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1 Introduction

Let (M?", J,w) be a compact almost Hermitian manifold of real dimension 2n with n > 2. Let x

be a smooth real (1,1)-form on M. We define for a function u € C*(M),
Xu i= X + V—100u

and

X = {xulu e C?(M)}, T ={x" e XIX' >0}, H(M, x):={ueC*(M)|x, >0}

and
Ca(®) :=={XI3X € T, nxX" 7! > (n— )X ' Aw?}.

We consider the following fully nonlinear Monge-Ampere type equations, which are called the

(nyn — a)—quotient equations for 1 < a < n:
Xu = ¥xn ¢ Aw® with x, >0, (1.1)

where 1 is a smooth positive function. We will call a function u € C?(M) admissible if it satisfies
that u € H(M,x). When solutions u are admissible, the equations (1.1) are elliptic. Since the
equation (1.1) is invariant under the addition of constants to u, we may assume that u satisfies

the normalized condition such that

supu = 0. (1.2)
M

W. Sun has studied a class of fully nonlinear elliptic equations on closed Hermitian manifolds
and derived some a priori estimates for these equations (cf. [5, 6]). In [5], W. Sun has proven a
uniform a priori C*° estimates of a smooth solution of the equation (1.1) and shown the existence
of a solution of (1.1) on a closed Hermitian manifold. In [12], J. Zhang has shown that on a
compact almost Hermitian manifold (M?2", J,w), if there exists an admissible C-subsolution and an
admissible supersolution for the equation (1.1) for x = w, there exists a pair of (u,b) with b € R
such that u € H(M,w), sup;u = 0, w? = ePYPpw * Aw® for 1 < a < n on M. L. Chen has
studied a Hessian equation with its structure as a combination of elementary symmetric functions
on a closed Kéahler manifold and Chen has provided a sufficient and necessary condition for the
solvability of this equation in [1]. Q. Tu and N. Xiang have investigated the Dirichlet problem
for a class of Hessian type equation with its structure as a combination of elementary symmetric
functions on a closed Hermitian manifold with smooth boundary and they have derived a priori

estimates for the complex mixed Hessian equation in [9].

In this paper, we show that we have the a priori L°° estimate for a smooth solution of the equation

(1.1) on general almost Hermitian manifolds.
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Theorem 1.1. Let (M, J,w) be a compact almost Hermitian manifold of real dimension 2n with
n > 2 and u be a smooth admissible solution to (1.1). Suppose that x € Co(10). Then there is a

uniform a priori L estimate for u depending only on (M, J,w), x, ¥.

This paper is organized as follows: in section 2, we recall some basic definitions and computations
on an almost Hermitian manifold (M, J,w). In section 3, for an arbitrary chosen smooth function
¢ on M, we show the result that 00¢ and 000y depend only on the first derivative of ¢ and
some geometric quantities of (M, J,w). In section 4, we give a proof for Theorem 1.1. Notice that

we assume the Einstein convention omitting the symbol of sum over repeated indexes in all this

paper.

2 Preliminaries

2.1 The Nijenhuis tensor of the almost complex structure

Let M be a 2n-dimensional smooth differentiable manifold. An almost complex structure on M
is an endomorphism J of TM, J € T'(End(TM)), satisfying J? = —Idrpr, where TM is the real
tangent vector bundle of M. The pair (M, J) is called an almost complex manifold. Let (M, J)
be an almost complex manifold. We define a bilinear map on C*°(M) for X,Y € T'(TM) by

AN(X,Y) = [JX,JY] = J[JX,Y] - J[X,JY] - [X,Y], (2.1)

which is the Nijenhuis tensor of J. The Nijenhuis tensor N satisfies N(X,Y) = —N(Y, X),
N(JX,Y) = -JN(X,Y), N(X,JY) = —JN(X,Y), N(JX,JY) = =N(X,Y). For any (1,0)-
vector fields W and V, N(V,W) = —[V,W]OD N(V,W) = N(V,W) = 0 and N(V,W) =
—[V,W]09 since we have AN (V,W) = —2([V,W] + V=LJ[V,W]), AN(V, W) = —2([V, W] —
V=1J[V,W]). An almost complex structure J is called integrable if N = 0 on M. Giving a
complex structure to a differentiable manifold M is equivalent to giving an integrable almost
complex structure to M (cf. [4]). A Riemannian metric g on M is called J-invariant if J is
compatible with g, i.e., for any X, Y € T(TM), g(X,Y) = g(JX, JY). In this case, the pair (J, g)

is called an almost Hermitian structure.

The complexified tangent vector bundle is given by T¢M = T M ®g C for the real tangent vector
bundle TM. By extending J C-linearly and g C-bilinearly to TCM, they are also defined on
TCM and we observe that the complexified tangent vector bundle 7€M can be decomposed as
TM = T MeT% M, where THOM, T%1 M are the eigenspaces of .J corresponding to eigenvalues

v—1 and —v/—1, respectively:

TH'M = {X - V-1JX|X e TM}, T"'M ={X+V-1JX|X € TM}. (2.2)
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Let A'M = @,,,_,
r-forms into (p, q)-forms, where AP¢M = AP(AYOM) @ A9(A%I M),

AP9M for 0 < r < 2n denote the decomposition of complex differential

AYM = {n+V=1Jnln e A'M}, AY'M = {n—V—=1Jn|n € A'M} (2.3)

and A*M denotes the dual of TCM.

Let {Z.} be a local (1,0)-frame on (M, J) with an almost Hermitian metric g and let {¢"} be a
local associated coframe with respect to {Z,}, i.e., ('(Z;) = 5;- fori,7 =1,...,n. Since g is almost
Hermitian, its components satisfy g;; = g;; = 0 and g, = g5, = g;;. Using these local frame {Z, }

and coframe {¢"}, we have
N(Zi, Z3) = =12, Z)M = NE 2, N(Z4, 2)) = =12, ;) %D = NEZ,
and

1
2

N = N_sz @ (C"A )+ lNﬁ;Zk ® (CF A D). (2.4)

2 7,
Let (M, J,g) be an almost Hermitian manifold with dimg M = 2n. An affine connection D on

TCM is called almost Hermitian connection if Dg = D.J = 0. For the almost Hermitian connection,

we have the following Lemma (cf. [10, 13]).

Lemma 2.1. Let (M, J,g) be an almost Hermitian manifold with dimg M = 2n. Then for any
given vector valued (1,1)-form © = (0%)1<i<y, there exists a unique almost Hermitian connection

V on (M, J, g) such that the (1,1)-part of the torsion is equal to the given ©.

If the (1,1)-part of the torsion of an almost Hermitian connection vanishes everywhere, then the
connection is called the second canonical connection or the Chern connection. We will refer the
connection as the Chern connection and denote it by V. Now let V be the Chern connection on

M. We denote the structure coefficients of Lie bracket by
[Zi, Z;] = B; Zy + B;-Z; [Zs, Z3] = Bi:Z, + B%Z; (Z;, 73] = B Z, + B%Zf.

We have ij = —Bﬁ- since [Z;, Z;] = —[Z;, Zi]. Notice that J is integrable if and only if the BJ;’s
vanish.
For any p-form v, there holds that

p+1
dP(X1,. . Xpe1) = D (DX (X0, Xy X))
i=1
3 DXL X)L X X X X ) (25)

i<j

for any vector fields X7, ..., Xp4+1 on M (cf. [13]). We directly compute that

1 -1 e
d¢s = —53,31& AN =B ch A - 53,3[& A (2.6)
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For any real (1,1)-form n = v/=1n;;¢" A ¢7, we have

U . . o
== (Zi(”ﬂ%) = Zj(miz) = Bijnsi — Bignjs + Bj;;ms)c AT ACE, (2.7)
N | . ) i -

We can split the exterior differential operator d : AP M @ C — APT! M ®p C, into four components
d=A+0+0+A

with
O APINM — APTLIN 9 APIM — APITLD,

A APIM — APT2TINL A APIN — APTRIT2
In terms of these components, the condition d?> = 0 can be written as
A2 =0, 0A+A0=0, OA+A0=0, A®>=0,
AD+ 0 +0A=0, AA+00+90+AA=0, 0A+0*+ A9=0. (2.9)
A direct computation yields for any ¢ € C*°(M,R),
V=190p = %(dew“’“ = V=UZ:Z; - 2, ;] *V) ()¢ A, (2.10)

so we write locally

005 = (2,25 — 2, 1) o (2.11)

2.2 The torsion and the curvature on almost complex manifolds

Since the Chern connection V preserves J, we have

ViZj = VZT;Zj = P;jZT, Vi23 = V2127 = F%Zf,

where I'7; = ¢"°Z;(g;s) — grggjl*Bf-ﬁg. We can obtain that I'}; = BJ; since the (1,1)-part of the
torsion of the Chern connection vanishes everywhere.

Note that the mixed derivatives V;Z; do not depend on g (cf. [10]). Let {}} be the connection
form, which is defined by ~ = T'%;¢* 4+ T'4;¢®. The torsion T' of the Chern connection V is given
by T = d¢* — (P Ay, TP = d¢t — (P A ”y%, which has no (1, 1)-part and the only non-vanishing

components are as follows:

TS =15 — 1% — B, T =B

ij> i
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These tell us that T = (T%) splits into T = T" + T"”, where T” € T'(A*'M @ T"°M), T" €
D(A%2M & TYOM).

We denote by € the curvature of the Chern connection V. We can regard ) as a section of
ANM@AY M, Q € T(A2M @AY M) and Q splits in Q = H+R+H, where R € T(AM Mo ALLM),
H € T(A>°M @ AM1M). The curvature form can be expressed by Q; = dw} +9iA ;-

In terms of Z,.’s, we have

"= W(Zi, Z3) = Zi(Ty,) = Z5(Ti) + T35y, = 5.5 — Bila + Bj, U5, = =Ry, "s (2.12)

szk
Hijp' = W(Zi, Z5) = Zi(Vy) — Z;(Ti) + Ti L5y, — D505, — BT, — BiTh, = =M, (2.13)
Hi" = W23, Z5) = Z;(T5,) — Z;(15,) + D15, — T5.15, — BTy, — Egj se ="My (2.14)

Lemma 2.2 (The first Bianchi identity for the Chern curvature). For any X,Y,Z € T°M,
Sz = (T(N(X,Y),2)+ VxT(Y, 7)),

where the sum is taken over all cyclic permutations.

This identity induces the following formulae:

Rijkl = Rkﬁl - ScTéj + VT, = Rkﬁl - BiFkaﬁ + ViTh, (2.15)
Mo =TTl + ViTf = =Bj Tl + ViT}, (2.16)

where used that R;;z; = Riju = Hjtie = Hiar = Hiije = Higr = 0.

Let {Z,} be a local unitary (1,0)-frame with respect to g around a fixed point p € M. Note
that unitary frames always exist locally since we can take any frame and apply the Gram-Schmidt
process. Then with respect to a local g-unitary frame, we have g;; = d;; for any 4,5,k =1,...,n,

and the Christoffel symbols satisfy

Eo_ J

k _ J
i =T

ik’

since we have

Ffj =9(ViZ;,Zy) = Zi(gjk) - 9(Z;,ViZy) = —FZ,;a

T = g(Zk, ViZy) = Zilgwg) — 9(ViZi, Z7) = =T,

And also we have

Rijkr = Zl(ng)_Zj( :k)"'rzsr;k_ gs fk_BZSjrgk—i_Bfl gk

= —Z(%)+ z;(TE) + 050k — 15 T8 + BTk, — BTt

i js Jr— s 9§ ST ji— 8T

= —R-F (2.17)

igr
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Hip" = Zi(Uy) — Z;(Ti) + D505, — D505 — BT — 'ng sk

= _Zi(r_];F) - Zj(Fi‘cf) + FfFF?E - F?FF% + ijrgf + Bigjrlsff

= M. (2.18)

and

Ry = ZiU;) = Z;(T5) + D5 — Tl — BTy + Byl

= Zj (F%CT) - Z;(F];T) + FESTF.I;S - F.?TF%CS - B]S;I‘ET + Birl;r

= Rﬁr ’f, (2.19)
Hi = ZiTy;) — Z;(Ty) + D05 — D505 — BT — BT

_ - mk - k s 1k s k 5 1k s 1k

- _ZZ(Fjr) + Zj (FET) + Fgrrﬁs - Fﬁrris - jfr§r - Bﬁrsr

_ ok

= ’Hj” . (2.20)

Hence we obtain R;jir = —Ryjres Hijkr = —Hijrk and Rijpr = Rjzk, Hijkr = Hjipp by using a

local unitary (1,0)-frame with respect to g.

3 Some results for a smooth function on almost Hermitian

manifolds

Let (M, J,g) be an almost Hermitian manifold. Here note that B;%, ng’s do not depend on the
metric g, which depend only on the almost complex structure J since the mixed derivatives V; Z,
V;Zy, do not depend on g. Since we have ng = _ng’ we have that ng, ng’s also do not depend
on g (cf. [10]). Also note that B};, B2 do not depend on g, depend only on J. We can choose
a local unitary frame {Z,} around an arbitrary chosen point po € M such that g,;(po) = d;; and
VZ(po) = 0 (cf. [11]). Then we have I'};(po) = 0 since V;Z;(po) = I'};(po) Z1 = 0, also we obtain
that

(Zi, Z3)(po) = ViZj(po) — Vi Zi(po) — T(Zi, Z;)(po) =0 for alli,j=1,...,n. (3.1)

Then we have that 0 = [Z;, Z;](po) = ij(po)Zk + B% (po)Zz, which gives that B%(po) = 0 for all
i,j,k =1,...,n and that B%(po) =0 for all 4,5,k = 1,...,n. By choosing such a local unitary
frame around a point pg, we have that the torsion tensor T satisfies that Tzlj (po) = —ij (po) for
all 4,5,k =1,...,n, and for instance from the formula (2.11), we have that ¢;;(po) = 9;0;¢(po) =
ZiZ5(@)(po) = Z;Zi(¢)(po) = ¢j:(po) for a smooth real-valued function . We show the following
critical lemma for proving the main result. We choose and fix a local unitary frame {Z,} around
an arbitrary chosen point pg € M such that g;;(po) = d;; and VZ(pg) = 0. Our computations will
be done at the point pg.
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We introduce some results for a smooth function on almost Hermitian manifolds. We write that
0s = Vsp = a(p(ZS) = ZS(SD)'

Lemma 3.1. One has for a smooth real-valued function ¢ on M,

000¢(Zx, Zj, Z;) = O(By;)(Z;)90(Zs). (3.2)

Proof. We compute that from (2.7),
000¢p(Zk, Zj, Z;) = Zi(es3) — Zi(wi) — Bijwsi — Biais + Bjipns
= Z1(Z;Z;(p) — Bps) — Zj(Z1Z;(¢) — Bryps) — Bij(ZsZi(p) — Blypr)
= ZyZ;Zi(p) — Z;Zx Zi(p) — Bi; Zs Zi(p) — Zi(Bj;)ws + Zj(By;)es
= [Z, ZJ]ZE(‘P) - BZ‘stZE(‘P) - Zk(Bfﬂﬂg + Z; (B§€)<PF
= By;ZsZi(p) — Zi(B;)ws + Zi(By;)ps
= BylZs, Zi)(¢) + Bi; ZiZs(9) = { Z2u(T) - Z;(T5) fes
= By;Bler + BiyBlpr + By ZiZs(0) = Hiz S, (3.3)
where we have used that I‘% (po) = B% (po) = 0, I‘% (po) = ij (po) = 0, Ffj (po) = 0 for all
i,j,k=1,...,n, and that from (2.14),
Hizi"(po) = {ZE(Fi) = Z5(T3) + Ty, U5 = T3, 15, = By — B%F%}(po)
= ZE(F%)(PO) - Zj(rii)(po)-
We compute that
By ZiZs(p) = Zi(By;Zs(9) — Zi(By;) Zs(¢)
Z}(0%p(Zx, Z;)) — Zi(By;)09(Zs)

= 00%p(Z;, Zy, Z;) — Z;(By;)00(Zs), (3.4)
where we used that
Po(Zy, Z;) = ZkZi() — Z; Zi(p) — By Zs(9)

(Zk, Z;](0) = By Zs(#)
= BlijZ§(90)7 (3'5)

0P p(Z:, 2y, Z;) = Z3(0%p(Zy, Z;)) — 923, Zi], Z5) + 0*¢((Z:, 25, Z)
= Z;(0%0(Zk, Z))) — BL;Bjor + B Bjjor
= Zi(0%0(Zy, Zy)).
By combining (3.3) with (3.4), we obtain

J J

00 p(Z;, Zy, Z;) + By BL0p(Zy),

000p(Zy, Zj, Z3) = 00*p(Zz, Zi, Z;) + By Br:0p(Z,) + {B,ngE — Z;(B};) — 'H——..S}étp(Zg)
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where we have used that from (2.16) and (2.20),

Hizi” = Hys'
— BT+ ViT,

We compute by using (3.5),

000¢p(Zx, 2, Z;) = 00°0(Zs, Zy, Z;) + Biy BL00(Zy)

where we have used that BY. = —T% =T, O
18 18 S

Lemma 3.2. One has for a smooth real-valued function ¢ on M,

Proof. We compute that from (2.8), using B (po) =0 for all i,5,s = 1,...,n, Bl.(po) = 0 for all
i,r,s=1,...,nand [Zg, Z;](po) =0 for all i,k =1,...,n,

900¢p(Z5, Zis Z3) = Zip(wi;) — Zi(piw) — Bk + Biesj + Bipwis
= Zi(ZiZ;(p) — ijsﬁg) — Zi(Z:Z3 () — Bjrps) + B?;;%g

= ZyZ:iZ;(p) — Z;2: Zx () + Bf;;(zizﬂﬁﬁ) — Bizor)
—Zi(Bj;)es + Z;(Bjy)es

= ZiZ3Z5(0) + |2y, Zil Z5(p) — ZiZ5 23 () — |25, Zi) Zi ()
+B5.ZiZ5(0) — Zi(B) s + Z3(Bj ) es

= Zi[Z, Z5)(¢p) — By ZiZs(p) — Zi(T5)ps + Z5 (D) ws

= B{ZiZs(¢) + Zi(By;)ps + Zi(By;)ps — Zp(Ti)es + Z;(Tip) s

= B;ZiZs(p) — Zi(T5)ps — {Zz'(F%) = Zi(T5;) - Zi(B]%)}<P§
~{Zp(T) - ZuTi) fos + { Z(0%) - Zu(T%p) s

= Bp;ZiZs(¢) = Zi(Tiz)es — Zi(Ti5)0s — Rig;%ps + Rz 5ws, (3.8)

where we have used that B,% = —B%C and that
ZiZwZ5(p) — ZiZ5;25(p) = ZilZg, Z5)()
= Zi(By;Zs + Bi; Zs)()
= Zi(Bg;)ps + By ZiZs(0) + Zi(Br;)ps + B ZiZs(p),
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and from (2.12),

Ri, (o) = {Zu(T3) = Zi(Tiy) + T T, = T3, Ty — BITY, + BRTS | (o)
= Zu(T3))(p0) = Zi(Tiy) (o)

We compute that

= Zi(p(Zy, Z5)) — Zi(B};)09(Zs)
= 009(Zi, Z1, Z5) + Zi(T35)00(Zs), (3.9)

where we used that

Po(Z, 23) = ZiZi(p) — Z3Zi(p) — Bi; Zs(p)
= [Z,;, Zj](‘ﬁ) - ngzg(%’)
— BiLZ(9) (3.10)

agQSD(Zi’ZTwZE) = Z(a @(Zkv )) 62 ([Zinfc]ij)+5290([Zi7Z3]7ZE)
= Zi(a QD(ZE, Z})) BT szcpr + BT BUQDT
= Zi(0%0(Zy, Zy)).

Combining (3.8) with (3.9), we obtain that

00%p(Z:, 7, Z3) + {Rﬁks ~ R — i %)}3(/)(25)
= 00°p(Z;, Zy, Z5) + TL=-T500(Zs),

kg (a3

where we have used that from (2.15),

R’ — Ry, = —BLBL+ Vg

= TET + Z4TH).

We compute that by applying (3.5) and (3.10),

585@(ZE3Z1725) = 852@(Ziazka ])+T]:JT7?18<P( )
0(Z:))(Zi

= J(B; (Zi) +

= 5(32 )(Z:)0¢(Zs) + By;0° (ZZ,Z) T T500(Zs)
( (Zs) =
( ©(Zs)

+ TLTE00(Zs)

kg T

Z kj=re
= 0(By)(Z:)0p(Z, 0(Zs) + TisT7,09(Zs)
= J(B;;)(Z:)op(Z

S/

where we have used that B, = —T5. = T5,. O
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Lemma 3.3. One has for a smooth real-valued function ¢ on M,

00000 (Z1, 25y 20, 25) = —0P(T55)(Z0, Z0)0(Zs) + O(TE)(Z)TROe(Ze).  (3.11)

Proof. By applying (3.5) and (3.6), we have that

0000¢(Zy, Zy, Z:, Z3)

O*(Bij)Z1, 2:)0¢(Z5) + 0(Bi;)(2:)0*0 (2, Zs)
= TG, 20)00(Zs) + O(T55)(Zi) T1,00(Zr). O

In order to avoid a notational quagmire, we adopt the following *-convention C; * Co between two
geometric quantities C; and Co with respect to a metric g:

(1) Summation over pairs of maching upper and lower indices.

(2) Contraction on upper indices with respect to the metric.

(3) Contraction on lower indices with respect to the dual metrics.
Since the point py was chosen arbitrary, the computations in Lemma 3.1-3.3 hold globally on an

almost Hermitian manifold M for any real-valued smooth function ¢, which implies that we can

write (3.2), (3.7), and (3.11) globally on M as follows:

D000p =: Ty x 0o+ Ta x Dp, 820p =: T3 x Op, 00p =: Ty * De. (3.12)

4 Proof of Theorem 1.1

Let (M?",J,w) be a compact almost Hermitian manifold of real dimension 2n with n > 2 in
this whole section. Let u be a smooth solution of (1.1). As in [5], we let Sk()\) denote the k-th
elementary symmetric polynomial of A € R™:
Sk = D> A N
1<y < <ip<n
For a square matrix U, we define S, (U) := S, (A(U)), where A\(U) denote the eigenvalues of the

matrix U. Locally, we can write the equation (1.1) in the following form:

S”l u

Snl) (4.1)
Sp—alXxu) Cg

where C)Y := (nfniaz)‘a‘ We need the following generalized Newton-MacLaurin inequality.

Lemma 4.1 (cf. [1, Proposition 3], [9, Proposition 2.1]). For A € T’y := {A € R™ : Si(\) > 0,
V1<i<k}and0<I<k<n,0<s<r,r<k, s<lI, wehave

Sk () = Sr(N) 7 723
C'Vl C"V’;
lsm} Slsm} : (4.2)
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In this section, the positive constant C' may be changed from line to line, but it depends on the
allowed data.
Proof of Theorem 1.1. It suffices to show the following key inequality:

|€)e—%“|§w" < Cp/ e"Puyn (4.3)

M M

for p large enough.
Lemma 4.2. Let u be a smooth admissible solution to the Monge-Ampére type equation (1,1).
Then, there are uniform constants C, po such that for any p > po, we have the inequality (4.3).
Proof. Without loss of generality, we may assume that
nx"t > (n—a)px" T AW, (4.4)
and there exist uniform positive constants A, A > 0 such that
Aw < x < Aw. (4.5)

As the local expression (4.1):

n—?)fu = Og SH(XU) = U)v
Xu N w Sn—a(Xu)

we locally have that
o Snaalbw) o oxa?
nt Sn—a—1(Xu) B Xﬁiail N we
and which implies that the following inequality

nxzf1 > (n— oz)dszfo‘*l Aw® (4.6)

is equivalent to

Sn—1 (XU) > Sn (XU)
Sn—a—l(Xu) Sn—oz(XU)

since we have locally that

n—uo n —

o Sn(Xu) Sn(Xu)
Sp = N O =0% , —7 .
P " Snalxu) " Su—alxu)

Note that we may apply Lemma 4.1 to x,, since x, > 0. Applying the inequality (4.2), we have

Sulxu) 1% Suo10w) 1
C'n, C’Vl*
_Tn < | —5n
[Sna(xu)] - lsnal(xu)] ’

n—oa n—a—1
Cn Cn

which can be written by

Sn(Xu) < Cgiail Sn—1(Xu)
Sn—a(Xu) a Cgilcﬁha Sn—a—l(Xu)

n—a  Sp-1(xu)
n(a+1) Sp_a-1(xu)

Sn—l(Xu)
Sn—oz—l(xu)’

A
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where we used that < 1. Therefore, the inequality (4.7) holds and as a consequence, we

( +1)
have the inequality (4.6).

We estimate that

Ioim [ e — ) - pa e A =X Aw®)
M
_ (/’e_pu( u X )Xn_a/\wa
X'u. /\wa ana /\wa
< C/e’m" (4.8)

On the other hand, we have that by Stokes’ theorem,

/./ Mu VXt ©AW)dt
M

/ / e P/ =100u A (nx?t — (n — Q)X P Aw®)dt
o Jm
1
/ / d(e P/ =10u A (nx "t — (n — a)bx? * t Aw®))dt
0o Jum
1
- / V=10 PU A Ju A (nx — (n — a)bx P Aw®)dt
o Jum
1
+/ V=1e P Ou A d(nxrt — (n — )Yy Aw®)dt
o Jum
1
= p/ / e P/ =10u A du A (nxt — (n — )t Aw®)dt
o Jum
e -
—= / V=10 P* A d(nxPt — (n — ) Yx P Aw®)dt
PJo Jum
1
= p/ / e PUN/—10u A du A (nxt — (n— a)Px P Aw®)dt
L / [ avTe o - (n - a)uxir Tt Aw)i
M
+—/ / e P/ =190(nx Pt — (n — Q)X Aw®))dt
PJo Jm
1
= p/ / e P/ =10u A du A (nxt — (n — Q) Aw®)dt
0o Jum
e -
—— / / e P/ =100(nx Lt — (n — @)X Aw®)dt, (4.9)
PJo Jum
where we have used that d = A+ 0+ J + A,
(e P/ =10u A (nxpt — (n — a)Yxi * P Aw®)) =0,

Ale P/ =10u A (nxt — (n — a)bx P P Aw®)) =0,
Ale P /=1ou A (nxt — (n — )X Aw®)) =0,

(V=T " d(nxpy ' — (n— a)xpy, 7 Aw®) =0,
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AT P 0 — (n — el Aw)) =0,
AWV=1eT(nxg, " — (n— a)xgy T Aw®)) =0
and from (2.9),
DO — (n— )i T Aw) = —(00+ AA+ AA) (i - (n — @) Aw?)

= —00(nxyy ' = (n—a)xi T AW

since we have

Al = (n— o)y 7 Aw®) = Ay = (n— a)exgy 0T Aw®) =0

We compute that for 0 <t <1,

[ eryET0atny !~ (n - )i hw)
M

—% /M e P“V/=10 (n(n — 1)x7 2 A (Ox + V—=1t000u) — (n — )0 A xp “ 1 Aw®
—(n—a)(n—a—1)Yxp 2 A (Ox + V=1t000u) Aw™ — a(n — a)xp, " Aw* A dw)

- /M V=T P nn = 1)(n = )X A (Ox + 1/=1900u) A (D + tV/=1000u)

+n(n — 1)XE2 A (00X + tvV/—10000u) — (n — @)ddP A X1 Aw®

+(n—a)(n —a—1)¢ AXET*"2 A (O + tV/—1000u) A w®

Fa(n —a)oy AxE T AW A dw

—(n—a)(n—a—1)0p AxE 2N (Ox + tV/—1000u) A w®

—(n—a)(n—a—1)(n—a—2)xL * "> A(Ox + tvV/—1900u) A (Ox + tv/—1000u) A w

—(n—a)(n —a—1)PxE "2 A (00X + tv/—10000u) A w™

—a(n —a)(n —a— D)X "2 A (Ox + tV/—=1000u) A w™™ A dw

(
—a(n —a)op AXPE AW A Qw
—a(n —a)(n —a—DpxE "2 A (Ox + tV/—1000u) A w*™ A dw
—a(n —a)(a— DX AW A dw A Ow

(n—a)

—a(n — )Yyt A W] /\(’“)gw}

c /1

- e_puXtu 3 A w - / e 1ou A 6“’ A X?u ’ A w -C e_puX?u ’ W2
P Jm M
c

——/ e P/ C1ou N Du A XETE Aw

p

C C
—pu., n—a— 1 a+1 —pu., n—a—2 a+2
—- P Xtu N P Xtu A

——/ 7pu\/_(’“)u/\8u/\x" o~ 2/\o.) ——/ e TPUNImaTE p yotS

——/ ePUN/ 10U A Du A X A w2, (4.10)
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where we have used that for instance, by applying (3.12),

/ V—1e PUxIT2 A ty/=10000u
M

/ V=1e P2 At/ =1(Th % Ou + To % Ou)
M

< C/ e P2 AN —TOuNOuAw+ C y e P2 AW, (4.11)
M&MX" 2NtV =1000u A w®
= Ma1/;/\xno‘2/\t\/_7§,*8u/\w
< C’/ XEmOT2 A/ =10u A Qu A w4 C’/ X2 A w2 (4.12)
/M V=1e P A Ox At/ —1000u A w
= /M \/—_1677”“%’?“_3 AOX ANtV —=1T * Ou A w
< C /M e PN ANV =T1OuNOuAw+ C . e PUNIT3 A WA, (4.13)

Since we have assumed that x, x, > 0, then we have that x4, > 0 for any 0 < ¢ < 1. Now we

introduce the following crucial inequalities (cf. [6]):

Lemma 4.3. For any 0 <t <1, 1 <1< n, one has that

;i 1/ / e P/ —10undunyyt Aw™™ lds>)\/ / e 7P/ —1ounduny 2w ds, (4.14)
- M

and for any 0 <t <1,1 <k <mn, one has that

k+1
ko Jo

where X\ > 0 is the uniform constant in (4.5).

t
kAW kds > )\/ xEE A wn TR s, (4.15)

Proof. By using integration by parts and Garding’s inequality as in [6, (2.22)], we have that by
using x > A\w,

t
//e_p“\/—lf)u/\éu/\xlszl/\w"_lds

//e PUN/T10u A Ou A X2 A (X + sv/—100u) Aw™lds

Y

// e PUy/— 6uA8qul2Aw" Hlds
l 1// e Py — 3u/\3u/\s—xsu1/\w"*lds

Y

// e PUy/— 6uA8qul2Aw" Hlds
~3 1// e P/ Z10u N du A Xt AW s, (4.16)
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where we used that
¢ ~ d
/ / e P/ —10u N du A s—x't Aw™ s
0o JM ds

¢
= t/ e_p“\/—lau/\gu/\xigl/\w"_l—/ / e P/ —10u A du A Xt AW lds
M 0 Jm

Y]

t
—/ / e P/ —10u A du A XLt AW ds.
0 Jm

The inequality (4.16) gives the desired one (4.14). Next we compute that by using integration by
parts and Garding’s inequality as in [6, (3.7)], for 1 < k < n, using y > \w,

t t
/ P AW Rds = / X5V A (x4 5v/=100u) A w™Fds
0 0

\Y
>

1 [/t d
k—1 n—k+1 k n—k
Aw ds + — — A w d
Xsu S k/o § s (Xsu ) §

/
t ‘ 1t
= )\/ xf;l/\wnfk*lds—i-gxfu/\wnfk—E/ &, AW Rds
0 0
> A/
0

1t
X’;;l Awn R gs — 2 / X?u Aw"Rds,
kJo
which implies the inequality (4.15). O
By applying these inequalities (4.14) and (4.15) for ¢ = 1 to the estimate (4.10), we obtain that
1 ! —pu 3 n—1 n—a—1 @
—= e PV =100(nx{,  — (n—a)xi, * 7 Aw®)dt
pJo Jm
¢ ! —pu, n—1 ¢ ! —pu 3 n—1
> —— e PUxp T ANwdt — — e P"V/—10u A Ou A Xy, " dt. (4.17)
b Jo Jum b Jo Jum
Combining (4.17) with (4.9), we have that

1
r = p/ / efp“\/—lau/\éu/\{(n— %)X?Jl — (n—a)pyro! /\wo‘}dt
o Jm p

C 1
——/ / e Py A wdt. (4.18)
P Jo Jm

By the concavity of hyperbolic polynomials, for 0 < 7 < 1, 1 < k < n, we have (cf. [6, (2.13)])

T

1 1 1 1
~S¢ () + (1= =) SE0O = S (xan),

.
which gives

Sk (X‘rtu) > TkSk (Xtu)-

1
2”71/ / e P ?_u_l/\wdt
o JMm 2

1
3
2”/ / e PP A wdt. (4.19)
o Jm

For 7 = %, k =n — 1, we obtain that

1
//efpuxfu_l/\wdt
0 JM

IN
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By combining (4.8), (4.18) and (4.19), we have that
! - C
p/ / e_p“\/—lcr“)u/\(’“)u/\{(n——Q)X?u —(n—a)xp " 1/\wo‘}dt
p
< O e U4 —/ / e PUxL A wdt. (4.20)
M

Since we have x4, > 0 and
nXte = (n—a)Yxi T AW >0
for any 0 < ¢t < 1, we can choose a sufficiently large p so that

C
nX?u (n - a)‘/’Xn ot Aw® p2 X?uil > 0.

Then we have that by the concavity of the quotient equation, for some 0 < 6 < 1, we have (cf. [6,

(3.10)])
1

nxpe = (n—Q)Yxi T AW > n{l - m}xﬁfl,

hence for sufficiently large p,

/01 /M eV =10un BuA {(n B ]%)X?“ — (n = a)yxi, A wo‘}dt

> /2 / e PU/—10u A du A {(n - %)X?u_l —(n— )X A wo‘}dt
0 JMm p
3 C 1

> - pu n—1

> /0 n{l - (1+6—t6)°‘}/e A 6u/\5)u/\x dt

> n{l _C #} /% / e P/ Z10u A du A XMt

- np? (1 + %)O‘ 0o Jm "

On the other hand, we compute by Stokes’ theorem,

1 /32
—/ /efp“xtu A wdt
pPJo Jum
1 (7 [td 1
= —/ /—(/ e_p“xsul/\w)dsdt—i—— e PN AW
pJo Jo ds\Juy 2p

n—1 [2 [t B X
= / / / e PU/—100u A X" 2 Awdsdt + — ePUy=1 A gy
p 0 0 M 2p y
n—1 3t )
B / / / d(e”"V=10u A X4 A w)dsdt

n—l/ //\/ 10e P A Qu A X2 A wdsdt

— 1 - 1
+n / / / eipu\/—_l(r“)u A\ 6()(21:2 A w)dsdt 4+ — / e*puxnfl Aw
p Jo Jo Jum % )\,

(4.21)
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1 .t
= (n—l)/2 / / e PN/ —10u A Ou A X" 2 A wdsdt
o Jo Ju
n—1 [% ! - 1
—— / / / V—=19e P A O(X" 2 Aw)dsdt + — / e PN AW
p o Jo JMm 2p Jm
1ot
= (n—-1) /2 / / e P/ —10u A Ou A X7 2 A wdsdt
o Jo Jm
n—1 [z [t
—— / / / d(v/=1e P O(x" 2 Aw))dsdt
p o Jo JM
n—1 (7 [t = 1
+— / / / e P/ —100(x" 2 A w)dsdt + —/ e PN AW
p o Jo Jm 2p S
3t
= (n—l)/2 / / e PN/ —10u A Ou A X" 2 A wdsdt
o Jo Ju

1
-1 [z [t _ 1
I 3 / //efp“\/—lc'“)a(x?u*z/\w)dsdt—i——/ e PN A w, (4.22)
p o Jo JM 2p Ju

where we used that as in the computation in (4.9),

d(e P/ =10un X" 2 Aw) = (O+ 0+ A+ A)(e P/ —10u A X" 2 Aw) = A(e P/ —1dun X" 2 Aw),

d(vV/=1e P“NO(X" T2 Aw)) = (0+0+ A+ A)(V—1e P AO(X" 2 Aw)) = O(V—1e P AD(X™ % Aw)),
and

DO 2 ANw) = —(00 + AA + AA) (X272 Aw) = —00(X2 % Aw).
Applying (3.12), we estimate that as in (4.11)-(4.13) such as

/ V—1e PUx"3 A 53/ —10000u A w
M

< O e PN AV—10u A du A w? + C/ eTPUNT TN W3, (4.23)
M M
/ e PUNTA N 5/ =1000u A Ox A w
M
< C | e P AV=10u A Ou A WP +C/ e PUxt A Wl (4.24)
M M
/ e PUx" N O A sv/—1900u A w?
M
< O e Pt AV =10u A du AW+ C’/ e PUxt A Wl (4.25)
M M

Then we estimate that by applying these estimates (4.23)-(4.25) and the inequalities (4.14)-(4.15),

— t —
n—l / / e P/ —100(x" 2 A w)ds
0o Jum

2
— t _ B B
= npz : / / e P"y/=10((n — 2)x%* A (Ox + svV/—=1900u) A w)ds
o Ju
— t B B o
= npz . / / e Py _1{(” —2)(n = 3)x% A (Ox + svV/—1900u) A (0x + s/ —1000u) A w
0o Jm

+(n = 2)x% % A (00X + svV/—=10000u) A w + (n — 2)x% 3 A (Ox + sv/—1000u) A Ow
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+(n —2)x=3 A (Ox + svV/—1000u) A Ow + x™7% A aéw}ds

c [ c [ _
< = / / e Pt Awtds + = / / e Py AV —T0u A Ou A wids
p*Jo Jm p*Jo Jm
c ' —pu., n—3 3 ¢ ! —pu 3
+_2 € Xsu AWdS+_2 epxsu ANV — 10u A Ou A w?d
p*Jo Jm p*Jo Jm
C t
+— / / e PUNTE A wids
p*Jo Jm
4 ¢ _ Cy t
< —2/ / e PU/—10u A Ou A X?u—2 A wds + —2/ / e_puX?u_Q A wds. (4.26)
p*Jo Jm M
By choosing p sufficiently large such that % <n-1, (if < A 2= by combining (4.22) with

(4.26), and applying (4.15) for t = l, k =mn — 1 such that

1
3
/ / e PN A Widt < - / / e Py A wdt,
o Jm n—1 M

we obtain that for 0 < ¢ < %

1
1 2
—/ / e PUxL A wdt
M

< (n-1) / // e PUy/— 8u/\8u/\xgu2/\wdsdt—|—2— e PN AW
2 —
+—21/ / / e PU/—10u A Ou A X5, 2/\wdsdt—i——/ / / e PUNTE A widsdt
< n—l/ /ep“\/ 8uA8qu"2Awdt
-1) > 1
ni / / e PUNITE A Widt + — / e PN AW
2p Ju
< (n—-1) / / e PUN/—10u A du A X2 A wdt
: 1
— / / e PPt Awdt+ — [ e T Aw (4.27)
0 JMm 2p Jm
which implies that we have by applying (4.14) for t = %, l=n,

1
1 [z
—/ / TPUNTL A wdt
M

< n—l//e’m\/ Bu/\au/\x /\wdt—i——/ _punl/\w
M

2 —
< ﬁ/ / e P/ —1ouNOu A XA+ — [ e TP Aw. (4.28)
Ao Ju 2p M

Therefore, by combining (4.28) with (4.20), (4.21), we obtain that

[np{l - i - # / / e PUN/—10u A Ou A X Lt

np? (14 %)a

C
< C/ e Prw" 4+ —/ e P I AW C | e PR (4.29)
M P Jm M
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We choose p sufficiently large such that

{n{l—%—@}—(}'i—m > 0.

By applying (4.14) for ¢t = % repeatedly, we obtain

n

1 1
2 - -1 [z 3
/ / e P/ TIou A Bu Ay dt > AL / / e P =10u N Qu A Xy A wdt
0 M 0 M

Y

1
—1n—292 (2 _
Azl o / / e PUN/—10u A Ou A X173 A w?dt
0o Jm

n n—1

n—1
ATl / e P/ —10u A Ou A w™ . (4.30)
n 2 M

By combining (4.29) with (4.30), we finally obtain that for sufficiently large p,
p/ e P/ —TOuUNu AW < C/ e PUw™,
M M

which tells us that there exists a sufficiently large py such that for all p > pg, the desired inequality
(4.3) holds. O

The rest of the proof is similar to the ones in [7, 8]. In the following, we give a brief proof for reader’s

convenience. We introduce the definition of Gauduchon metrics on almost complex manifolds.

Definition 4.4. Let (M?",.J) be an almost complex manifold. A metric g is called a Gauduchon
metric on M if g is an almost Hermitian metric whose associated real (1,1)-form w = \/—_lgijci/\cj
satisfies d*(Jd*w) = 0, where d* is the adjoint of d with respect to g, which is equivalent to
d(Jd(w" 1)) =0, or 0(w™ 1) = 0.

One has the following well-known result.

Proposition 4.5 (cf. [2, Theorem 2.1], [3]). Let (M?",J,w) be a compact almost Hermitian
manifold with n > 2. Then there exists a smooth function o, unique up to addition of a constant,

such that the conformal almost Hermitian metric e°w is Gauduchon.

Thanks to Proposition 4.5, there exists a smooth function o : M — R with sup,; 0 = 0 such that

wq = e’w is Gauduchon on M.

Lemma 4.6 (cf. [8, Lemma 2.3]). Let M be a compact almost complex manifold of real dimension
2n (n > 2) with a Gauduchon metric wg. If ¢ is a smooth nonnegative function on M with
Agop > —Cy, where Ag is the Laplacian operator with respect to wg, then there exists a positive

constant Cy, Co depending only on (M,wg) and Cy such that

p+1
/ 196" |2 wis < Cip / P (4.31)
M M

for anyp >1, and

M

sup ¢ < Cy max{ /M PWes, 1}. (4.32)
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R e N Y
M

= D [ 0404 A+ AT Au )
4p M

p“ /¢P\/_aa¢w LMD ) A
M

4p

p+1 /¢p \/_88(;5/\w L

(p + 1)
4p M

—(p 1) / S/ TTH0w
- p“ /«f —Agdw

< C1p/ Prwe, (4.33)
M

+ \/—_1(8+5+A+/_1)(¢”+16wg_1)

where we used that (9 + A+ A)(¢79¢ Awg™") =0, (9+ A+ A)(¢710wg™") = 0, and that
Q0w = (00 + AA+ At = ~00wg ™t =0

since we have Ao.)gf1 = flwgfl =0.

We apply the Sobolev inequality: for 8 := 25 > 1, and for any smooth function f,

(/M fzﬂw")% < C(/M Iaflﬁw"Jr/M f%;"). (4.34)

Taking w = wg and f = $?, where we put ¢ := p + 1, then for ¢ > 2, we have that

(/M ¢q6wg)% < C’qmax{/M gbqwg,l}.

By repeatedly replacing ¢ by ¢ and iterating, after setting ¢ = 2, then we obtain that

S]l&p(b < Cmax{( y ¢2wg)%,1} < Cmax{(s;&p(b)%(/M ¢wg)%,1},

which gives us the desired estimate (4.32). O

By applying the inequality (4.3) and the Sobolev inequality (4.34), for any p > pg, we obtain that

_ 11
lle™ N os < Crprfle™||Lr,
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and by the standard iteration, we have that

epoinfarw < o [ pmpougn (4.35)
M

We need the following lemma, whose proof goes in the same way as in the Hermitian case.

Lemma 4.7 (cf. [7, Lemma 3.2], [8, Lemma 2.2]). Let f be a smooth function on a compact almost

Hermitian manifold (M, J,w). Write dp := W™ If there exists a constant C1 such that

S
e~ f < / e Tdp, (4.36)
M
then
e~
{fsimff+ i1} 2 —— (4.37)
where | - | denotes the volume of the set with respect to du.

We apply Lemma 4.6 to f = pou, and then since we have the inequality (4.35), there exist uniform
constants C, d > 0 such that
{u<infu+C} >0 (4.38)

Now, we define ¢ := u — infp; u. Since it satisfies that Agep = e77A¢ > —C, where A is the
Laplacian operator with respect to w, we may apply Lemma 4.3 to the function ¢. From the
Poincaré inequality and the estimate (4.31) with p = 1, we obtain that

1

o= ollx < 0( [ 100E.08)" < Clol (439)

1
where we put ¢ := Tom Jop dwis.

By making use of (4.38), the set S := {¢ < C} satisfies that |S|g > J, where | - |¢ denotes the

volume of a set with respect to wg. Therefore, we obtain that

5@§/59w8§/5(l¢—9|+0>w8S/Mlsb—flw%a

which gives that by applying (4.39),
16l < Cll = @l +1) < Cll¢ — dllz2 + 1) < C(l|lIF: + 1).

Hence, ¢ is uniformly bounded in L', and from (4.32) and (1.2), we obtain a uniform bound of u

in the L°° norm. O
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