verification and Compensations. PhD thesis, Dept. of Com-
puter Science, University of Malta, 2012.
http://staff.um.edu.mt/ data/assets/pdf file/0013/173020/cc phd.pdf

[CP12] C. Colombo, G. Pace. Recovery within Long Running Transactions. ACM Comput-
ing Surveys 45, 2012. To appear.

[GFJK03] P. Greenfield, A. Fekete, J. Jang, D. Kuo. Compensation is Not Enough. In EDOC.
Pp. 232–239. 2003.

[HZWL08] Y. He, L. Zhao, Z. Wu, F. Li. Formal Modeling of Transaction Behavior in WS-
BPEL. In CSSE. Pp. 490–494. 2008.

[LMMT08] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, A. Troina. Design and verification of
long-running transactions in a timed framework. Sci. Comput. Program. 73:76–94,
2008.

[LVF10] I. Lanese, C. Vaz, C. Ferreira. On the Expressive Power of Primitives for Compen-
sation Handling. In ESOP. LNCS 6012, pp. 366–386. 2010.

[MJG+12] P. O. Meredith, D. Jin, D. Griffith, F. Chen, G. Roşu. An Overview of the MOP
Runtime Verification Framework. STTT 14:249–289, 2012.

[Plo81] G. Plotkin. A structural approach to operational semantics. Technical report, Dept.
of Computer Science, Aarchus University, Denmark, 1981. DAIMI FM-19.

[RLT78] B. Randell, P. Lee, P. C. Treleaven. Reliability Issues in Computing System Design.
ACM Computing Surveys 10:123–165, 1978.

Proc. GTVMT 2013 12 / 12

http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf
http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf
http://staff.um.edu.mt/__data/assets/pdf_file/0013/173020/cc_phd.pdf

	Introduction
	Programming Compensations
	Formalising Compensating Automata
	Semantics

	Programming with Compensating Automata
	Related Work and Conclusion

