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ABSTRACT

Increasing the response rate and minimizing non-response rates represent the primary challenges facing researchers performing 
longitudinal and cohort research, especially can be seen in the area of pediatric medicine. When there are missing data, complete case 
analysis makes findings bias. Inverse probability weighting (IPW) is one of the many available approaches for reducing bias using 
complete case analysis. Here, a complete case is weighted by probability inverse of complete cases. The data were collected from the 
neonatal intensive care unit at Erbil maternity hospital from 2012 to 2017. In total, 570 babies (288 male and 282 females) were born very 
preterm. The aim of this paper is to use IPW on the Bayesian logistic model developmental outcome. The mental development index 
approach was used for assessing the cognitive development of those born very preterm. Almost half of the information for the babies 
was missing, meaning that we do not know whether they have cognitive development issues. We obtained greater precision in results and 
standard deviation of parameter estimates which are less in the posterior weighted model in comparison with frequent analysis. Further, 
research is needed using methods such as bootstrapping, sandwich, resampling, and jackknife methods for dealing with missing data.
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INTRODUCTION

Increasing the response rate and minimizing non-response 
rates represent the primary challenges facing researchers 
performing longitudinal and cohort research. This can 

especially be seen in the area of pediatric medicine, whereby 
birth cohorts are often utilized for epidemiological research 
and randomized clinical trials of parental interventions. The 
contrition of participants lowers the strength of the research, as 
well as leading to bias in the results.[1] A non-response usually 
has more medical and socioeconomic risks and can have 
systematic variations regarding interest disorders, causing a 
biased estimate of an adverse outcome.[2] It is also frequently 
the case that data are missing in social research. They present 
ambiguities in statistical analyses of a different type to that of 
the usual imprecisions of samples, which become lower with 
increases in sample sizes. Therefore, greater assumptions are 
required to permit inferences to be reached. Over the past 
10 years, there has been much theoretical research into ways 
of analyzing missing data sets.

Missing data can be defined as a value that is not recorded 
for a variable in the observation of Interest. Almost all branches 
of scientific research face this issue and will occasionally 
have to deal with missing data. Frequently, the missing data 
appear as incomplete data on a subject. Usually, the following 
analysis uses only a subject with a complete case measurement 
(complete case analysis). This proves expensive not only with 

regard to reductions in sample sizes, as an unclear variance 
estimate, lower statistical power, and the parameters which 
are thought to be possibly biased until a complete case analysis 
represents a random sampling of the focus population. To 
ensure that bias is considered, it is important to understand 
the mechanisms and the patterns of the missing data relevant 
to the research. The missing data mechanisms, as stated by 
Rubin, indicate the link between the missing values and the 
observed data.[3]

It is obvious that bias cannot only occur when there are 
a systematic dropout and non-response, it can additionally 
stem from a different sampling probability resulting from the 
study design. A non-participants rate of, perhaps, 10% might 
not produce a stronger bias unless the non-response more 
powerfully relates to the parameters of interest.[4]
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INVERSE PROBABILITY WEIGHTING (IPW)

An IPW method will directly model the missingness instead 
of modeling missing data observations.[5] IPW is occasionally 
termed “Inverse Propensity Weighting.” When a probability 
score is projected for all subjects, the interest covariate 
observed values are weighted through the inverse of the 
relevant probability scores. Response probability is able 
to be modeled with logistical regression models and uses 
the inverse of the probability scores as one of the factors of 
adjustment. The IPW adjustment permits a greater number of 
variables to be employed for predicting non-responses. The 
more appropriate variable set needs to be used to discover 
the model, which is the best fit for predicting non-response. 
This results in a “smooth” adjustment factor distribution, with 
no need for choosing an arbitrary cut-point.[6] Yet, the IPW 
may possess an extreme value, causing an adjustment factor 
which might possess a highly covariate weight, and thus, a 
high covariate weight-adjusted estimates. This issue can be 
resolved by trimming the adjustment factor or trimming non-
response adjusted weights. However, such remedies might 
increase bias possibilities.

WEIGHTED POSTERIOR DISTRIBUTIONS

From a Bayesian perspective, we can gather the posterior 
distribution π(|x) through the combination of two types of 
information concerning the random variable . One source 
is given by the observed data which are summarized by the 
likelihood function, and the other information source is the 
previous information regarding its distribution π(). Weighted 
posterior distributions can be defined through the replacement 
of the likelihood function by its IPW counterpart, as discussed 
in the previous section. The weighted posterior distribution is 
as follows:

		
� � � � �IPW IPWx L x| |� � � � �� � ��

� (1)

Next, we propose IPWs evaluated as in the above equation 
of the form ˆ ˆIPW ( ) PW( ; , )θ=i i IPW nx x F . It is apparent that from 
the part of LIPW (x|), we can obtain first-order property of 
the actual function likelihood under the model assumption; 
therefore, this has validity for Bayesian estimates in a standard 
manner. One benefit of weighting is that it uses other pseudo-
likelihood functions, leading to posterior distributions which 
belong to the same family of those obtained through the use 
of the genuine likelihood function. Therefore, the weighted 
posterior distributions vary from the genuine posterior 
distributions for the estimated values. It can seem that there 
is a conflict between the method and a proper Bayesian 
perspective. This is because the weighted likelihood function 
is not immediately driven by a probabilistic model; rather, it is 
driven by adaptive weights. The data still tell a story; however, 
some values are not consistent with the required models, and 
we are unable to simply delete outliers, yet it still contributes 
to the posterior estimate.[7]

PRETERM DATA FOR USING LOGISTIC 
REGRESSION

The data were collected from the neonatal intensive care unit 
at Erbil maternity hospital from 2012 to 2017. In total, 570 

babies (288 males and 282 females) were born very preterm. 
We have considered the infants born before 28 weeks. The 
mental development index approach was used for assessing 
the cognitive development of those born very preterm. Almost 
half of the information for the babies was missing, meaning 
that we do not know whether they have cognitive development 
issues. Now let
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R
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•	 The procedure, therefore, involves: Fitting a binary logistic 
regression, responding to the research under observation 
(1 if observed, 0 if not) with the more appropriate variable 
set as an explanatory variable.

•	 Obtaining the fitted probability for all infants, Pi, i 
∈(1,…,N)

•	 Calculation of the IPW for all infants IPWi = 1/Pi) and 
uses IPW to fit weighted Bayesian logistic regression 
models using WinBUGS software.

Through the assumption that the posterior weighting 
model is correct, we can obtain consistent parameter estimates 
to know the effect of the outcome model. Yet, the major issue in 
weighted data analysis is that the weight is not representative 
of the actual subject number; however, only an expected 
number might be applicable if the statistical weight features 
every detail regarding the sampling probability. Identical 
samples appear from simple random sampling (whereby 
every individual of the same sizes is able to be sampled with 
an equal probability).[4] An additional issue with using IPW 
is where a missingness predictor distribution in full cases 
varies from incomplete cases. The IPW will then greatly vary 
since complete case analyses, where the missingness predictor 
observation is nearer the center of the observation distributions 
in the incomplete case which might obtain a larger weight. 
This will, therefore, cause a larger standard error.[8]

When the weight can account for the missing data, 
parameters must be predicted. The complete case data variance 
estimator makes the assumption that the weight is known and 
ignores any uncertainty in estimations about them.[9] Seaman 
et al. recommend the use of sandwich estimators in accounting 
for uncertainties in the weights. In reality, the true asymptotic 
uncertainty is frequently more when a true weight is utilized 
than when they are estimated. Thus, ignoring uncertainties in 
a fixed weight might cause a standard error.[8]

Here, the weights value was altered in all iterations 
using Markov chain Monte Carlo. The weight calculated from 
the variable weights sampled from posterior distributions 
instead of being obtained from a fixed value. Therefore, in all 
iterations of the outcome models, various weights values were 
gained. Ignoring any uncertainty between variable and fixed 
weights was examined to determine if there were any issues. 
Consequently, uncertainties were included in the weight value 
using variable weights.

In addition, weights were standardized (and multiplied 
by the number of observations/total number of the complete 
population). This results from the total of the weights being 
equal to the sums of the sample sizes. If the weights are not 
standardized, the sum of the weight is then equal to the entire 
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population instead of the total amount of observations, meaning 
that uncertainty (i.e., standard deviation and standard error) 
in the model without standardization will be underestimated. 
Thus, in this project, the weight is standardized.

In these analyses, complete cases are weighted by the 
inverse probability of there being complete cases. Two logistic 
regression models were operated at the same time for both 
outcome and response. A covariate of mother birth age, sex, 
gestational age, and birth weight z-scores was used in the 
response model. Let, Ri denotes the outcomes (response (infants 
where the developmental questionnaire was responded to)/
non-response [infants where the developmental questionnaire 
was not responded to]). The outcome was modeled with the 
assumption of the Bernoulli distribution.

			   RI ~ bernoulli(qI)� (3)

where,
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When statistical models for weight have been recognized, 
it can then be used in developmental delay model analyses to 
be run alongside the dataset. Nonetheless, weighting is vital 
and, thus, the amount of information is required to account for 
the weight relying on particular parameters being considered. 
Inference is normally changed by multiplying the contributions 
of every infant to a statistic by its statistical weight. For 
modeling outcome and weight, each individual’s outcome 
variable value was multiplied by the individual’s weight. 
IPW for each of the infants is calculated using 1/probability 
of responses; the IPW was then standardized. Therefore, the 
likelihood functions created in WinBUGS and is thus:

			 
* (1 )= −y IPW y*IPW

iL P P � (4)

P is the probability of babies surviving with 
developmentally delay issues, y is the outcome variable, and 
IPW is the IPW. Five hundred seventy infants featured in 
the response model. Yet, only 235 babies were used in the 
outcome model analysis (those babies known to be alive).

We have used IPWs as adjustment factors for babies 
about which we do not have cognitive developmental delay 
information. We put weights on the likelihood function 
using WinBUGS software. We repeated the analysis using 
frequentist logistic regression using variable weights. We 
obtained greater precision in results and standard deviation of 
parameter estimates as it is shown in Table 1, which are less 
in the posterior weighted model in comparison with frequent 
analysis.

DISCUSSION

We have developed a likelihood-based approach to place 
weights which were calculated from response models into 
outcome models using logistic regression. It is noticed that 
unweighted models produce biased results. We have realized 
that a weighted model would provide more precise results in 
terms of odds ratio and uncertainty.

IPW is one of the many available approaches for reducing 
bias using complete case analysis. Here, a complete case is 
weighted by probability inverse of complete cases. Even though 

weighting is often used in designing and analyzing surveys, 
using it in analyses of missing data not as well recognized, 
as the IPW fact parameter estimates can be inefficient in 
regard to probability-based analysis.[10] The resulting estimate 
is frequently sensitive to the exact type of models for the 
response probabilities.[11] In reality, the greatest concern of the 
data analysis is the efficacy of the IPW approach regarding 
the likelihood approach. Although some methods have been 
suggested for obtaining more efficient and robust estimates, 
this approach has not yet been effectively developed to handle 
more than one situation. Alternative methods could have been 
used in this analysis, for example, doubly robust IPW and 
multiple imputation.

In addition, one disadvantage of this paper is the 
assumption that the weight is known; we have ignored 
uncertainties in the weight. To calculate IPW estimator 
standard error, methods like robust standard error created 
by weighted models could have been used. Other methods 
such as bootstrapping, sandwich, resampling, and jackknife 
methods are also possibilities, although these methods require 
intensive computations.[4,12]
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