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Comparison of Time Series Models before and after Using 
Wavelet Shrinkage Filtering to Forecast the Amount of Natural 
Gas in Iraq
Mohammad M. Faqe Hussein

Department of Statistics and Informatics, College of Administration and Economics, University of Sulaimani, Iraq

ABSTRACT

The procedure of reducing noise before analyzing the time series is important to get accurate outcomes when building models. Wavelet 
Shrinkage, consisting of thresholded wavelets, is a powerful mathematical technique for reducing the amount of noise that can be exposed. 
It has time series observations and selects the cutoff threshold appropriate for removing most of the noise. This paper used data on natural 
gas production in Iraq during (1981–2019) that contained non-stationary data, so the researcher must treat this problem before starting 
the analysis. Therefore, the researcher selected the model of time series analysis using Box–Jenkins models (ARIMA (p, d, q) models) and 
the method of wavelet shrinkage and the comparison between them based on some statistical criteria including the Akaike information 
criterion, Schwarz Bayesian information criterion, Bayesian information criterion, and Hannan–Quinn information criterion. Statistical 
programs such as Statgraphics XVII-X64 and MATLAB were used to analyze the data. The paper reached the efficiency of wavelet shrinkage 
filtering in treating the noise problem and obtaining efficient estimated models, in particular the wavelet shrinkage filter (Daubechies 
(db8)) with a soft threshold estimated by the fixed-form method and the possibility of linear models with lower one orders and higher 
efficiency for the obtained filtered observations compared to the corresponding models estimated from the original observations, that is, 
the suitable model for the data is a model ARIMA (0,1,1) for the data paved in a Daubechies method, it is preferable to do the waveform 
analysis of the data before analyzing the time series concerning the observations of natural gas production in Iraq. The preference was given 
to the model estimated by Box and Jenkins ARIMA (0,1,1) model using wavelet shrinkage Daubechies (db8) wavelet reduction.
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METHODOLOGY

Time Series

The time series is a random process of random variable 
X indexed by time (t). X(t) is a symbol used for discrete 
parameter processes (d.p.p.) and X(t) is a symbol for 
continuous parameter processes (c.p.p). In this paper, we are 
discussing the discrete parameter process of time series.[1,2]

Box–Jenkins Model

The ARIMA (p,d,q) model is used to forecast time series; this 
model depends on previous data to supply predicting indexes. The 
ARIMA (p,d,q) model has autoregressive and moving average. 
With p is the # of AR terms, d is the # of differences non-seasonal, 
and q is the # of MA. The general equation of the model is: [3-6]

A= α+ ∅1Zt−1+ ∅2Zt−2+.….+ ∅tZt−q: 			 
       B= θ1εt−1− θ2εt−2−.….− θqεt−q

Zt= A− B+ ε� (1)

With ∅ is AR parameter, θ is MA parameter, α= µ (1− ∅1− 
∅2−….− ∅p), µ is the mean value of time series, et is error, 

εt= yt- ty . The common equation of AR(p) is:

Zt= ∝+ ∅1Yt−1+ ∅2Yt−2+.….+ ∅pYt−p+ εt� (2)

And the common equation of MA(q) is:

Zt= α− θ1εt−1− θ2εt−2−.….−θqet−2+ εt� (3)

The Procedures of the Box–Jenkins Ways

1-	 The first thing to note is that most of the time series is 
non-stop, and AR, MA members of the ARIMA model are 
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only related to the stop-time series. The random process 
of Zt is considered a stop if the μ and the σ2 of the process 
do not change over time (t) means Zt is stationary. So 
to identify the ARIMA model, we have to do two steps: 
Based on the chart of time series, a chart of the PACF 
autocorrelation.[4-6]

2-	 Find the suitable values of p,d,q to identify the type of 
ARIMA (p,d,q) model. Where p is the # of AR terms, d is 
the # of differences (non-seasonal), and q is the #of MA. 
The PACF and ACF charts are used to determine p and 
q where ACF is the autocorrelation. PACF is the partial 
autocorrelation. Select the value of p if the PACF chart 
has a great value at lag 1,2,….p and descending after p. 
Choose the value of q if the ACF has a great value at lag 
1,2,…,q and decreasing after q.

3-	 After calculating the regression coefficient of AR and the 
MA of the ARIMA model, then we will test the model.

Wavelets

The term short wave has flexible mathematical functions or 
a power concentrated in time to give a tool for analyzing 
transient, time varying phenomena. Hence, a short wave 
divides a function into different frequency components; 
each component can then be reviewed with a resolution 
that corresponds to its scale. Furthermore, a short wave is 
a function defined over a finite interval and has a mean of 
zero. The Fourier analysis is the original history of short 
wave analysis, and it includes both the Fourier transform 
and the Fourier series. The Fourier series is used to study 
systematic procedures, but the Fourier transforms in the 
frequency domain, and it has no information about the time 
environment. Hence, the Fourier transform indication of a 
signal or a function summarizes information of the data as 
a function of frequency, including the information of the 
original function.[7-9] as shown in Figure 1.

Wavelet Types

There are two types of wavelets that have gained popularity 
throughout the development of wavelet analysis (Discrete 
Wavelet and Continuous Wavelet) shown in Table 1:[10-12]

Haar wavelet

The Haar wavelet was created by Alfred Haar and was 
presented in 1909. The Haar function is the basis of the 
wavelet. The Haar is an extension from Fourier analysis to 
wavelet analysis.

The orthogonal basis for the space is Haar wavelet {L2(R)}. 
Let φ(x), θ(x) be the functions defined on (R); consider the 
constraints of the (hk) for (N=2):[11]

θ(x) = θ(2x) + θ(2x−1)� (4)

Now {h0 = h1 =1}, and the stability condition implies that 
{h0+h1= 2}. Scaling function (θ) is satisfied as follow:

1, 0    1 
( )

 0   
θ

≤ <
= 


x
x

elsewhere
� (5)

If the wavelet function is defined as ψ(x) = ψ(2x) + 
ψ(2x−1), then the function is below:
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The function (ψ) is the Haar wavelet, and the function 
θ(x) is the Haar scaling function.

The following properties of Haar wavelet:
•	 Orthogonal.
•	 Compact support.
•	 Symmetric the scaling procedure
•	 The anti-symmetric wavelet procedure.

Daubechies wavelet

A compactly supported wavelets. The family of smooth was 
created by Daubechies (1988), having the biggest number of 
die out moments for their support. Therefore, the structure of 
smooth orthonormal wavelets needs the wavelets ψ(x) with 
many vanishing moments.

The Daubechies (db) wavelet of order (L) has (L) 
disappearing moments and is supported on the interval 
[0,2L −1]. The Daubechies wavelets also become smoother 
with increasing (L).

The Daubechies compactly supported wavelets are created 
using the usual condition. Consider (L=4) then the equations 
as follows: [13,14]

π0+π1+π2+π3 = 2

π0−π1+π2-π
3 = 0

−π1+2π2−3π3 = 0

π0 π2+ π1 π3=0

π0 π2+ π1 π3=0� (7)

        π π π π+ + + =2 2 2 2
0 1 2 3 2

Then, a unique solution for equation exists:
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The corresponding Daubechies wavelet (db2) is supported 
on interval [0, 3], as shown in Figure 2.

Daubechies wavelet has the following properties:
•	 Orthogonal.
•	 Compact support.
•	 There is no symmetry for N > 1.
•	 Has N vanishing moment.
•	 The filter length is 2N.

Coiflets wavelet

In 1989, Coifman proposed that orthonormal wavelet bases with 
disappearing moments be constructed not just for ψ(x), but also 
for θ(x). Daubechies studied the structure of such short waves, 
called “Coiflet” since they were initially requested by Coifman, 
and the order became known as the order of Coiflet.[15]
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The wavelet ψ(x) associated with (CoifN) has (2N) 
vanishing moment but also the scaling function (has [2 −1]) 
vanishing moment. The two functions ψ(x) and θ(x) have 
support with length (6N - 1).

The Coiflets wavelet satisfied the following properties:
•	 Orthogonal.
•	 Compact support.
•	 Almost symmetric.

Symlet wavelet

Symlet wavelets are created by altering the symmetry of 
Daubechies wavelets, and their properties are nearly identical 
to those of Daubechies wavelets. These are the Symlet wavelets, 
which are symmetrical wavelets. Wavelets corresponding to 
Symlet correspond to Sym N, where N is the order.[15]

Discrete Meyer wavelet

Meyer wavelets feature a symmetric scaling wavelet function 
and are orthogonal. It has an infinite number of supports and 
is band-limited, but it decays quicker than sync wavelet and is 
indefinitely differentiable.[16,17]

In the frequency domain, the Meyer wavelet is defined in 
terms of function z as an infinitely differentiable wavelet with 
infinite support.
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Where

z(x)=x4 (35−84x+70x2−20x3) if 0<x<1
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Thresholding

The threshold is the estimated noise class, it separates the 
wavelet coefficient into two parts, the values more significant 
than the threshold being considered signal and the smaller 
being considered noise; there are several rules to apply the 
wavelet coefficient thresholds and several ways to select a 
threshold as follows: [18]

1. Universal threshold.
2. Specific threshold.
3. Minimax threshold.
4. Cross-validation threshold

•	 Two-fold cross-validation
•	 Leave-one-out cross-validation

Thresholding Rules

Hard thresholding

Donoho and Johnstone proposed this technique. It is the 
most straightforward technique for implementing wavelet 
denoising, which interprets the “keep or kill” statement.

The wavelet coefficient is set to the vector (ωn(Ht)) with 
element.[18,19]

n(Ht)
n

n n

0  if 
 

  if   

 


  
 ≤

=  > 
� (10)

If the coefficients are more significant than the threshold 
value (η), they remain without changing. However, if they 
are smaller than or equal to the threshold value (η), they are 
eliminated or set to zero.

Soft thresholding

The other standard procedure for wavelet denoising is soft 
thresholding of the wavelet coefficient, also suggested by 
Donoho and Johnstone, which is defined as follows: [18,19]

ωn
(St) = sign [ωn] (ABS(ωn)- η) +…� (1)
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Soft thresholding brings all coefficients to zero when the 
wavelet coefficient is less than the threshold and when the Figure 2: The scaling function and db2 wavelet

Figure 1: A wave and a wavelet
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coefficients are more significant than the threshold (η), they 
persist after reducing by the amount of the threshold, while the 
soft threshold is a continuous function is what the statement of 
“Shrink or Kill” interprets.

This provides the results of the wavelet thresholding 
estimator. For small samples, hard thresholding has lower 
mean square error and less sensitivity to small noises in the 
data. Soft thresholding has negligible deviation and an overall 
mean square error as shown in Figure 3.

Time Series Models Building Procedure

In the estimation phase, several models are tentatively 
selected and then the values of the corrected Akaike 
information criterion (AIC) (Hurvich and Tsai, 1989) and 
the Schwarz Bayesian information criterion (SBIC) and 
Hannan–Quinn information criterion (HQIC) proposed by 
Schwarz (1978) (Hannan and Quinn, 1979). The model 
system that has the minimum AIC, SBIC, and HQIC values 
among other model systems is selected as the most suitable 
model. Equation (14) describes the formula for calculating 
AIC, while Equation (15) describes the formula for SBIC and 
Equation (16) HQIC.[20]

max

2n
AIC    k 2 ln|L | 

n k 1
 = × − × − −  � (14)]

SBIC = ln [n]×k−2×ln |Lmax|� (15)

HQIC =2ln [ln [n]]×k−2×ln|Lmax|� (16)

Where
•	 n = Sample size (e.g., data values, frequencies)
•	 k = parameter estimated (e.g., the normal distribution 

has 2: μ and σ)
•	 Lmax = use maximized value of the log-likelihood to 

calculate the model by the (i.e., fitting the parameters by 
MLE and record the natural log of the likelihood)

RESULTS AND DISCUSSION

Data preparation concerns transformation and differentiation. 
Transformations of the data (such as square roots, logarithms, 
etc.) are useful to stabilize the variance in a time series; as the 
variation changes with class, the data are differentiated until 
there are no obvious patterns, such as trend or seasonality, in 
the data. Differentiating means taking the difference between 
consecutive observations or between observations in one part of 
the year. The differentiated data are often easier to model than 
the actual data. The data in Table 2 were obtained from the EIA 
U.S. Energy Information Administration during (1981–2019) 
obtained and used Statgraphics19 and MATLAB for data analysis.

Randomness test

First, the randomness test of gas production in Iraq should be 
done with the Box-Pierce test. The null hypothesis states that the 
time series is random, as opposed to the alternative hypothesis of 
non-randomness to learn that the data have a specific behavior 
rather than a random one. As described in Table 3 for time series; 
as P < 0.05 for each series, therefore, null hypotheses

H0: The series is random versus H1: The series is not 
random

The test depends on the sum of squares (S.S) of the first 
24 autocorrelation coefficients. Because P-value for this test 
is 2.20016E-9, which is less than α = 0.05, we can reject the 
hypothesis that the series is random with a 95% confidence level.

Data Transformation

After proving the non-randomness of the natural gas production 
time series, so to overcome this behavior, we will try to transform 
the data series. The data were transformed, for instance, the 
seasonal difference of order one. Then, the series was tested 
again for the existence of randomness. The hypothesis was 
accepted when P > α=0.05, as shown in Table 4.

The test is based on the S.S of the first 24 autocorrelation 
coefficients. Because P-value for this test is 0.275392, which 
is greater than or equal to α = 0.05, we can accept the null 
hypothesis that the series is random with a 95% or higher 
confidence level.

Time Series Plots

The time series plots of the dataset (natural gas production) is 
illustrated. The plot shows that the data are clear of being non-
stationary in the mean and in the variance. Seasonal and trend 
patterns with increasingly variation of variance because the 
variation in the magnitude of the fluctuation with time is referred 
to as non-stationary in the variance as shown in Figure 4.

Stationary

The time series plots of the data set (natural gas production) 
are shown. The plot shows that the data are clearly non-
stationary in mean and variance. Seasonal and trend patterns 
with increasing variation in variance as variation in magnitude 
of variation over time are said to be non-stationary in variance, 
as shown in Figure 5.

We examine the autocorrelation function (ACF) and the 
partial ACF (PACF) for the original data to determine the 
original order of the series model. The graphs of ACF and 
PACF are shown in Figures 6 and 7.

After taking the differentiated series for natural gas 
production, which transforms into stationary series around 
the mean, and the ACF and PACF plots of the differentiated 
series, most of the lags are within the confidence limits, as in 
the mentioned Figures 8 and 9 are shown.

This Table 5 shows the estimated partial autocorrelations 
between values of adjusted natural gas production at various 
lags. The lag k partial autocorrelation coefficient measures the 
correlation between values of adjusted natural gas production at 
time (t, t+k), having accounted for the associations at all lower 
lags. It can be used to evaluator the order of the autoregressive 
model needed to fit the data. Also shown that 95% of the 
probability limit is around 0. If the probability limits at a specific 
lag do not contain the estimated coefficient, there is a statistically 
significant association at that lag at the 95% confidence level. 
In this case, one of the 24 partial autocorrelation coefficients is 
statistically significant at the 95% confidence level.

This Table 6 shows the estimated partial autocorrelations 
between values of adjusted natural gas production at different 
lags. The partial autocorrelation coefficient lag k measures the 
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correlation between values ​​of adjusted natural gas production 
at time (t, t+k), with the associations at all lower lags taken 
into account. It can be used to evaluate the autoregressive 
model order required to fit the data. Also shown that 95% 
of the probability limit is around 0. If the probability limit 
at a given lag does not include the estimated coefficient, 
then there is a statistically significant association at the 95% 
confidence level for that lag. In this case, one of the 24 partial 
autocorrelation coefficients is statistically significant at the 
95% confidence level.

Choosing Appropriate Model

After studying the stationary time series through mean and 
variance, the model identification procedure determines the 
sufficient model, the visible ACF, and the PACF. The appropriate 
models for each time series are listed in Table 7 to identify the 
best models, lowest AIC, SBIC, and HQC.

Table 7 shows the comparative results of fitting different 
models to the data. The lowest value of AIC, HQC, and SBIC 
is ARIMA (0, 1, 1), the selected model used to generate the 
predicted value. Table 8 also summarizes the results of five tests 
performed on the residuals to determine whether each model 

fits the data. An OK means that the model passed the test. The 
currently selected model, model ARIMA (0,1,1), passes five 
tests. The present model is probably appropriate for the data.

Model Identification

In this point, we will examine the data ACF and PACF, after 
getting on the stationary for time series examine ACF and 
PACF. We get the model for the natural gas production ARIMA 
(0,1,1).

Estimation

It was found that the most suitable model representing 
the natural gas production series mentioned previous, the 
parameter was estimated, as shown in Table 9.

Table 3: Natural gas production (bcf)

Series Box‑Pierce test P‑value

Natural gas production 67.6142 2.20016E‑9

Table 4: Natural gas production (bcf)

Series Box‑Pierce test P‑value

Gas production natural 15.5309 0.275392

Figure 3: Hard and soft thresholding

Table 1: Types of wavelet (Discrete and Continuous) 

Discrete wavelets Haar Daubechies Coiflet Symlet Biorthogonal Reverse 
biorthogonal

Discrete 
Meyer

Fejer‑Korovkin 
filter

Continuous 
wavelet

Real 
valued

Beta Hermitian Hermitian 
hat

Mexican 
hat

Shannon

Complex 
valued

Mexican 
hat

Morley Shannon Modified 
Morlet

Table 2: Natural gas production (billion cubic feet per year (bcfy))

Year Gas production Year Gas production Year Gas production Year Gas production

1980 40.02 1990 140.59 2000 111.24 . .

1981 23 1991 61.16 2001 . . .

1982 24 1992 79.78 2002 . . .

1983 18 1993 90.05 2003 . . .

1984 20 1994 111.94 2004 . . .

1985 29.19 1995 111.95 2005 . . .

1986 54.63 1996 114.42 2006 . . .

1987 132 1997 107.71 2007 . . .

1988 197 1998 104.18 2008 . . .

1989 227.41 1999 112.30 2009 . . .

Reference: EIA U.S. Energy Information Administration
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Figure 4: The plot of nature gas production in Iraq from 
1980 to 2019

Figure 5: Natural gas production in Iraq after non-seasonal 
differencing of order one

Figure 6: ACF of natural gas production

Figure 7: PACF of natural gas production 

Figure 9: PACF of natural gas production 

Figure 8: ACF of natural gas production
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Model Checking

For a suitable predicting model, the residuals for the fitted 
model should go by simply white noise; in other words, the 
selected model has exhausted the whole behavior of the series. 
Therefore, we estimated the ACF and PACF of the residual 
and plotted it; we would hope to find no significant ACF and 
PACF. Furthermore, the fitted model should reflect adequate 
forecasting.

Autocorrelation and partial 
autocorrelation of residual test

His autocorrelation Figure  10 shows the calculated 
autocorrelations between the residuals at different lags. The 
lag-k autocorrelation coefficient measures the correlation 
between the residuals at time (t, t-k). Also shown that 95% 
of the probability limit is around 0. If the probability limit at a 
given lag does not include the estimated coefficient, then there 
is a statistically significant association at the 95% confidence 
level for that lag. In this case, none of the 24 autocorrelation 
coefficients is statistically significant, which means that the 
time series may well be random (white noise).

This PACF Figure 11 shows the estimated PACF between 
the residuals at different lags. In this case, none of the 24 ACF 
is statistically significant at the 95% confidence level.

Test of goodness of fit

It is probable to identify the suitable model ARIMA (0,1,1) for 
this model repeatedly used Box-Pierce test’s (P ≥ α = 0.05), 
the null (Ho) hypothesis is not rejected, and the model above is 
suitable. Meaning that the residuals are also random, and the 
predicting will be suitable and reliable enough.

H0: Adequate model versus H1: Not adequate model

Table 10 above indicates that P-value for this test is greater 
than or equal to α = 0.05; we cannot reject the hypothesis that 
the model is reasonable.

Table 7: Estimation period

Model AIC HQC SBIC

ARIMA (0,1,1) 7.04975 7.06501 7.09197

ARIMA (1,1,0) 7.06818 7.08344 7.1104

ARIMA (1,0,1) 7.09645 7.12699 7.1809

ARIMA (2,1,0) 7.10137 7.1319 7.18581

ARIMA (0,1,2) 7.1152 7.14573 7.19965

Table 8: Summarizes the results

Model RMSE RUNS RUNM AUTO MEAN VAR

ARIMA 
(0,1,1)

33.1113 OK OK OK OK OK

Table 5: Estimated autocorrelations for adjusted gas production

Lag Autocorrelation Std. error Lower 95% Prob. limit Upper 95% Prob. limit

1 0.380673 0.160128 −0.313846 0.313846

2 −0.0531608 0.181858 −0.356436 0.356436

3 −0.280853 0.182256 −0.357216 0.357216

4 −0.328115 0.193035 −0.378342 0.378342

5 −0.141684 0.206841 −0.405403 0.405403

6 0.00220161 0.209315 −0.410251 0.410251

7 0.0434127 0.209316 −0.410252 0.410252

8 0.125133 0.209547 −0.410704 0.410704

9 0.14458 0.211454 −0.414443 0.414443

10 0.0274365 0.213974 −0.419381 0.419381

11 0.0547573 0.214064 −0.419558 0.419558

12 0.0278836 0.214423 −0.420262 0.420262

13 0.0299531 0.214516 −0.420444 0.420444

Table 6: Estimated partial autocorrelations for adjusted gas 
production

Lag Partial 
autocorrelation

Std. 
error

Lower 
95% Prob. 

limit

Upper 
95% Prob. 

limit

1 0.380673 0.160128 −0.313846 0.313846

2 −0.231641 0.160128 −0.313846 0.313846

3 −0.207301 0.160128 −0.313846 0.313846

4 −0.178398 0.160128 −0.313846 0.313846

5 0.000865901 0.160128 −0.313846 0.313846

6 −0.0563702 0.160128 −0.313846 0.313846

7 −0.0764279 0.160128 −0.313846 0.313846

8 0.0706657 0.160128 −0.313846 0.313846

9 0.0646901 0.160128 −0.313846 0.313846

10 −0.0625562 0.160128 −0.313846 0.313846

11 0.132611 0.160128 −0.313846 0.313846

12 0.0507118 0.160128 −0.313846 0.313846

13 0.0820885 0.160128 −0.313846 0.313846
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Forecasting

In the next step, after a model has accepted the entire analytical 
test, it is suitable to be used for forecasting. To select a final 
model for forecasting, the model’s precision can be checked 
to choose how the model performed in terms of forecasting as 
shown in Figure 12 and 13.

Forecasting use Wavelet Analysis

Five techniques have been used to decrease noise in the data of 
the production of natural production gas series in Iraq, as follows:

Haar wavelet

Figure  14 displays the actual data time series and the soft 
threshold of the Haar wave for the production of natural gas 
in Iraq. The red color is the original data, and the violet is 
a drawing of the Haar wave. It is clear from the figure that 
the difference is slight, which indicates the preservation of the 
data form and, as it is clear from the figure, the presence of 
blackness more and less noise.

Furthermore, by applying a model to the data smoothed by 
the Haar method, Table 11 shows the outcomes of calculating 
the model’s parameters.

It is clear from the table the significance of the 
estimated parameters and the implementation of the 
condition of stationary, as the absolute values are less than 1. 
Figures  15 and 16 show the ACF of the model’s residuals 
for the data smoothed by the Haar method. It is clear from 
the figure that the coefficients of autocorrelation are not 
significant within the confidence, meaning that the residuals 
show changes purely random.

Daubechies wavelet

Figure  17 explains the time series of actual data and soft 
threshold of the Daubechies wave for natural gas production 
in Iraq. The data smoothed with this wave revealed that their 
results are the same as the results in the Haar smoothed data 
(1,2) and different in (3,4,5,6,7,8,9,10).

It is clear from Table  12 the significance of the 
calculated parameters and the implementation of the 
condition of stationary, as the absolute values are less than 1. 
Figures  18 and 19 show the ACF of the model’s residuals 
for the data smoothed by the Daubechies method. It is clear 
from the figure that the coefficients of autocorrelation are not 

Table 9: ARIMA model summary

Model Model formula Parameter Estimate Std. error t P‑value

ARIMA 
(0,1,1) Y ¼ Y ¸ e

t t t
 � � �� �1 1 1

θ −0.4491 0.148274 −3.02885 0.004397

Table 10: Hypotheses and probability value for residual series 
model

Series Model Box‑Pierce 
test

Probability 
value (P‑value)

Natural gas 
production

ARIMA (0,1,1) 5.39691 0.943393

Figure 10: ACF of the residual natural gas production

Figure 11: PACF of the residual natural gas production

significant within the confidence, meaning that the residuals 
show changes purely random.

Symlet wavelet

Figure 20 shows the time series number of the actual data and the 
smooth threshold of the Symlet wave for natural gas production 
in Iraq. From the figure, it can be seen that the difference between 
the actual data and the smoothed data are small in a Symlet way 
and this indicates that the data shape is preserved as it can be 
seen from the figure that there are more blackness and less noise.
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Figure  12: The sequence plot for the gas production of 
ARMIA(0,1,1)

It is clear from Table 13 the significance of the calculated 
parameters and the implementation of the condition of 
stationary, as the absolute values are <1. Figures  21 and 22 

show the ACF of the model’s residuals for the data smoothed by 
the Symlet method. It is clear from the figure that the coefficients 
of autocorrelation are not significant within the confidence, 
indicating that the residuals show changes purely random.

Coiflets wavelet

Figure 23 shows the time series number of the original data 
and the smooth threshold of the Coiflets wave for natural 
gas production in Iraq. It is clear from the figure that the 
difference between the original data and the smoothed data 
is small in a Coiflet fashion, and this indicates that the data 
shape is preserved, as it is clear from the figure that there are 
more blackness and less noise.

From Table 14, the meaning of the calculated parameters 
and the implementation of the stationary condition becomes 

Table 11: Model estimation ARIMA (0,1,1) for natural gas production data using Haar method

Model Parameter Estimate Std. error t P‑value AIC HQC SBIC

Haar ARIMA (0,1,1) θ −0.437605 0.149145 −2.9341 0.00565 7.00141 7.01667 7.04363

Figure  13: Forecasting plot for the gas production of 
ARMIA (0,1,1)

Figure 14: Time series of original data and Haar wavelet 
soft threshold for natural gas production

Figure 15: ACF for ARIMA (0,1,1) use Haar method	

Figure 16: PACF for ARIMA (0,1,1) use Haar method
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clear, since the absolute values are <1. Figures  24 and 25 
show the ACF of the model residuals for the data smoothed 
with the Coiflets method. It is clear from the figure that the 
autocorrelation coefficients within the confidence are not 
significant, indicating that the residuals show purely random 
changes.

Meyer D wavelet

Figure 26 shows the time series number of the original data 
and the smooth threshold of the Meyer D wave for natural 
gas production in Iraq. It is clear from the figure that the 
difference between the raw data and the smoothed data in 
the Meyer-D method is small, and this indicates that the data 
shape is preserved, since it is clear from the figure that there 
are more blackness and less noise there.

From Table 15, the meaning of the estimated parameters 
and the implementation of the steady-state condition 

becomes clear, since the absolute values are <1 Figures 27 
and 28 show the ACF of the model residuals for the data 
smoothed with the Meyer-D method. From the figure, it is 
clear that the within confidence autocorrelation coefficients 
are not significant, this means that the residuals show purely 
random changes.

Comparison between Model Estimation

In this part, a comparison is made between a model ARIMA 
(0,1,1) of the original data for the production of natural gas 
in Iraq and a model ARIMA (0,1,1) of the paved data in a 
methods (Haar, Daubechies, Symlet, Coiflets, and Meyer D)

From Table  16 that the values of AIC, HQC, and 
SBIC decrease between the models, since the values of 
AIC = 7.04975, HQC = 7.06501, and SBIC = 7.09197 before 
using the wavelet, while the values of AIC, HQC, and SBIC 

Figure 17: The original data time series and the soft threshold of Daubechies wavelet for natural gas production
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Table 13: Model estimation ARIMA (0,1,1) for natural gas production data using Symlet method

 Model Parameter Estimate Std. error t P‑value AIC HQC SBIC

Symlet 2 ARIMA (0,1,1) θ −0.486617 0.146764 −3.3157 0.00202 6.91261 6.92788 6.95484

3 ARIMA (0,1,1) θ −0.495006 0.146536 −3.378 0.0017 6.9028 6.91807 6.94502

4 ARIMA (0,1,1) θ −0.4896 0.146117 −3.3507 0.00183 6.89975 6.91502 6.94198

5 ARIMA (0,1,1) θ −0.499416 0.146321 −3.4132 0.00154 6.88965 6.90492 6.93187

6 ARIMA (0,1,1) θ −0.485861 0.14574 −3.3338 0.00192 6.89689 6.91215 6.93911

7 ARIMA (0,1,1) θ −0.487812 0.146686 −3.3255 0.00196 6.8857 6.90097 6.92792

8 ARIMA (0,1,1) θ −0.488614 0.145876 −3.3495 0.00184 6.89811 6.91338 6.94033

Table 12: Model estimation ARIMA (0,1,1) for natural gas production data using Daubechies method

  Models Parameters Estimate value Std. error t‑test P‑value AIC HQC SBIC

Daubechies 1 ARIMA (0,1,1) θ −0.437605 0.149145 −2.9341 0.00565 7.00141 7.01667 7.04363

2 ARIMA (0,1,1) θ −0.437605 0.149145 −2.9341 0.00565 7.00141 7.01667 7.04363

3 ARIMA (0,1,1) θ −0.495006 0.146536 −3.378 0.0017 6.9028 6.91807 6.94502

4 ARIMA (0,1,1) θ −0.495876 0.147017 −3.3729 0.00172 6.91675 6.93202 6.95897

5 ARIMA (0,1,1) θ −0.465073 0.147599 −3.1509 0.00317 6.92173 6.937 6.96395

6 ARIMA (0,1,1) θ −0.461273 0.147652 −3.1241 0.00341 6.91783 6.9331 6.96005

7 ARIMA (0,1,1) θ −0.473796 0.146474 −3.2347 0.00252 6.90718 6.92244 6.9494

8 ARIMA (0,1,1) θ −0.498346 0.144843 −3.4406 0.00143 6.86407 6.87933 6.90629

9 ARIMA (1,2,1) θ 0.501546 0.143699 3.49024 0.00129 6.86551 6.88078 6.90773

θ 1.1013 0.00074181 1484.62 0.00000

10 ARIMA (0,1,1) θ −0.494748 0.145456 −3.4014 0.00159 6.87393 6.8892 6.91616

drop after using the Daubechies (db8) method are the same 
(6.86407, 6.87933, and 90629), respectively. It is preferable 
to use wavelet analysis before time series analysis.

CONCLUSIONS

According to the results of the previous chapter, the following 
conclusions are obtained.
1.	 Gas is the second-largest source of energy in Iraq, and 

at the same time, Iraq has considered the fourth country 

in the world in the expulsion of natural gas without 
investment.

2.	 As a result of the use of gas and its advantages, it has 
made it the most widely used among the sources of non-
renewable fossil energy.

3.	 The wavelet shrinkage method with the residual model 
and the estimated values proved preferable to the natural 
gas data in Iraq after the wavelet shrinkage process. 
The model for the smoothed data by Daubechies (db8) 

Figure 18: ACF for ARIMA (0,1,1) use Daubechies method
Figure 19: PACF for ARIMA (0,1,1) use Daubechies method
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Table 14: Model estimation ARIMA (0,1,1) for natural gas production data using Coiflets method

  Model Parameter Estimate Std. error t P‑value AIC HQC SBIC

Coiflets 1 ARIMA (0,1,1) θ −0.438559 0.149165 −2.9401 0.00556 6.97715 6.99242 7.01937

2 ARIMA (0,1,1) θ −0.477477 0.146572 −3.2576 0.00237 6.91079 6.92605 6.95301

3 ARIMA (0,1,1) θ −0.481209 0.146402 −3.2869 0.00219 6.90506 6.92032 6.94728

4 ARIMA (0,1,1) θ −0.482222 0.14615 −3.2995 0.00211 6.8993 6.91456 6.94152

5 ARIMA (0,1,1) θ −0.481759 0.146099 −3.2975 0.00212 6.89982 6.91508 6.94204

Figure 20: Time series of the original data and the soft threshold of the Symlet wavelet for natural gas production

Figure 22: PACF for ARIMA (0,1,1) use Symlet methodFigure 21: ACF for ARIMA (0,1,1) use Symlet method
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method with the soft threshold cut is the model ARIMA 
(0,1,1) is better using some statistical criteria than the 
original data for the production of natural gas in Iraq.

4.	 The wavelet Daubechies (db8) is better and more efficient 
than all other methods indicated in the analysis summary, 
from getting the best criteria comparison AIC, HQC, and 
SBIC. We note that natural gas production has increased over 
the years by forecasting the selected model – the forecasted 
values (2020=370.617 bcfy,….) for natural gas production.

5.	 If original data are available, the forecast values from the 
fitted model and the residuals are also displayed. For the 
time after the end of the series, prediction limits of 95% 

are shown for the predictions. These limit show where the 
original data value is likely to be at a selected future point 
in time with 95% confidence, provided that the fitted 
model is appropriate for the data.

6.	 Wavelet shrinkage be used to treat the problem of 
pollution and heterogeneity in time series observations

Figure 23: Time series of the original data and the soft threshold of the Coiflets wavelet for natural gas production

Figure 24: ACF for ARIMA (0,1,1) use Coiflets method

Figure 25: PACF for ARIMA (0,1,1) use Coiflets method

Figure  26: Time series of the original data and the soft 
threshold of the Meyer D wavelet for natural gas production

Figure 27: ACF for ARIMA (0,1,1) use Meyer D method
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Table 16: Comparison between model estimation

Model Parameter Estimate Std. error t P‑value AIC HQC SBIC

Before using wavelet ARIMA (0,1,1) θ −0.4491 0.148274 −3.0289 0.0044 7.04975 7.06501 7.09197

Haar ARIMA (0,1,1) θ −0.437605 0.149145 −2.9341 0.00565 7.00141 7.01667 7.04363

Daubechies 1 ARIMA (0,1,1) θ −0.437605 0.149145 −2.9341 0.00565 7.00141 7.01667 7.04363

2 ARIMA (0,1,1) θ −0.437605 0.149145 −2.9341 0.00565 7.00141 7.01667 7.04363

3 ARIMA (0,1,1) θ −0.495006 0.146536 −3.378 0.0017 6.9028 6.91807 6.94502

4 ARIMA (0,1,1) θ −0.495876 0.147017 −3.3729 0.00172 6.91675 6.93202 6.95897

5 ARIMA (0,1,1) θ −0.465073 0.147599 −3.1509 0.00317 6.92173 6.937 6.96395

6 ARIMA (0,1,1) θ −0.461273 0.147652 −3.1241 0.00341 6.91783 6.9331 6.96005

7 ARIMA (0,1,1) θ −0.473796 0.146474 −3.2347 0.00252 6.90718 6.92244 6.9494

8 ARIMA (0,1,1) θ −0.498346 0.144843 −3.4406 0.00143 6.86407 6.87933 6.90629

9 ARIMA (1,2,1) θ 0.501546 0.143699 3.49024 0.00129 6.86551 6.88078 6.90773

θ 1.1013 0.00074181 1484.62 0.00000

10 ARIMA (0,1,1) θ −0.494748 0.145456 −3.4014 0.00159 6.87393 6.8892 6.91616

Symlet 2 ARIMA (0,1,1) θ −0.486617 0.146764 −3.3157 0.00202 6.91261 6.92788 6.95484

3 ARIMA (0,1,1) θ −0.495006 0.146536 −3.378 0.0017 6.9028 6.91807 6.94502

4 ARIMA (0,1,1) θ −0.4896 0.146117 −3.3507 0.00183 6.89975 6.91502 6.94198

5 ARIMA (0,1,1) θ −0.499416 0.146321 −3.4132 0.00154 6.88965 6.90492 6.93187

6 ARIMA (0,1,1) θ −0.485861 0.14574 −3.3338 0.00192 6.89689 6.91215 6.93911

7 ARIMA (0,1,1) θ −0.487812 0.146686 −3.3255 0.00196 6.8857 6.90097 6.92792

8 ARIMA (0,1,1) θ −0.488614 0.145876 −3.3495 0.00184 6.89811 6.91338 6.94033

Coiflets 1 ARIMA (0,1,1) θ −0.438559 0.149165 −2.9401 0.00556 6.97715 6.99242 7.01937

2 ARIMA (0,1,1) θ −0.477477 0.146572 −3.2576 0.00237 6.91079 6.92605 6.95301

3 ARIMA (0,1,1) θ −0.481209 0.146402 −3.2869 0.00219 6.90506 6.92032 6.94728

4 ARIMA (0,1,1) θ −0.482222 0.14615 −3.2995 0.00211 6.8993 6.91456 6.94152

5 ARIMA (0,1,1) θ −0.481759 0.146099 −3.2975 0.00212 6.89982 6.91508 6.94204

Meyer D ARIMA (0,1,1) θ −0.491145 0.145599 −3.3733 0.00172 6.87297 6.88824 6.9152

Table 15: Model estimation ARIMA (0,1,1) for natural gas production data using Meyer D method

Model Parameter Estimate Std. error t P‑value AIC HQC SBIC

Meyer D ARIMA (0,1,1) θ −0.491145 0.145599 −3.3733 0.00172 6.87297 6.88824 6.9152

RECOMMENDATIONS

The researcher recommends the following points:
1.	 Due to the good results yielded from the shrinkage 

thresholding estimator in reducing noise, it is 
recommended for future studies to apply other wavelet 
filters and apply other threshold rules of the wavelet 
coefficients.

2.	 To confirm the increase in the activities of exploration 
and exploration for natural gas in Iraq, and using Modern 
techniques to increase Iraq’s proven and potential reserves 
of natural gas.

3.	 Reconstruction, rehabilitation, and development of the 
infrastructure of the oil and gas industry, which was 
subjected to significant damage due to wars, economic 
blockade, and neglect, which led to the obsolescence of 
the existing ones, and which weakened its production and 
marketing capabilities.Figure 28: PACF for ARIMA (0,1,1) use Meyer D method
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