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ABSTRACT

We study the indexed Hermitean lattice of type 0 generated by a single element a

subjected to the relation a ≤ b⊥ ∧ bb⊥ = 0. We prove that it is finite, provided that

two crucial indices are finite. We show that index relations imply algebraic relations

and describe the lattice by means of its subdirectly irreducible factors. We finally use

the results to confirm a conjecture appeared in 2000.

RESUMEN

Estudiamos el reticulado Hermitiano finito indexado de tipo 0 generado por un solo ele-

mento a sujeto a la relación a ≤ b⊥∧bb⊥ = 0. Probamos que es finito, suponiendo que

dos ı́ndices cruciales son finitos. Mostramos que las relaciones de ı́ndices implican rela-

ciones algebraicas y describimos el reticulado a travs de sus factores subdirectamente

irreductibles. Finalmente, usamos nuestros resultados para confirmar una conjetura

aparecida el ao 2000.
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1 Introduction

The importance of lattices in infinite-dimensional orthogonal geometry was brought to attention

by the pioneering work of Herbert Gross (1936-1989): see in particular [G1] and [G2]. All examples

treated in origin are sublattices of some L(E), the subspace-lattice of an ℵ0-dimensional vector

space E over an appropriate division ring k, together with the orthogonal operation induced by

a Hermitean form φ (i.e. X 7→ X⊥ := {y ∈ E | φ(y, x) = 0 ∀x ∈ X}) and were used to study

geometric invariants, for instance dimension of quotient spaces or intersections with the subspace

E∗ of trace-valued vectors in E. The fact that E∗ 6= E only if char(k)= 2 was also playing some

role. After some time of concrete investigations with subspace lattices (see e.g. [M1]), the natural

idea to insert all considerations into an abstract setting gave rise to the following definitions (cf.

[KKW], Ch. IV):

A Hermitean lattice (HL for short) is an algebra (L, 0, 1, · , + , ⊥, b) of type 〈0, 0, 2, 2, 1, 0〉

such that

i) (L, 0, 1, · ,+) is a modular lattice with universal bounds 0 , 1;

ii) ⊥ : L → L is a unary operation with 1⊥ = 0 and

x ≤ (x⊥y)⊥ ∀ x, y ∈ L (1.1)

iii) b ∈ L is a nullary operation with

xx⊥ ≤ b ∀ x ∈ L.

In case b is explicitly not trivial (i.e. b 6= 1), the modular law in i) is sometimes replaced by

the stronger Fano identity

(w+ v)(y+ z) ≤ (w+ y)(v+ z) + (w+ z)(v+ y).

If we drop the operation “+”, then we obtain the notion of Hermitean semilattice (HSL for

short). In the present paper we will endow HL L with a so-called index function of type 0 (IF

for short), i.e a function δ from the set of quotients of L into the set of cardinals ≤ ℵo, with the

following properties:

δ(x/y) ≥ δ(xz/yz), (1.2)

δ(x/y) ≥ δ(x+ z/y+ z), (1.3)

δ(x/y) ≥ δ(y⊥/x⊥), (1.4)

δ(x/y) + δ(y/z) = δ(x/z), (1.5)

δ(x/y) = 0 ⇐⇒ x = y. (1.6)
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We will speak about indexed Hermitean lattices (IHL). By dropping (1.3), we obtain the notion

of indexed Hermitean semilattices (IHSL).

A major task of the theory of H(S)L consists in describing the free objects S[a] and F[a],

generated by a single element a in the varieties of HSL and HL, respectively. Since such objects

are infinite, a more realistic project consists in studying appropriate presentations under (index)

relations suggested by geometrical choice (see [G1], [M1], [M2] and also the bibliography in [KKW]

for many known examples). One of these options is given by the relation a ≤ b⊥, which was intro-

duced in [DM3] and gave rise to the concept of rigid H (S )L. Here we continue such investigation

and consider rigid HL with the (somewhat complementary) property bb⊥ = 0. In the above work

the HSL S := S[a;a ≤ b⊥ ∧ bb⊥ = 0] was already computed, but here we briefly reproduce its

description, without proofs, to make this paper more self-contained. Since the corresponding HL is

most probably infinite, we work with an IF δ and start our research with the following hypothesis:

δ(a⊥/d⊥

1 ) < ℵ0 ∧ δ(b⊥/c⊥

1 ) < ℵ0, (1.7)

where

c1 := d⊥e⊥, d1 := c⊥e⊥, and c := a⊥e⊥, d := b⊥e⊥, e := a⊥b⊥. (1.8)

The algebraic relations forced by the index condition (1.7) are given below in (4.4), Theorem 4.1,

and have the following important consequence:

F := F[a; (1)∧ (4.4)] is finite and has 23 subdirectly irreducible factors.

The factors are listed in Tables II, III and IV, Section 7, together with the associated critical

quotients.

We will finally use these results to confirm conjecture 2 in [M2] and to suggest an application

in orthogonal geometry.

We conclude this introduction with two more remarks:

- Without (1.7), F would be most probably infinite (cf. also the arguments given in [M2]).

Thus we can recognize the importance of the intervals [d⊥

1 , a
⊥] and [c⊥

1 , b
⊥] in the above HL.

Moreover, it is easy to prove that (1.7) is a weakening of the condition δ(1/b) < ℵ0, which has a

natural interpretation in orthogonal geometry (cf. Section 6) and was used as hypothesis in many

precedent investigations.

- S appeared naturally as substructure in other works (see [M2] and [DM2]). This important

fact was an additional motivation for the present study.

2 Preliminaries

Lemma 2.1. Any countable HL is indexable.
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Proof. Each HL admits the trivial IF, defined to have value ℵ0 on each nontrivial quotient.

Lemma 2.2. The class of IHL is closed with respect to subalgebras, homomorphic images and

countable products.

Proof. This is just a slight generalization of Proposition 21 in [KKW], Ch. IV.

Clearly, the existence of a nontrivial IF on some HL is controlled by prime quotients. Our

lattices do not present difficulties such as described in [S] because the subdirectly irreducible factors

are finite and known.

The next result represents the key to obtain algebraic relations from index relations (cf. proof

of Theorem 4.1):

Lemma 2.3. Let u/v be any finite quotient of an IHL. If v = v⊥⊥ then u = u⊥⊥.

Proof. δ(u/v) ≥ δ(v⊥/u⊥) ≥ δ(u⊥⊥/v⊥⊥) = δ(u⊥⊥/v) ≥ δ(u/v).

For the sake of precision we give also the following

Definition 2.4. S[a : a ≤ b⊥] is the initial object of the class of rigid HSL. Similarly, F[a : a ≤ b⊥]

is the initial object of the class of rigid HL.

Thus any rigid H(S)L is a homomorphic image of the initial object.

We could have been even more precise by saying that this is in fact the concept of a 1-generated

rigid H(S)L, a special case of n-generated rigid H(S)L, but of course, for the moment, all this is

not necessary.

We conclude this section by remarking that the axiom (1.1) is equivalent with the following

conditions:

(i) x ≤ x⊥⊥; (ii) x ≤ y ⇒ y⊥ ≤ x⊥.

This may facilitate some computations.

3 Description of S

Theorem 3.1. The HSL S has 18 elements and its structure is given by the diagram depicted in

Figure 1 (see Section 7).

Proof. See [DM3].
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Since we are interested in indices, we consider an IF δ on S and put

β1 := δ(a/0), β2 := δ(b/0), β3 := δ(e/0), β4 := δ(c/c1),

β5 := δ(a⊥⊥/a), β6 := δ(b⊥⊥/b), β7 := δ(c1/b
⊥⊥), β8 := δ(d1/a

⊥⊥).
(3.1)

Theorem 3.2. (Relations among indices in S)

(i) All other indices of S are determined by β1, · · · , β8 as is shown in

Figure 2, Section 7.

(ii) In particular, the following relations hold:

a) β4 6= 0 implies β1 = β2 = ℵ0;

b) β5 6= 0 implies β1 = ℵ0;

c) β6 6= 0 implies β2 = ℵ0;

d) β7 6= 0 or β8 6= 0 implies β1 = β2 = β3 = ℵ0.

Proof. See [DM3].

Remark 3.3. Using the above Theorem, we find 8 subdirectly irreducible factors of S. They are

reproduced in Tables I and II, Section 7.

4 Description of F

Remembering (1.8), let us consider the two descending chains

{a1, a2, a3} := {a⊥, d⊥

1 , d
⊥} and {b1, b2, b3} := {b⊥, c⊥

1 , c
⊥}.

For 1 ≤ i, j ≤ 3 we define

aij := ai(bj + e⊥), bij := bj(ai + e⊥), eij := e⊥(ai + bj). (4.1)

Let I1, I2 and I3 be the modular sublattices of F generated by

{a⊥, d⊥

1 , d
⊥, c, b⊥

31, b
⊥

21, b
⊥

11, b, e}∪{aij}, {b
⊥, c⊥

1 , c
⊥, d, a⊥

13, a
⊥

12, a
⊥

11, a, e}∪{bij} and {e⊥, c, c1, b, b
⊥

31, b
⊥

21, b
⊥

11, d, d1, a
⊥

13, a

{eij}, respectively.

By the main result in [DM1], I1, I2 and I3 coincide with the principal ideals of F0 :=<

I1 ∪ I2 ∪ I3 > generated by a⊥, b⊥ and e⊥ respectively. Moreover, they are distributive and

additively generate F0. We want to show that F0 = F.

To this end it will be useful to define the following indices:
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αi := βi for i = 1, 2, 3, 4, 5, 6 and further

α7 := δ(e⊥/e11), α8 := δ(c⊥/b13), α9 := δ(d⊥/a31),

α10 := δ(1/a⊥ + b⊥ + e⊥), α11 := δ(b⊥
11/b

⊥⊥), α12 := δ(a⊥
11/a

⊥⊥),

α13 := δ(d⊥
1 /a21 + d⊥), α14 := δ(c⊥

1 /b12 + c⊥), α15 := δ(b33/d1 + e),

α16 := δ(d1/a
⊥
13), α17 := δ(c1/b

⊥
31), α18 := δ(a22/a23 + a32),

α19 := δ(a⊥
12/a

⊥
11), α20 := δ(a⊥

13/a
⊥
12), α21 := δ(b⊥

31/b
⊥
21),

α22 := δ(b23/b33), α23 := δ(a32/a33).

(4.2)

Theorem 4.1. (Description of I1, I2 and I3 in F):

1) The plain structure of I1, I2 and I3 is represented by the diagrams depicted in Fig 3, Fig

4 and Fig 5 of Section 7.

2) The ideals are connected by the following relations between indices:

α4 = δ(d/d1) = δ(c/c1),

α11 = δ(b⊥

11/b
⊥⊥) = δ(b⊥/b⊥⊥

11),

α12 = δ(a⊥

11/a
⊥⊥) = δ(a⊥/a⊥⊥

11),

α15 = δ(b33/d1 + e) = δ(a33/c1 + e) = δ(e33/c1 + d1),

α16 = δ(d1/a
⊥

13) = δ(a13/a23) = δ(b13/b23) = δ(e13/e23),

α17 = δ(c1/b
⊥

31) = δ(a31/a32) = δ(b31/b32) = δ(e31/e32),

α18 = δ(a22/a23 + a32) = δ(e22/e23 + e32), (4.3)

α19 = δ(a⊥

12/a
⊥

11) = δ(b⊥

21/b
⊥

11) = δ(e11/e12 + e21),

α20 = δ(a⊥

13/a
⊥

12) = δ(a12/a13 + a22) = δ(b12/b13 + b22) = δ(e12/e13 + e22),

α21 = δ(b⊥

31/b
⊥

21) = δ(a21/a22 + a31) = δ(b21/b22 + b31) = δ(e21/e22 + e31),

α22 = δ(b23/b33) = δ(a23/c+ a33),

α23 = δ(a32/a33) = δ(b32/b33 + d) = δ(e32/d+ e33).

3) I1 ∪ I2 ∪ I3 is orthogonally closed in force of the following relations:

a11 + d⊥

1 = a⊥⊥

11, a12 + d⊥

1 = a⊥⊥

12, a13 + d⊥

1 = a⊥⊥

13,

b11 + c⊥

1 = b⊥⊥

11, b21 + c⊥

1 = b⊥⊥

21, b31 + c⊥

1 = b⊥⊥

31. (4.4)

Proof. 1) This is routine verification.

2) δ(d/d1) ≥ δ(d⊥

1 /d
⊥) ≥ δ(d⊥

1 e
⊥/d⊥e⊥) ≥ δ(c/c1) ≥ δ(c⊥

1 /c
⊥) ≥

δ(c⊥

1 e
⊥/c⊥e⊥) ≥ δ(d/d1). This shows the first equality. The second and third ones are evident.

As to the fourth, just consider the free modular lattice generated by the triple (d⊥, c⊥, e⊥). The

other equalities are proved analogously.
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3) We just show the first equality (the others follow in the same manner):

δ(a11 + d⊥

1 /d
⊥

1 ) = δ(a11/a11d
⊥

1 ) = δ(a11/a21) ≤ δ(a⊥/d⊥

1 ) < ℵ0 (by (1.7)).

Thus a11 + d⊥

1 = (a11 + d⊥

1 )
⊥⊥ by Lemma 2.3, because d⊥

1 = (d⊥

1 )
⊥⊥.

Since d⊥

1 ≤ a⊥⊥

11 (because c+ e ≤ a11), we obtain the desired equality.

The rest is easy and it follows F = F0.

Theorem 4.2. (Forced relations among indices):

i) If α7 6= 0 then α1 = α2 = ℵ0;

ii) If α8 6= 0 then α1 = α3 = ℵ0;

iii) If α9 6= 0 then α2 = α3 = ℵ0;

iv) For i ∈ {10, 11, 12, 15, 16, 17, 19}, if αi 6= 0 then α1 = α2 = α3 = ℵ0;

v) For i ∈ {13, 14, 18, 20, 21, 22, 23}, if αi 6= 0 then α1 = α2 = α3 = α4 = ℵ0;

vi) α11 + α12 + α16 + α17 + α19 + α20 + α21 < ℵ0

Proof. Each implication follows in a way as was shown in the proof of Theorem 3.2, possibly in

conjunction with Lemma 2.3.

The well known rule (x+y)⊥ = x⊥y⊥ may also be useful for computations. The last assertion

is just the translation of (1.7) in terms of the indices αi.

5 The subdirectly irreducible factors of F.

In order to discover the factors of F it is sufficient to work out I1, I2 and I3 at the same time, using

the relations given in Theorem 4.1 and Theorem 4.2.

The essence of the procedure consists in collecting all prime quotients that are connected

with a given one via the algebraic operations: this will produce automatically the corresponding

subdirectly irreducible factor, together with the associated relation.

Observe how useful are indices in this procedure: on the one hand they are associated in

natural way to congruences, on the other hand the forced relations among them give directly the

non minimal congruences in the subdirectly irreducible factors.

A little final caution is needed: there is a quotient which does not appear in the ideals, namely

1/(a⊥+b⊥+e⊥) (see the factor corresponding to α9 in Table III). Since (a⊥+b⊥)⊥⊥ = (a⊥+e⊥)⊥⊥ =

(e⊥ + b⊥)⊥⊥ = 1 this is the only exception.

The factors are labelled from 1 to 23 in Tables II, III and IV. The last table contains all non

distributive members.



72 Ana Cecilia de la Maza and Remo Moresi CUBO
20, 1 (2018)

Remark 5.1. From all the above results we deduce in particular that Conjecture 2 in [M2] is true:

in fact, the finite codimensions indicated in the conjecture correspond to the ones given by (1.7).

Remark 5.2. There are plain lattice isomorphisms between different factors. Nevertheless we

chose to give explicitly all diagrams, in order to facilitate visualization. It is worth noticing that

the majority of this plain isomorphisms are induced by the map a 7→ b and b 7→ a, which defines

an involution of S that extends naturally to F. More precisely, there are eight pairs of symmetric

factors, namely (1,2), (5,6), (8,9), (11,12), (13,14), (16,17), (20,21) and (2,23), all other factors

being self symmetric.

6 Remarks concerning applications to Hermitean spaces

It is possible to prove that all factors of F are implemented by Hermitean models. Hence they can be

used to describe the congruence class of a subspace A in a Hermitean space (E,φ) of denumerable

dimension under the starting assumptions, where A,E, E∗ correspond to a, 1, b, respectively.

In general, these IHL will not suffice to build a complete set of geometric invariants, but they

constitute a very important part. Details on these aspects cannot be discussed in the present work.

7 Diagrams
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Figure 4: the ideal I2 in F
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