
Electronic Communications of the EASST
Volume 30 (2010)

International Colloquium on Graph and Model
Transformation On the occasion of the 65th birthday of

Hartmut Ehrig
(GraMoT 2010)

Formal Modeling of Communication Platforms using
Reconfigurable Algebraic High-Level Nets

Tony Modica, Kathrin Hoffmann

24 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Formal Modeling of Communication Platforms using
Reconfigurable Algebraic High-Level Nets∗

Tony Modica1, Kathrin Hoffmann2

Technische Universität Berlin1

Hochschule für Angewandte Wissenschaften Hamburg2

Abstract: Communication nowadays is based on communication platforms like
Skype, Facebook, or SecondLife. The formal modeling and analysis of communi-
cation platforms poses considerable challenges, namely highly dynamic structures
and complex behavior. Since most of the well-known formal modeling approaches
are adequate only for specific aspects of communication platforms, in this paper we
introduce the approach of reconfigurable algebraic high-level nets with individual
tokens and show in our case study Skype that this approach is adequate for model-
ing the main aspects and features of communication platforms.

Keywords: Algebraic high-level nets, higher-order nets, individual token approach,
communication platforms, Skype

1 Introduction

During the last decade, mobile and adaptive communication systems like Skype, Facebook, or
SecondLife have become more and more important. These systems have several aspects in com-
mon. In mobile and adaptive communication-based systems, communicating entities (actors) can
transmit content, which is contextually interpreted. Actors may join, move in or leave communi-
cation platforms, where the actors’ preferences, access rights and roles are respected and define
a temporary set of communicating partners and a context of interpretation for communicated
data.1

It is desirable to have a formal modeling technique for communication platforms, so that we
can specify the features of such systems in an appropriate way and are able to simulate, test,
and analyze/verify them by using not only the structure but also the formal semantics of the
modeling technique. General properties of interest are related to consistency, safety and se-
curity requirements, liveness, termination etc. We have observed that most of the well-known
modeling techniques like UML and actor systems [Agh85] or formal specification techniques
like process algebras [Mil99], low-level and high-level Petri nets [Rei85, JR91], algebraic spec-
ification [EM85] and graph transformation [EEPT06], as well as different kinds of logic are

∗ This work has been partly funded by the research project forMAlNET (see tfs.cs.tu-berlin.de/formalnet) of the
German Research Council and by the Integrated Graduate Program on Human-Centric Communication at Technische
Universität Berlin
1 The notion of Communication Spaces has been coined in the research area ”Modeling and Engineering of Computer
Supported Communication Spaces” of the recently founded Innovation Center Human-Centric Communication at
Technische Universität Berlin as an characterizing concept of communication systems with these properties and as an
ontology for describing mobile and adaptive communication systems.

1 / 24 Volume 30 (2010)

tfs.cs.tu-berlin.de/formalnet


Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

able to model and/or analyze these aspects only partially. Conventional modeling techniques
for communication-based systems like classical Petri nets and the UML are restricted to model
static, immutable network topologies. Graph transformation systems in contrast are dynamic in
their structure but lack a notion of behavior. Of course, appropriate graph transformation systems
may also be used to simulate e.g. the behavior of Petri nets but it seems advisable to distinguish
user behavior from reconfiguration and to possibly use standard results for the behavior analysis
of Petri nets. Moreover, we believe that diagrammatic models like Petri nets and graphs support-
ing visual modeling and visual behavior simulation can have advantages for system modeling
w.r.t. readability and understandability, though there is no standard measure for these properties.

In the context of concurrent and distributed systems Petri nets, first introduced by C.A. Petri in
[Pet62], are a well-known and widely used formalism and have been employed in practical ap-
plications in many different areas (see e.g. [Rei85, RT86, MM89, MM90, Win87, Bau90]). Their
graphical representation and formal semantics excellently support the modeling, simulation, and
formal analysis of such systems. High-level net classes are obtained by combining Petri nets with
an appropriate data type part. Most prominent are coloured Petri nets [Jen92, Jen94, Jen97], a
combination of Petri nets and a high-level programming language, which is an extension of the
functional programming language Standard ML. Coloured Petri nets offer formal verification
methods and an excellent tool support, which has been used in numerous case studies within a
large variety of different application areas. Apart from this, there are algebraic high-level (AHL)
nets [EPR93, EHP+02], which give rise to a formal and well-defined description due to their
integration of classical algebraic specifications [EM85] into Petri nets.

Especially in communication platforms we have to deal with highly dynamic structures and
behavior; most notably, the number of users known to the system can grow or decrease during
runtime. In order to maintain a variable number of users, we also need a possibility to reconfigure
the structure. So we advocate the integrated formal modeling technique of reconfigurable AHL
nets for communication platforms like Skype, where on the one hand the data type part represents
users identities and their communication data and on the other hand suitable rules express the
essential features of communication-based activities. Moreover, we need to change the marking
of a net freely by appropriate rules to be able to process data in a distributed way in contrast
to the local effect of transition firing. Thus, to achieve an adequate dynamic reconfiguration at
runtime, not only the structure of an AHL net is manipulated by rule application but also its
marking. A further essential aspect of communication platforms that needs marking-changing
rules is multicasting, i.e. transmission of data to selected actors, which can not be realized
adequately by the classical firing behavior of Petri nets [BEE+09].

This paper is organized as follows: In Section 2, we show how to model the main requirements
of communication platforms in an adequate way with reconfigurable algebraic high-level nets
with individual tokens by our case study Skype as a typical example of a communication plat-
form. Section 3 gives an overview of the analysis results for AHL nets with marking-changing
rules. Section 4 discusses higher-order markings as concept to provide a control structure for
more complex systems to model. Section 5 ends with the conclusions and an outlook to future
work.

Proc. GraMoT 2010 2 / 24



ECEASST

2 Formal Modeling of Skype with Reconfigurable AHOI Nets

Skype is currently a widely used Internet telephone software and can be obtained and used free
of charge. In its basic version it features most of the functions a communication tool is expected
to have like multi-user conferences and contact management and therefore Skype is a reasonable
choice for a modeling case study of communication platforms. In this section, we discuss the
principles we chose to model Skype with AHLI nets and demonstrate how we model several
aspects of Skype features according to these principles.

Contact Management A user should call or chat only with users who explicitly allowed
this specific user to contact them. In many communication applications like Skype, this is solved
with contact lists. To enable a user to add them to his contact list, Skype offers a function to
search for contacts in a white pages directory of all registered users. The asked user can deny
this request.

Calls A user can directly call one user on his contact list like in a telephone call. The callee
gets notified by its Skype client and he may then accept the call unless he is already in another
call or conference. In this case he has to end the current call before accepting the incoming
one. This means that calls and conferences are exclusive communications and a user can only
participate in one at a time.

Conferences A conference is a generalized form of direct call where several participants (up
to a technically bounded number) talk to all other participants. A direct call can be considered
as special case of a conference with two participants. In Skype, if someone starts a conference
he is designated as its host who is the only one who can invite other people and kick them out
after having joined the conference. If the host quits a conference, it is terminated, i.e. the other
conference participant can not send any further messages afterwards.

Call Forwarding Known from service hotlines in the field of commercial communications,
call forwarding means that the callee transfers an incoming call to another contact in his list as
if the caller would have called the contact he is being forwarded to directly, even if the caller
does not know this contact. In Skype, call forwarding only works for direct calls and is no longer
available once a direct call is expanded by the caller to a conference of at least three people.

Chats Chats are similar to conferences but in contrast they are mostly based on sending mes-
sages that do not have to be perceived immediately like acoustic messages in calls, wherefore we
classify chats as non-exclusive communication. In Skype, a user can participate in as many chats
as he likes in parallel, add references to them in his contact lists, and look through each chat’s
history when it is opened2. Apparently, it is not possible to delete the history of a chat in the
Skype client, so we simply consider Skype chats as persistent and users can not actively leave

2 However, management of chats in the Skype client is not clearly explained; you may select a set of contacts and
start a chat and invite and kick contacts like in conferences. But if you already have created a chat for a set of contacts
the old chat and its history are displayed when selecting this particular set of contacts again.

3 / 24 Volume 30 (2010)



Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

a chat they have joined before but only be invited and kicked by other participating users. This
is another difference to conferences, where only the host has the right to invite and kick other
users; for this reason, a chat does not have an designated host.

In the rest of this section, we discuss how to use AHL nets with marking-changing rules to
realize these main Skype features.

2.1 Skype Clients as AHLI nets

AHL nets as a fundamental, visual and formal model in concurrency, have recently been sub-
ject for suitable extensions. A useful approach for transformation of marked AHL nets is the
rule-based approach with double pushouts of [PER95], which has been proven to have the prop-
erties of M -adhesive systems (also known as weak adhesive high-level replacement systems) in
[EEPT06] and, thus, providing many analysis results concerning the local Church-Rosser prop-
erty, parallelism, and concurrency of transformations. In [PER95], the marking of an AHL net
has been defined as an element of the commutative monoid (A⊗P)⊕, i.e. a sum of pairs (a, p)
where p is a place in the net and a is a data element of the algebra’s carrier set Atype(p) that
resides as a token on place p. Unfortunately, in M -adhesive systems for nets with such “collec-
tive” markings, we can only define rules that must not change the markings of places3, which is
too restrictive for our modeling approach.

AHLI nets For this reason, we use the formal technique of AHL nets with “individual” tokens
(AHLI nets) because for AHLI nets we can overcome this restriction and formulate M -adhesive
systems with rules that arbitrarily alter the marking of places [MGE+10]. Thus, essential features
like multicasting can be modeled in an appropriate way, which we show in a case study that unites
and extends the work done in [BEE+09, Mod10, MEE+10].

An individual marking for a net is a pair (I,m) with I the set of individual tokens and m : I→
A⊗P is the marking function, assigning the individual tokens to the data elements on the places.
Each AHLI net with a placewise finite individual token marking (I,m) can be interpreted as an
AHL net with marking ∑

i∈I
m(i).

As a main principle, we strictly distinguish user behavior from system reactions, i.e. we rep-
resent everything a user can do like entering data or pushing some buttons in its Skype client by
some transition in an AHLI net. Everything else that happens as a consequence to user behavior,
especially the extension or restriction of possible user actions, is realized by reconfiguring rule
applications. In the following, the whole Skype system is always represented by a single AHLI
net, possibly with discrete components that represent idle user clients or other structures like
ongoing conferences. We discuss an extension of AHLI nets to further structure and control the
components of a Skype system is introduced in Sect. 4, but as a first step we model Skype in a
single AHLI net.

3 In fact, to simulate the change of a place’s marking this place could be deleted and recreated by the rule with a new
marking but this is not possible in every context due to other structural restrictions.

Proc. GraMoT 2010 4 / 24



ECEASST

Data Types for Skype AHLI Nets For the Skype case study, we fix a common signature
Skype−Σ for all nets describing a Skype system and for all nets in the transformation rules.
This signature consists of the following sorts and operations. We also give the carrier sets of the
Skype−Σ-algebra A we are using for the following Skype nets.

Bool are the usual truth values {True,False} for expressing the state of condition predicates.

SkypeName is the type of words in {A, . . . ,Z,a . . . ,z,0, . . . ,9}∗ for identifiying the clients’ user
names.

Data is the type of words in {A, . . . ,Z,a . . . ,z,0, . . . ,9}∗ for the data to be transmitted in calls
and chats. We chose it for this example but it may be any kind of data.

ComMode is the finite type {Call,Chat} describing the possible kinds of communications in
Skype.

ComRequest is a special type whose elements describe the requests for a communication with
some user. There is a simple constructor operation req : SkypeName× ComMode →
ComRequest that builds a request for a name and a mode.

State elements from {Online,Offline,DND} describe the state of a Skype client. States can be
compared with a predicate notEqual : State×State→ Bool.

Log is a type for logging communication events. There is a constant Empty for the initial log and
two constructor operations sent : Log×Data→ Log and rec : Log×SkypeName×Data→
Log to add events for sent data and received data (with information about the sender) to a
log.

Control is a singleton type {•} that is used for controlling the firing of transitions, e.g. to ensure
that a transition can be fired only once.

The carrier sets in the Skype−Σ algebra A for the sorts ComRequest and Log consist only of
the terms over the given constructor operations. Note that this algebra is used for concrete Skype
nets only and we describe special algebras for the nets in transformation rules in Subsect. 2.2.

Graphical Notation For the nets and rules we use a simplified graphical notation of AHLI nets
as in Fig. 1. The rectangles are transitions and the ovals are places with inscriptions denoting
the name and type of a place, e.g. in the lower left the place User of type SkypeName. Below
the place’s name we arrange the values of the tokens that mark this place. For example, on
place User lies one token with the algebraic value Alice. Though we are dealing with individual
token markings, the actual individuals are not relevant, so we omit the token’s individuals in the
graphical notation and give only the values on the corresponding places.

The arcs are inscripted with Skype−Σ terms over variables. A special short notation are
inscriptions like s! = Offline on the arcs going out from the place State, which means for-
mally that the arc is inscripted with s only and the adjacent transition has a firing condition
notEqual(s,Offline), while the firing condition sets of the other transitions are empty.

5 / 24 Volume 30 (2010)



Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

Figure 1: Net component for a single Skype client

Client Net Components The net component in Fig. 1 represents the Skype client of the user
Alice. We assume that each registered user is represented by such a client in the overall Skype
AHLI net, though they are unconnected (yet). The owner of a client is determined by the
SkypeName token on the place named User, i.e. this client belongs to a user Alice. Moreover, it
is currently in the state Offline as one can tell from the corresponding place. In this configuration,
the only activated transition is activate, which on firing replaces the Offline state with Online and
adds a False token to place isParticipating.

In this basic form, a client can change its state between offline, online, and “do not disturb”,
request a communication to a known user on its contact list, and send data if it is participating in
a conference. In the following, we show an example firing step for transition activate in Fig. 1.

Example Firing Step Intuitively, activating the client should result in a token value Online
on place State. Formally, we first have to check that activate is enabled, i.e. that for each term
on its incoming arcs there is a corresponding token on the place the arc is going out from. As
arcs are inscripted with terms over variables (or here just with variables), we need a variable
assignment asg : Var(activate)→ A assigning algebra values to the variables ocurring on the
arcs adjacent to activate. If there is the right number of tokens on the corresponding places with
the same values as the evaluated terms (with asg) we say that activate is activated under the
assigment asg.

In the marked AHLI net Fig. 1, we see that place State carries a token with value Offline
which is demanded by the arc going to activate. Further, for the variable assignment asg with
asg(n) = Alice we have obviously that the evaluation of n is the same value as of the token on
place User. These are all arcs incoming to activate, so activate is actually activated under this
asg and can fire.

When firing, activate consumes the aforementioned tokens and as a result produces tokens

Proc. GraMoT 2010 6 / 24



ECEASST

with the values of the evaluated terms of its outgoing arcs on the corresponding places. In the
case of Fig. 1 and asg(n) = Alice, activate produces one token with value Online on place State,
one with False on isParticipating, and another with asg(n) = Alice on User as depicted in Fig. 2.

The purpose of the other transitions is discussed briefly in the following sections of the corre-
sponding Skype features.

Figure 2: Activated net component for a single Skype client

2.2 Reconfiguration of Skype Clients

Following the guideline of behavior distinction, we allow a client just to announce a request
for a call to a known client (i.e. whose owner name is present on its place Contacts) by firing
requestCom. For example, the client in Fig. 2 can fire requestCom with variable assignment
asg(n) = Bob, asg(m) = Call, if its user wants to give a call to the client of user Bob, which
produces a token value (Bob,Call) on the callee client’s place ComRequest. This request enables
the system to execute it with the application of the rules that we discuss in the following in more
detail. We assume that the Skype system promptly reacts to requests with application of the rules
that are currently applicable.

Reconfiguration of AHLI nets Next, we informally describe a special form of AHLI trans-
formations that is sufficient for modeling and understanding the case study in the following
section.

Formally, we use AHLI transformation rules following the graph transformation-based ap-
proach with double pushouts [EEPT06]. Rules are spans of morphisms ρ : L← K → R with a
left-hand side L, a right-hand side R, and an interface K being the intersection of L and R4, all

4 This means that the rule morphisms are inclusions.

7 / 24 Volume 30 (2010)



Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

these being AHLI nets with the same fixed signature Skype−Σ and a special Skype−Σ-algebra
for this rule. For a rule ρ , we first choose a family Yρ = (Yρ,s)s∈S of variables that we want to
use as variable tokens on the rule net places, such that Yρ is disjoint to the variables on the net’s
arcs. We then define the algebra for rule ρ as Aρ = TOP(Yρ), i.e. the Skype−Σ-term algebra over
the variables of Yρ . Due to space limitation in this paper a rule is depicted by L→ R, while the
interface is obvious.

To apply a rule ρ : L← K→ R to an AHLI net AN, we need a match morphism o : L→ AN
describing the occurrence of L in AN. An occurrence match morphism is sufficiently specified
by mapping the places, transitions, and tokens of the left-hand side into the target net AN. For
mapping the tokens, a match needs a token variable assignment asg : Yρ → AAN . A rule ρ is
applicable at a match if the following gluing conditions (cf. [MGE+10]) are met w.r.t the match:
(1) if a place p in AN is adjacent to a transition t that is not in the match then p must be preserved
by ρ , and (2) if a token in AN that is not matched lies on a place p, then this token must be
preserved by ρ .

In this case, we achieve the transformation step AN =
ρ,o
=⇒ AN′, where AN′ results from deleting

all parts in AN that are matched by parts in L that do not occur in R and then creating the parts
occurring only in R and not in L. We give a detailed example of a rule application for the rule in
the next paragraph.

Initiating a Conference We do not distinguish one-to-one calls from conferences but we use
calls in the sense of a special initial case of conferences. Because of this, we go directly for
conferences and do not treat calls explicitly. We refer to Subsect. 2.3 for how to model data
transmission and focus on the conference management in this subsection.

Fig. 3 shows the left-hand and right-hand side of the rule ExecuteCallRequest1, which ex-
ecutes a call request by connecting the client components that play the role of the host (who
requested the call) and the callee with a newly created conference structure. Given a request
for a call as a token req(n,Call) (with some SkypeName value n) on the ComRequest place of
any client component, the rule ExecuteCallRequest1 in Fig. 3 can be applied. This rule applica-
tion extends the host’s behavior options with one transition quit and the callee’s ones with three
transitions join,refuse,leave.

In Fig. 4(a), an example Skype AHLI net with two unconnected client components is depicted.
Their owners are Alice for the left and Bob for the right client and both clients are in the state
Online. In the following, the token variables of a rule are just the token terms that are not
already defined in Skype−Σ (u1,u2 in ExecuteCallRequest1) and their type can be deduced by
the corresponding place and operation types the variables are occurring within.

The token variable assignment asg : YExecuteCallRequest1 → A with asg(u1) = Alice,asg(u2) =
Bob and the place matching indicated by similar place names, e.g. UserA 7→ User1 etc. (also
denoted with the dashed boxes in Fig. 4(a)), describes a valid match for the rule ExecuteCallRe-
quest1.

The result of applying the rule on this match is shown in Fig. 4(b): The newly created nodes
and transitions are highlighted with green boxes and the changes in the marking (deletion of the
request token and replacing False with True on isParticipatingA) is highlighted with red circles.

Proc. GraMoT 2010 8 / 24



ECEASST

Extended Client Behavior In the reconfigured Skype AHLI net, the host may quit5, which
sets a request to disband the conference. The Conferencing place holds the names of all users
that actively participate in this conference. We consider a client as participating if it can send and
receive messages from all other participants, i.e. it has been invited and joined the conference but
has not left it yet. At the beginning of a conference, the host is the participating client. Initially,
if the callee is not already participating in another conference he has the choice to either join,
which would copy his name to the Conferencing place, or to refuse, which signals a request to
disconnect the client from this conferencing structure. Note that the firings of join and refuse are
mutually exclusive due to the Invited place type Control, which carries a black token to allow
firing either join or refuse. After having joined, a client may leave which removes the client’s
name from the Conferencing place and announces the request to disconnect like transition refuse
would do. Finally, the callee can choose to forward the call to another of its known clients (not
the host) by firing requestForward, which produces a request token req(n,Forward) on the place
ForwardRequest.

Figure 3: Rule ExecuteCallRequest1

Ensuring sensible Rule Applications Of course, rules that execute requests by reconfigur-
ing the AHLI net must not be applied to random places of the appropriate type somewhere in the
whole system but to specific places of a client in order to yield sensible structures. For example,
in the left-hand side of the rule in Fig. 3, we assume the upper three places to be matched on
the corresponding places of one client component. We can restrict applications of this rule on
desired matches by demanding that the matches satisfy (positive) application conditions in the
sense of [EEPT06].

Formally, an application condition for a rule Lρ ← Kρ → Rρ is an additional morphism (in-
clusion) AC← Lρ . If an application condition is a positive application condition, it is satisfied
for a match o : Lρ → AN if there exists also a valid match AC→ AN. This means that a positive
application condition requires additional structures for a match to find. For example, for the three

5 In the following, we simply use the transition name for describing the triggering action, e.g. “the host quits”, instead
of saying “the host client fires the transition quit”.

9 / 24 Volume 30 (2010)



Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

(a) Skype AHLI net before application (b) After application of ExecuteCallRequest1

Figure 4: Example application of ExecuteCallRequest1 for Alice calling Bob

Proc. GraMoT 2010 10 / 24



ECEASST

upper places in LExecuteCallRequest1 we can formulate an application condition consisting of the net
in Fig. 1. This ensures that the match has to find e.g. a transition like activate in Fig. 1 between
the places in AN that are matched by User1 and isParticipating1 with o. Similarly, we can forbid
additional parts with negative application conditions, which demand that there does not exist a
valid match AC→ AN.

We omit the actual positive application conditions for rules in this paper and express informally
in the left-hand side with dashed boxes that their contents can be matched only on corresponding
places of a client, e.g. as in the left-hand side of ExecuteCallRequest1 with the box around the
three upper places and similarly with the box around the lower two places. Additionally, for a
better understanding of the rule’s effect, a dashed box for a client role in the rule’s right-hand
side comprises the transitions that are intended to represent new possible actions that can be
performed by this particular client, e.g. the transition quit in the right-hand side of ExecuteCall-
Request1 that is supposed to be a host action.

Inviting to a Conference The rule ExecuteCallRequest1 would be sufficient for modeling di-
rect calls involving only two people, which we consider as a minimalistic conference. Now we
extend the system by a rule that allows to invite more clients to a running conference. In this
case, we employ the second rule ExecuteCallRequest2 in Fig. 5 for reacting to call requests and
for inviting more clients. This rule needs to match a Conferencing place that is hosted by the
requesting client (note the dashed box, representing an appropriate application condition) who
has not already quit. On the one hand, this rule simply connects the requested participant (con-
taining the lower boxed parts) to the existing conference as the previous rule would do if the
conference were not already created. On the other hand, it deletes the transition requestForward,
which restricts the behavior of the first callee that has been connected with ExecuteCallRequest1
before, because we allow call forwarding only in one-to-one calls.

The empty place QuitRequest in the left-hand side could perfectly match a place with a token
Control, so we have to avoid a host to quit the conference before the system connects a newly
invited participant by an explicit token value False.

Figure 5: Rule ExecuteCallRequest2

11 / 24 Volume 30 (2010)



Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

Leaving a Conference The rule ExecuteDisconnectRequest in Fig. 6, which handles the re-
quest for disconnecting a called client, is almost the inverse of the rule ExecuteCallRequest2 in
Fig. 5 but with a Control token on DisconnectRequest instead of Invited. It assumes that a client
either has refused the connection or has joined and then left, which created a request token for
disconnection. The rule then deletes the conference structure part of the client to be disconnected
as they are no longer needed. When leaving a conference there is just no need to represent these
actions any more. Note that the rule leaves the parts untouched that have been in the client from
the start in order to leave the core client functional and to allow further connections.

For disconnecting the callee that has been connected first to a conference with ExecuteCall-
Request1, a similar rule is needed that also deletes this participant’s requestForward transition
and ForwardRequest place.

Figure 6: Rule ExecuteDisconnectRequest

Closing a Conference If the host has quit the conference, the rule ExecuteQuitRequest in
Fig. 7 can match and remove the remaining conference structure after all participants have left
the conference with the previous rule. We do not need a negative application condition to pre-
vent “dangling” join and leave transitions from possibly connected clients. Due to the dangling
conditions for rule applications, a rule can not delete the environment of a transition that is not
part of the match. More precisely, a rule is not applicable if a matched place is connected to an
unmatched transition and the rule deletes this place.

Further Use Cases for Reconfiguration Due to space limitations we only discuss briefly some
more use cases for reconfiguring rules: A rule for executing the forward request of the callee in
a one-to-one call deletes the transitions and places of the callee appearing in a conference and
builds up the same structure for the client that the call is forwarded to so that it has the choice to
join or refuse the call.

Another interesting aspect is the creation of clients. A rule with empty left hand side and the
client net of Fig. 1 as right-hand side (but with a variable as SkypeName user token and empty
Contacts place) could be used to create clients for new users. An application condition should

Proc. GraMoT 2010 12 / 24



ECEASST

Figure 7: Rule ExecuteQuitRequest

prevent that a client with the same user name as an existing one is created by the rule.
For the previous rules, we assumed that the host accesses contacts on his Contact place. With

an additional transition, the client could produce requests for contact exchanges that lets a client
with the requested name decide whether the requester may add the unknown client’s name to its
contact list (cf. the rules given in [Mod10]).

Finally, one may object that there are cases when call requests should be discarded, e.g. when
the called client is offline or does not want to be disturbed, which can be realized with appro-
priate negative application conditions for the executing rules and a rule that catches these illegal
requests by deleting them.

2.3 Multicasting with Amalgamated Rules

In Skype conferences and chats, one client transmits data to a group of clients, i.e. the partic-
ipating clients, which is a typical concept in communication platforms. This communication
behavior is called multicasting and is a challenge for Petri net-based modeling techniques since
the number of participating clients is not known a priori. A possible but not fully adequate way is
to split the group transmission into single transmissions to each participating actor. This makes
it necessary to code the status of the multicast data for each actor into the net. Furthermore, each
client has to be connected to every other actor in order to be able to perform multicasting which
leads to a massive explosion of the net structure size in communication nets with multicasting.

Instead, we use a more practical way of specifying multicasting for communication platforms
[BEE+09], namely amalgamation of AHLI net transformation rules, which realizes a controlled,
parallel rule application at all possible matches at once [Gol10]. Informally, the application of an
amalgamated rule is the application of one or more rules (called multi-rules) that have a common
subrule (called kernel rule) at several matches in parallel that overlap in a match of the kernel
rule. An interaction scheme defines such a set of multi rules and relates them by a common
subrule.

Consider a conference in the AHLI Skype net. Now, one of its participating clients, considered
the sender in this situation, generates some data to be transmitted by firing its transition send
(cf. Fig. 1). This produces a token of type Data on the Out place of this client component6.

6 Actually, Data may be any kind of data: textual, visual, acoustic etc.

13 / 24 Volume 30 (2010)



Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

Figure 8: Interaction scheme for multicasting in conferences

Somehow, this data has to be dispatched to all other participating clients, which we realize with
the interaction scheme consisting of the one multi rule and the kernel rule in Fig. 8.

The top part is the kernel rule that matches the sender client’s name token on the conference
place and its Out place with the data token to send. The only effect of the kernel rule is that the
data token is deleted from the sender’s client. A match for the kernel rule fixes the conference and
the sender whose message is multicasted to all participating clients. A match for the multi rule
now complies to the kernel match on the common parts and additionally matches another client
that corresponds to another SkypeName token on the conference place and sends the message to
the receiving client. Here we use an appropriate algebraic operation rec that combines the actual
history h2, the sender u1 and the message itself to generate the new history of messages.

We require that amalgamated rules over this interaction scheme are built with maximal match-
ing, i.e. that for a given kernel match the multi rule is applied at all possible matches on the
Skype AHLI net. Clearly, for every participant in a conference fixed by the kernel match there
exists a match for the multi rule. Each match of the multi rule is part of the amalgamated rule
and lets this participant receive the multicasted message when the amalgamated rule is applied.
Thus, applications of amalgamated rules built over maximal matchings of the interaction scheme
in Fig. 8 realize complete multicastings in conferences.

Further Use Cases for Amalgamated Rules Interaction schemes with maximal multi rule
matching is an important and often used formalism to handle an unknown number of structural
parts or tokens. For example, the deletion of a user client is not possible with a simple rule
because there is an unknown number of name tokens on its Contacts place and a rule can only
delete a place when all of its tokens are matched (cf. Subsect. 2.2). Another interesting case

Proc. GraMoT 2010 14 / 24



ECEASST

would be an interaction scheme for executing more than one call request of a conference host
with one transformation step, which, when amalgamated over all possible matches, connects all
clients to the conference structure that correspond to the request tokens.

2.4 Chats

In Skype, a client can participate in many chats in parallel. This means that a client has to create
the data to be transmitted and to log events in the context of the chat. The transition send in the
client component in Fig. 1 is not adequate to create messages for chats because there is no way
to specify the context of the message, i.e. the chat it is meant to be multicasted in. Moreover,
the part of the history of a chat that a participant experienced is always available to him once the
chat has started, even if he was kicked by another participant. We assume a further functional
requirement for chats: If a client participated in a chat and has been kicked out, then its history
should be preserved so that on reinvitation the client can continue its history for the same chat
where it has left.

Creating Chats With the rule ExecuteCreateChat in Fig. 9(a), the system reacts to a request
token req(u2,Chat) on a client’s ComRequest place by creating a chat structure similar to rule
ExecuteCallRequest1 in Fig. 3 before. A place carries the names of all participating users and for
the initiator and the invited user the rule creates transitions and places for sending and receiving
data in the context of this chat.

Multicasting in Chats For multicasting data tokens that a participating chat user has produced
with the local send transition, we can employ an interaction scheme similar to the one for confer-
ences in Fig. 8. The only differences are that the conferencing place is now a chat place and the
application conditions have to ensure that the Out and History places associated to a participant
are the local ones for this chat instead of the corresponding places in the client of Fig. 1.

Managing Chats In chats, every participant may kick other participants and add some of his
contacts, as long as he has not already been kicked himself. In the two rules ExecuteCreateChat
in Fig. 9(a) and ExecuteAddChat in Fig. 9(b) the corresponding transitions for these actions are
created for clients that have been invited to a chat, where the rule ExecuteAddChat reacts to an
invitation request that any chat participant has created.

A kicked participant’s name gets removed from the chat place but the structure around his
local chat transition send will be preserved and so will his history. Nevertheless, henceforth this
user can not send or receive messages in this chat. If a kicked user of a chat gets readded, the
rule ExecuteReaddChat in Fig. 9(c) can be applied, which assumes that the local chat structure
for a client is already present and simply readds its user name to the chat place. As a result, the
history of a kicked participant is preserved and the client again can send messages and receives
messages from applications of the multicasting interaction scheme. Finally, in order to avoid
redundant structure to be created, we have to prevent the rule ExecuteAddChat to be applied in
the case when a client is already connected to a chat. We realize this by defining the left-hand
side of rule ExecuteReaddChat as a negative application condition for rule ExecuteAddChat.

15 / 24 Volume 30 (2010)



Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

(a) Rule ExecuteCreateChat

(b) Rule ExecuteAddChat

(c) Rule ExecuteReaddChat

Figure 9: Rules for creating and managing chats

3 Analysis of Reconfigurable AHLI Net Models

In this section, we first state that AHL nets with individual tokens are an M -adhesive category
and summarize the main results available for reconfigurable AHLI nets. The proof of these
technicalities can be found in [MGE+10]. Afterwards we show that a firing step can be simulated
by an appropriate rule and present an important result concerning the independence of firing steps
and rule applications.

Proc. GraMoT 2010 16 / 24



ECEASST

3.1 Petri nets with Individual Tokens compared to Collective Tokens

The main result in [EEPT06] concerns the formal foundation for transformations of low-level
and high-level Petri nets in the collective token approach based on the framework of M -adhesive
categories, i.e. weak adhesive high-level replacement (HLR) systems in the sense of [EHPP06].
M -adhesive categories have been introduced as a new categorical framework for graph transfor-
mation in the DPO approach. They combine the well known framework of HLR systems with
the framework of adhesive categories introduced in [LS05].

The framework of M -adhesive categories provides many useful results well-known from
graph transformation [Roz97], concerning the applicability of rules, embedding and extension of
transformations, parallel and sequential dependence and independence, and concurrency of rule
applications. The concept of parallel independence states that two parallel transformation steps
are not in conflict, i.e. each of the transformations does not delete anything that is required by
the other one. Two consecutive transformation steps are sequentially independent if they are not
causally dependent, i.e. the first rule does not produce anything that is required by the second.
Provided that the corresponding conditions are satisfied two alternative transformation steps can
be swapped and each of them is applicable after the other one.

Classical Petri nets and AHL nets have been shown in [EEPT06, EHP+08] to define a weak
adhesive HLR category for the class M of all injective net morphisms. This allows us to ap-
ply all the results for M -adhesive systems shown in [EEPT06] also for Petri net transformation
systems. The concept of Petri systems leads to a category PTSys with morphisms allowing to
increase the number of tokens on corresponding places. Unfortunately, (PTSys,Min j) with the
class Min j of all injective morphisms is not M -adhesive in contrast to (PTSys,Mstrict), where
Mstrict is the class of strict injective morphisms where the number of tokens on corresponding
places is equal. This, however, is an unpleasant restriction for the usability of the transforma-
tion approach, especially the firing of a transition cannot be simulated in a natural way by the
application of a corresponding “transition rule”. Since we have shown that AHLI nets form an
M -adhesive category with a class of non-strict morphisms M , we can apply these results to
the rules presented in Sect. 2. Amalgamated rules are in general standard rules in M -adhesive
transformation systems so that we have the same results for them [Gol10].

An example for parallel independent transformation steps is given by the rules ExecuteCallRe-
quest2 (cf. Fig. 5) and ExecuteDisconnectRequest (cf. Fig. 6) applied to the same clients, where
Alice is hosting a conference in which both Bob and Carol are currently participating and there
is a call request for Dave. In this case we can first apply ExecuteDisconnectRequest to discon-
nect Carol’s client, as well as Dave can be invited first by applying ExecuteCallRequest2. These
requests are parallel independent because each of these rules can be applied after the application
of the other yielding the same result where Carol’s client has been disconnected and Dave has
been invited.

3.2 Simulating Firing Steps by Rule Applications

Based on the observation of parallel and sequential independence of rule applications the main
results in [EHP+07] deals with conflict situations between transformations and token firing. The
traditional concurrency situation in Petri nets is that two transitions with overlapping pre domain

17 / 24 Volume 30 (2010)



Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

are both enabled and together require more tokens than are available in the current marking. As
AHLI nets can evolve in two different ways the notions of conflict and concurrency become more
complex. Assume that a given AHLI net represents a certain system state. The next evolution
step can be obtained not only by token firing but also by the application of one of the rules
available. Hence under certain conditions each of these evolution steps can be postponed after
the realization of the other, yielding the same result, and can be performed in a different order
without changing the result.

In the individual token approach we are able to manipulate the net’s marking by rule applica-
tion. Thus, here the result of independent firing and transformation steps is achieved in a more
elegant way by using the well-known result of two independent transformation steps. For this
reason we first construct a specific rule which application corresponds to a single firing step.
The so-called AHLI transition rule consists of a fixed AHLI net part given by a transition and
its environment. The marking of the AHLI net in the left hand side is chosen in such a way
that the transition is enabled and the marking of the AHLI net in the right hand side is exactly
the follower marking after transition firing, while the marking in the interface is empty. Note,
that the construction of an AHLI transition rule only depends on a specific transition with corre-
sponding token selection. But there may exist several consistent transition assignments enabling
the transition and, therefore, different consistent transition assignments may result in the same
AHLI transition rule. In [MGE+10], we have shown that there is an equivalence between a firing
step of an AHLI net and a transformation step via the corresponding AHLI transition rule.

Figure 10: Example Transition Rule

An AHLI transition rule is depicted in Fig. 10: The fixed AHLI net part for L,K, and R
is given by the transition activate and its environment consisting of the places State,User and
isParticipating as well as the net inscriptions according in Fig. 1. As explained in Subsect. 2.1
the tokens with values Offline and Alice in the left-hand side L enable the transition activate and
are replaced by tokens with values Online, Alice, and False on the corresponding places in the
right-hand side R while the marking of the interface K is empty.

Proc. GraMoT 2010 18 / 24



ECEASST

4 Higher-Order Nets as Control Structures

In this section, we discuss an extension of AHLI nets to support an adequate control structure
over complex Skype systems and their rule applications.

Due to our case study modeling Skype with AHLI nets and AHLI transformation rules, we
have proven that this technique is powerful enough to model typical features of communication
platforms. Anyway, the concepts of Petri net behaviour via transition firing and Petri net recon-
figuration with transformation rules are only loosely coupled. We designed the rules to demand
requests to be applicable to the Skype AHLI net for realizing the requests with reconfiguration
of the Skype net, but the formalism of reconfigurable AHLI nets itself is more similar to graph
transformation systems in the sense that rules are assumed to be applied “at the right time”. So,
we need a possibility to express that requests must be processed immediately, i.e. a control struc-
ture for the firing behavior and reconfiguration of AHLI nets. Several formalisms for controlling
graph transformations have been proposed [HEET98, KK99] but due to their orientation to graph
transformation they lack the possibility to relate reconfigurations (by rule applications) to firing
steps.

Algebraic Higher-Order Nets A useful approach for controlling firing steps and transfor-
mations of low-level Petri nets has been introduced in [HME05] with AHL nets that contain
place/transition nets and transformation rules as tokens. In our project forMAlNET, we call such
nets algebraic higher-order (AHO) nets due to the “nets on nets” structure. AHO nets have two
important aspects that distinguish them from the original notion of nested Petri nets called object
nets in [Val98]: First, AHO nets do not only have Petri nets as tokens but also transformation
rules, which qualifies them especially for controlling reconfigurable Petri nets. Second, AHOs
are formulated as regular AHL nets with signatures and algebras that provide operations for fir-
ing the token nets and for applying token rules on token nets. This means, that we do not need a
new formalism and can use all results for AHO nets that we already have for AHL nets. More-
over, we can use any kind of Petri nets and their corresponding transformation rules as tokens,
as long as we can define their firing behavior and transformation algebraically for the containing
AHO net.

We recapitulate the example from [HME05] that realizes reconfigurable Petri nets as an alge-
braic higher-order net and then discuss an idea how we can use this approach for better control-
ling request execution in our case study.

Figure 11: Algebraic Higher-Order Net for Reconfigurable Petri Nets

Fig. 11 depicts an AHO net where we assume that it can carry marked place/transition nets

19 / 24 Volume 30 (2010)



Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

as tokens of the sort System on its place p1 and Petri net transformation rules as tokens of the
sort Rules on its place p2. To simulate a firing step of a net token on p1, the AHO net fires
its transition token game, which selects a net token n from p1 if this net contains some enabled
transition, which is ensured by the firing condition enabled(n, t) = True of the higher-order
transition. The firing of token game then produces a token with value fire(n, t) that is just the net
n where t has fired.

Rule applications are realized similarly by firing the higher-order transition transformation,
which selects a net token n from p1 and a rule token r from p2 if the rule is applicable at some
match m into net n. Firing transformation then produces the token net that results from the ap-
plication of the selected rule on this match, which is calculated algebraically by transform(r,m).

Controlling Skype AHLI nets We now consider two extensions of the approach in [HME05]
in order to express with an AHO net that actions in Skype AHLI nets posing requests must be
handled immediately by reconfiguring rule applications. Obviously, we have to extend the defini-
tions of the sorts System and Rules (cf. Fig. 11) from place/transition nets and rules to AHLI nets,
AHLI rules and interaction schemes with maximal matching, respectively. Then we can build
an AHO net for the Skype case study as in Fig. 12. The transition token game now only fires
transitions in the token net Skype that are not producing a request token or can be understood as
a signaling request in any way. This is decided by the predicate produces request(n, t,asg) that
has to be defined according to the system to be modeled. Note that for high-level nets as tokens
we also need to consider a valid variable assignment for a firing step. The other transitions in the
token net that may trigger a reconfiguring rule, i.e. with produces request(n, t,asg) evaluating to
true, are fired in the token net Skype via the higher-order transition request and execute, which
first fires a transition in the token net n and then immediately applies a rule from p2 on n. With
this AHO net, we can express the complete firing and reconfiguration behavior of the case study
in a single AHL net and requests in the Skype systems can not remain unexecuted.

This is just a first step of generalizing reconfigurable nets. We are free to distribute the trans-
formation rules to different places and to restrict their applications by conditions that are ex-
pressed by algebraic operations depending on the system we want to model, like we did with
produces request in the small example. With AHO nets we can ensure that these conditions are
met and for example relate transition firing steps with rule applications, which is a further valu-
able tool for modeling and proving properties in addition to the analysis results in the previous
section.

Figure 12: Algebraic Higher-Order Net for Skype AHLI Nets

Proc. GraMoT 2010 20 / 24



ECEASST

5 Conclusion

In this paper, we have shown that our approach of algebraic high-level nets with individual tokens
is powerful enough to cover the main requirements of communication platforms by examplar-
ily modeling the network’s topology and the group communication in Skype. In our approach,
structures for communication are added to system only in case when they are needed and are
removed after the communication action has been completed and we strictly distinguish user
triggered client behavior and system reactions. We have presented the important result of the
category of AHLI nets forming a M -adhesive category to analyze AHLI models for communi-
cation platforms e.g. by parallel and sequential independence.

An essential aspect that is used frequently in communication platforms is multicasting, i.e.
transmission of data to selected actors, which can not be realized adequately only with the clas-
sical firing behavior of Petri nets [BEE+09]. For modeling multicasting, we refrain from adding
a massive net structure that connects the sender with each of the receiver components. Instead,
we defined an interactions scheme allowing to find all receivers with the appropriate access rights
in a possibly large system net. For our approach of modeling multicasting with amalgamated rule
applications [BFH87], we rely on the formalism of nets with individual tokens, which allows to
formulate rules for M -adhesive systems with that can manipualte freely the marking of nets, in
contrast to M -adhesive systems of nets with “collective” markings.

In order to control the firing and reconfiguration of AHLI models for communication plat-
forms we proposed to use the AHLI formalism itself by considering the actual net and the rules
of a reconfigurable AHLI system to be tokens in an algebraic higher-order net. The means, for
controling the firing and reconfiguration behavior of their net and rule tokens, suitable opera-
tions are defined in the higher-order net’s algebra for firing transitions in the net tokens and for
applying the rule tokens on the net tokens [HME05]. It remains to examine how the structure of
the higher-order net can be further used to improve the modeling of communication platforms.
Another possible abstraction is the step to reconfigurable AHO nets, which could be used for
specifying system updates and changes by creating new rule tokens or modifying existing rules.

We have implemented an Eclipse-based tool environment, which currently allows modeling,
simulation and analysis of a restricted kind of AHO nets with P/T nets and rules as tokens
[BM08]. This tool supports analysis of all possible types of conflicts w.r.t to a token net: be-
tween applications of two rules on a net token, between firing steps in a net token, and between
firign steps and applications of a rule on a net token (cf. Subsect. 3.2). An extension of our
tool to reconfigurable AHLI nets with amalgamation and controlling AHO nets that supports the
presented approach is planned for the future.

Bibliography

[Agh85] G. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems.
PhD thesis, MIT, 1985. Cambridge: MIT Press.

[Bau90] B. Baumgarten. Petrinetze, Grundlagen und Anwendungen. BI, 1990.

21 / 24 Volume 30 (2010)



Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

[BEE+09] E. Biermann, H. Ehrig, C. Ermel, K. Hoffmann, T. Modica. Modeling Multicast-
ing in Dynamic Communication-based Systems by Reconfigurable High-level Petri
Nets. In IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2009, Corvallis, OR, USA, 20-24 September 2009, Proceedings. Pp. 47–
50. IEEE, 2009.

[BFH87] P. Böhm, H.-R. Fonio, A. Habel. Amalgamation of graph transformations: a syn-
chronization mechanism. Journal of Computer and System Science, pp. 377–408,
1987.

[BM08] E. Biermann, T. Modica. Independence Analysis of Firing and Rule-based Net
Transformations in Reconfigurable Object Nets. In C. Ermel and Heckel (eds.),
Proc. Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT’08). Volume 10. EC-EASST, 2008.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer
Verlag, 2006.

[EHP+02] H. Ehrig, K. Hoffmann, J. Padberg, P. Baldan, R. Heckel. High-Level Net Processes.
In Formal and Natural Computing. LNCS 2300, pp. 191 – 219. Springer, 2002.

[EHP+07] H. Ehrig, K. Hoffmann, J. Padberg, U. Prange, C. Ermel. Independence of Net
Transformations and Token Firing in Reconfigurable Place/Transition Systems. In
Proc. of 28th International Conference on Application and Theory of Petri Nets and
Other Models of Concurrency. LNCS 4546, pp. 104–123. Springer, 2007.

[EHP+08] H. Ehrig, K. Hoffmann, J. Padberg, C. Ermel, U. Prange, E. Biermann, T. Modica.
Petri Net Transformations. In Petri Net Theory and Applications. Pp. 1–16. I-Tech
Education and Publication, 2008.

[EHPP06] H. Ehrig, A. Habel, J. Padberg, U. Prange. Adhesive High-Level Replacement Sys-
tems: A New Categorical Framework for Graph Transformation. Fundamenta In-
formaticae 74(1):1–29, 2006.

[EM85] H. Ehrig, B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Ini-
tial Semantics. EATCS Monographs on Theoretical Computer Science 6. Springer,
1985.

[EPR93] H. Ehrig, J. Padberg, L. Ribeiro. Algebraic high-level nets: Petri nets revisited. In
Proc. of the ADT-COMPASS Workshop’92 (Caldes de Malavella, Spain). Berlin,
1993. Technical Report 93-06.

[Gol10] U. Golas. Multi-Amalgamation in M -Adhesive Categories. Technical re-
port 2010/05, Technische Universität Berlin, 2010.

[HEET98] R. Heckel, H. Ehrig, G. Engels, G. Taentzer. Classification and comparison of mod-
ularity concepts for graph transformation systems. In Proc. 6th Int. Workshop on
Theory and Application of Graph Transformation (TAGT’98). 1998.

Proc. GraMoT 2010 22 / 24



ECEASST

[HME05] K. Hoffmann, T. Mossakowski, H. Ehrig. High-Level Nets with Nets and Rules as
Tokens. In Proc. of 26th Intern. Conf. on Application and Theory of Petri Nets and
other Models of Concurrency. LNCS 3536, pp. 268–288. Springer, 2005.

[Jen92] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1: Basic Concepts. Springer Verlag, EATCS Monographs in Theoreti-
cal Computer Science edition, 1992.

[Jen94] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use. Volume 2: Analysis Methods. Springer, EATCS Monographs in Theoretical
Computer Science edition, 1994.

[Jen97] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use. Volume 3: Practical Use. Springer, EATCS Monographs in Theoretical Com-
puter Science edition, 1997.

[JR91] K. Jensen, G. Rozenberg (eds.). High-Level Petri Nets. Springer, 1991.

[KK99] H.-J. Kreowski, S. Kuske. Graph Transformation Units with Interleaving Semantics.
Formal Aspects of Computing 11:690–723, 1999.

[LS05] S. Lack, P. Sobocinski. Adhesive and Quasiadhesive Categories. Theoretical Infor-
matics and Applications 39(5):511–546, 2005.

[MEE+10] T. Modica, C. Ermel, H. Ehrig, K. Hoffmann, E. Biermann. Modeling Communica-
tion Spaces with Higher-Order Petri Nets. In Lasker and Pfalzgraf (eds.), Advances
in Multiagent Systems, Robotics and Cybernetics: Theory and Practice. Volume III.
The International Institute for Advanced Studies in Systems Research and Cyber-
netics, Tecumseh, Canada, 2010. to appear.

[MGE+10] T. Modica, K. Gabriel, H. Ehrig, K. Hoffmann, S. Shareef, C. Ermel, F. Hermann,
U. Golas, E. Biermann. Low and High-Level Petri Nets with Individual Tokens.
Technical report 13/2009, Technische Universität Berlin, 2010.

[Mil99] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, June 1999.

[MM89] N. Martı́-Oliet, J. Meseguer. From Petri Nets to Linear Logic. In LNCS389 (ed.),
Proc. Category Theory and Computer Science. Pp. 313–340. Springer-Verlag, 1989.

[MM90] J. Meseguer, U. Montanari. Petri Nets are Monoids. Information and Computation
88(2):105–155, 1990.

[Mod10] T. Modica. Towards Formal Algebraic Modeling and Analysis of Communication
Spaces. In Haveraaen et al. (eds.), CALCO Young Researchers Workshop (CALCO-
jnr 2009) – Selected Papers. Technical Report 5-2010, pp. 89–103. Università di
Udine – Dipartimento di Matematica e Informatica, 2010.
http://calco09.dimi.uniud.it/calcojnr booklet.pdf

23 / 24 Volume 30 (2010)

http://calco09.dimi.uniud.it/calcojnr_booklet.pdf


Formal Modeling of Communication Platforms using Reconfigurable AHL Nets

[PER95] J. Padberg, H. Ehrig, L. Ribeiro. Algebraic High-Level Net Transformation Systems.
Mathematical Structures in Computer Science 5:217–256, 1995.

[Pet62] C. Petri. Kommunikation mit Automaten. PhD thesis, Schriften des Institutes für
Instrumentelle Mathematik, Bonn, 1962.

[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science 4. Springer, 1985.

[Roz97] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations. World Scientific, 1997.

[RT86] G. Rozenberg, P. Thiagarajan. Petri Nets: Basic notions, structure, behaviour. In
Current Trends in Concurrency. LNCS 224, pp. 585–668. Springer, 1986.

[Val98] R. Valk. Petri Nets as Token Objects: An Introduction to Elementary Object Nets.
In ICATPN ’98: Proceedings of the 19th International Conference on Application
and Theory of Petri Nets. LNCS 2987, pp. 1–25. Springer, 1998.

[Win87] G. Winskel. Petri nets, algebras, morphisms, and compositionality. Information and
Computation 72:197–238, 1987.

Proc. GraMoT 2010 24 / 24


	Introduction
	Formal Modeling of Skype with Reconfigurable AHOI Nets
	Skype Clients as AHLI nets
	Reconfiguration of Skype Clients
	Multicasting with Amalgamated Rules
	Chats

	Analysis of Reconfigurable AHLI Net Models
	Petri nets with Individual Tokens compared to Collective Tokens
	Simulating Firing Steps by Rule Applications

	Higher-Order Nets as Control Structures
	Conclusion

