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ABSTRACT

We discuss the existence and uniqueness of points of coincidence and common fixed

points for a pair of self-mappings defined on a C∗-algebra valued b-metric space endowed

with a graph. Our results extend and supplement several recent results in the literature.

Strength of hypotheses made in the first result have been weighted through illustrative

examples.

RESUMEN

Discutimos la existencia y unicidad de puntos de coincidencia y puntos fijos comumes

para un par de aplicaciones definidas en un b-espacio métrico a valores en una álgebra

C∗ dotado de un grafo en śı mismo. Nuestros resultados extienden y suplementan

diversos resultados recientes en la literatura. La fuerza de las hipótesis impuestas al

primer resultado se evalúa a través de ejemplos ilustrativos.
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1 Introduction

In 1922 [5], Polish mathematician S. Banach proved a very important result regarding a contrac-

tion mapping, known as the Banach contraction principle. This fundamental principle was largely

applied in many branches of mathematics. Several authors generalized this interesting theorem

in different ways(see [1, 2, 6, 13, 18, 25, 26, 27]). In this context, Bakhtin [4] and Czerwik [11]

developed the notion of b-metric spaces and proved some fixed point theorems for single-valued

and multi-valued mappings in the setting of b-metric spaces. In 2014, Z. Ma et.al.[22] introduced

the concept of C∗-algebra valued metric spaces by using the set of all positive elements of an unital

C∗-algebra instead of the set of real numbers. In [21], the authors introduced another new concept,

known as C∗-algebra valued b-metric spaces as a generalization of C∗-algebra valued metric spaces

and b-metric spaces.

In recent investigations, the study of fixed point theory endowed with a graph plays an im-

portant role in many aspects. In 2005, Echenique [15] studied fixed point theory by using graphs.

After that, Espinola and Kirk [16] applied fixed point results in graph theory. Recently, combining

fixed point theory and graph theory, a series of articles(see [3, 8, 9, 10, 20, 24] and references

therein) have been dedicated to the improvement of fixed point theory.

The idea of common fixed point was initially given by Junck [19]. In fact, the author introduced

the concept of weak compatibility and obtained a common fixed point result. Several authors

have obtained coincidence points and common fixed points for various classes of mappings on a

metric space by using this concept. Motivated by some recent works on the extension of Banach

contraction principle to metric spaces with a graph, we reformulated some important common

fixed point results in metric spaces to C∗-algebra valued b-metric spaces endowed with a graph.

As some consequences of this study, we deduce several related results in fixed point theory. Finally,

some examples are provided to illustrate the results.

2 Some basic concepts

We begin with some basic notations, definitions and properties of C∗-algebras. Let A be an unital

algebra with the unit I. An involution on A is a conjugate linear map a 7→ a∗ on A such that

a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. The pair (A, ∗) is called a ∗-algebra. A Banach

∗-algebra is a ∗-algebra A together with a complete submultiplicative norm such that ‖ a∗ ‖=‖ a ‖

for all a ∈ A. A C∗-algebra is a Banach ∗-algebra such that ‖ a∗a ‖=‖ a ‖2 for all a ∈ A. Let H

be a Hilbert space and B(H), the set of all bounded linear operators on H. Then, under the norm

topology, B(H) is a C∗-algebra.

Throughout this discussion, by A we always denote an unital C∗-algebra with the unit I and
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the zero element θ. Set Ah = {x ∈ A : x = x∗}. We call an element x ∈ A a positive element,

denote it by x � θ, if x ∈ Ah and σ(x) ⊂ [0,∞), where σ(x) is the spectrum of x. Using positive

elements, one can define a partial ordering � on Ah as follows:

x � y if and only if y− x � θ.

We shall write x ≺ y if x � y and x 6= y.

From now on, by A+, we denote the set {x ∈ A : x � θ} and by A
′

, we denote the set

{a ∈ A : ab = ba, ∀b ∈ A}.

Lemma 2.1. [14, 23] Suppose that A is an unital C∗-algebra with a unit I.

(i) For any x ∈ A+, we have x � I ⇔‖ x ‖≤ 1.

(ii) If a ∈ A+ with ‖ a ‖< 1
2
, then I− a is invertible and ‖ a(I− a)−1 ‖< 1.

(iii) Suppose that a, b ∈ A with a, b � θ and ab = ba, then ab � θ.

(iv) Let a ∈ A
′

, if b, c ∈ A with b � c � θ, and I − a ∈ A
′

+ is an invertible operator, then

(I− a)−1b � (I − a)−1c.

Remark 2.2. It is worth mentioning that x � y ⇒‖ x ‖≤‖ y ‖ for x, y ∈ A+. In fact, it follows

from Lemma 2.1 (i).

Definition 2.3. [22] Let X be a nonempty set. Suppose the mapping d : X× X → A satisfies:

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a C∗-algebra valued metric on X and (X,A, d) is called a C∗-algebra valued metric

space.

Definition 2.4. [4] Let X be a nonempty set and s ≥ 1 be a given real number. A function

d : X× X → R+ is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.
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Definition 2.5. [21] Let X be a nonempty set and A ∈ A
′

+ such that A � I. Suppose the

mapping d : X× X → A satisfies:

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � A (d(x, z) + d(z, y)) for all x, y, z ∈ X.

Then d is called a C∗-algebra valued b-metric on X and (X,A, d) is called a C∗-algebra valued

b-metric space.

It seems important to note that if A = C, A = 1, then the C∗-algebra valued b-metric spaces

are just the ordinary metric spaces. Moreover, it is obvious that C∗-algebra valued b-metric spaces

generalize the concepts of C∗-algebra valued metric spaces and b-metric spaces.

Definition 2.6. [26] Let (X,A, d) be a C∗-algebra valued b-metric space, x ∈ X and (xn) be a

sequence in X. Then

(i) (xn) converges to x with respect to A if for any ǫ > 0 there is n0 such that for all n > n0,

‖ d(xn, x) ‖≤ ǫ. We denote it by lim
n→∞

xn = x or xn → x(n → ∞).

(ii) (xn) is Cauchy with respect to A if for any ǫ > 0 there is n0 such that for all n,m > n0,

‖ d(xn, xm) ‖≤ ǫ.

(iii) (X,A, d) is a complete C∗-algebra valued b-metric space if every Cauchy sequence with respect

to A is convergent.

Example 2.7. If X is a Banach space, then (X,A, d) is a complete C∗-algebra valued b-metric

space with A = 2p−1I if we set

d(x, y) =‖ x− y ‖p I

where p > 1 is a real number. But (X,A, d) is not a C∗-algebra valued metric space because if

X = R, then | x− y |p≤| x− z |p + | z − y |p is impossible for all x > z > y.

Definition 2.8. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I.

We call a mapping f : X → X a C∗-algebra valued contraction mapping on X if there exists B ∈ A

with ‖ B ‖2< 1
‖A‖ such that

d(fx, fy) � B∗ d(x, y)B

for all x, y ∈ X.

Definition 2.9. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I.

A mapping f : X → X is called a C∗-algebra valued Fisher contraction if there exists B ∈ A
′

+ with

‖ BA ‖< 1
‖A‖+1

such that

d(fx, fy) � B [d(fx, y) + d(fy, x)]

for all x, y ∈ X.
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Definition 2.10. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I.

A mapping f : X → X is called a C∗-algebra valued Kannan operator if there exists B ∈ A
′

+ with

‖ B ‖< 1
‖A‖+1

such that

d(fx, fy) � B [d(fx, x) + d(fy, y)]

for all x, y ∈ X.

Definition 2.11. [2] Let T and S be self mappings of a set X. If y = Tx = Sx for some x in X,

then x is called a coincidence point of T and S and y is called a point of coincidence of T and S.

Definition 2.12. [19] The mappings T, S : X → X are weakly compatible, if for every x ∈ X, the

following holds:

T(Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.13. [2] Let S and T be weakly compatible selfmaps of a nonempty set X. If S

and T have a unique point of coincidence y = Sx = Tx, then y is the unique common fixed point of

S and T .

Definition 2.14. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I.

A mapping f : X → X is called C∗-algebra valued expansive if there exists B ∈ A with 0 <‖ B ‖2<
1

‖A‖ such that

B∗d(fx, fy)B � d(x, y)

for all x, y ∈ X.

We next review some basic notions in graph theory.

Let (X,A, d) be a C∗-algebra valued b-metric space. Let G be a directed graph (digraph) with

a set of vertices V(G) = X and a set of edges E(G) contains all the loops, i.e., E(G) ⊇ ∆, where

∆ = {(x, x) : x ∈ X}. We also assume that G has no parallel edges and so we can identify G with the

pair (V(G), E(G)). G may be considered as a weighted graph by assigning to each edge the distance

between its vertices. By G−1 we denote the graph obtained from G by reversing the direction of

edges i.e., E(G−1) = {(x, y) ∈ X× X : (y, x) ∈ E(G)}. Let G̃ denote the undirected graph obtained

from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat G̃

as a directed graph for which the set of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1).

Our graph theory notations and terminology are standard and can be found in all graph theory

books, like [7, 12, 17]. If x, y are vertices of the digraph G, then a path in G from x to y of length

n (n ∈ N) is a sequence (xi)
n
i=0 of n + 1 vertices such that x0 = x, xn = y and (xi−1, xi) ∈ E(G)

for i = 1, 2, · · · , n. A graph G is connected if there is a path between any two vertices of G. G is

weakly connected if G̃ is connected.
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Definition 2.15. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I

and let G = (V(G), E(G)) be a graph. A mapping f : X → X is called a C∗-algebra valued G-

contraction if there exists a B ∈ A with ‖ B ‖2< 1
‖A‖ such that

d(fx, fy) � B∗d(x, y)B,

for all x, y ∈ X with (x, y) ∈ E(G).

Any C∗-algebra valued contraction mapping on X is aG0-contraction, where G0 is the complete

graph defined by (X,X × X). But it is worth mentioning that a C∗-algebra valued G-contraction

need not be a C∗-algebra valued contraction (see Remark 3.23).

Definition 2.16. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I

and let G = (V(G), E(G)) be a graph. A mapping f : X → X is called C∗-algebra valued Fisher

G-contraction if there exists B ∈ A
′

+ with ‖ BA ‖< 1
‖A‖+1

such that

d(fx, fy) � B [d(fx, y) + d(fy, x)]

for all x, y ∈ X with (x, y) ∈ E(G).

It is easy to observe that a C∗-algebra valued Fisher contraction is a C∗-algebra valued Fisher

G0-contraction. But it is important to note that a C∗-algebra valued Fisher G-contraction need

not be a C∗-algebra valued Fisher contraction. The following example supports the above remark.

Example 2.17. Let X = [0,∞) and B(H) be the set of all bounded linear operators on a Hilbert

space H. Define d : X × X → B(H) by d(x, y) =| x − y |2 I for all x, y ∈ X. Then (X,B(H), d)

is a C∗-algebra valued b-metric space with the coefficient A = 2I. Let G be a digraph such that

V(G) = X and E(G) = ∆ ∪ {(3tx, 3t(x + 1)) : x ∈ X with x ≥ 2, t = 0, 1, 2, · · · }.

Let f : X → X be defined by fx = 3x for all x ∈ X.

For x = 3tz, y = 3t(z + 1), z ≥ 2, we have

d(fx, fy) = d
(

3t+1z, 3t+1(z + 1)
)

= 32t+2I

�
9

58
32t(8z2 + 8z + 10)I

= B
[

d
(

3t+1z, 3t(z + 1)
)

+ d
(

3t+1(z + 1), 3tz
)]

= B [d(fx, y) + d(fy, x)],

where B = 9
58
I ∈ B(H)

′

+ with ‖ BA ‖< 1
‖A‖+1

. Thus, f is a C∗-algebra valued Fisher G-contraction.

We now verify that f is not a C∗-algebra valued Fisher contraction. In fact, if x = 3, y = 0,
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then for any arbitrary B ∈ B(H)
′

+ with ‖ BA ‖< 1
‖A‖+1

= 1
3
(which implies 3BA ≺ I), we have

B [d(fx, y) + d(fy, x)] = B [d(f3, 0) + d(f0, 3)]

= 90BI

= 45BA

=
5

27
(3BA)(81I)

≺ 81I

= d(fx, fy).

Definition 2.18. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I

and let G = (V(G), E(G)) be a graph. A mapping f : X → X is called C∗-algebra valued G-Kannan

if there exists B ∈ A
′

+ with ‖ B ‖< 1
‖A‖+1

such that

d(fx, fy) � B [d(fx, x) + d(fy, y)]

for all x, y ∈ X with (x, y) ∈ E(G).

Note that any C∗-algebra valued Kannan operator is C∗-algebra valued G0-Kannan. However,

a C∗-algebra valued G-Kannan operator need not be a C∗-algebra valued Kannan operator (see

Remark 3.28).

Remark 2.19. If f is a C∗-algebra valued G-contraction(resp., G-Kannan or Fisher G-contraction),

then f is both a C∗-algebra valued G−1-contraction(resp., G−1-Kannan or Fisher G−1-contraction)

and a C∗-algebra valued G̃-contraction(resp., G̃-Kannan or Fisher G̃-contraction).

3 Main Results

In this section we always assume that (X,A, d) is a C∗-algebra valued b-metric space with the

coefficient A � I and G is a directed graph such that V(G) = X and E(G) ⊇ ∆.

Let f, g : X → X be such that f(X) ⊆ g(X). If x0 ∈ X is arbitrary, then there exists an element

x1 ∈ X such that fx0 = gx1, since f(X) ⊆ g(X). Proceeding in this way, we can construct a

sequence (gxn) such that gxn = fxn−1, n = 1, 2, 3, · · ·.

Definition 3.1. Let (X,A, d) be a C∗-algebra valued b-metric space endowed with a graph G

and f, g : X → X be such that f(X) ⊆ g(X). We define Cgf the set of all elements x0 of X such that

(gxn, gxm) ∈ E(G̃) for m, n = 0, 1, 2, · · · and for every sequence (gxn) such that gxn = fxn−1.

If g = I, the identity map on X, then obviously Cgf becomes Cf which is the collection of all

elements x of X such that (fnx, fmx) ∈ E(G̃) for m, n = 0, 1, 2, · · · .
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Theorem 3.2. Let (X,A, d) be a C∗-algebra valued b-metric space endowed with a graph G and

the mappings f, g : X → X be such that

d(fx, fy) � B∗ d(gx, gy)B (3.1)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where B ∈ A and ‖ B ‖2< 1
‖A‖ . Suppose f(X) ⊆ g(X) and

g(X) is a complete subspace of X with the following property:

(∗) If (gxn) is a sequence in X such that gxn → x and (gxn, gxn+1) ∈ E(G̃) for all n ≥ 1,

then there exists a subsequence (gxni
) of (gxn) such that (gxni

, x) ∈ E(G̃) for all i ≥ 1.

Then f and g have a point of coincidence in X if Cgf 6= ∅. Moreover, f and g have a unique point

of coincidence in X if the graph G has the following property:

(∗∗) If x, y are points of coincidence of f and g in X, then (x, y) ∈ E(G̃).

Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in

X.

Proof. Suppose that Cgf 6= ∅. We choose an x0 ∈ Cgf and keep it fixed. Since f(X) ⊆ g(X),

there exists a sequence (gxn) such that gxn = fxn−1, n = 1, 2, 3, · · · and (gxn, gxm) ∈ E(G̃) for

m, n = 0, 1, 2, · · · .

It is a well known fact that in a C∗-algebra A, if a, b ∈ A+ and a � b, then for any x ∈ A both

x∗ax and x∗bx are positive elements and x∗ax � x∗bx[23].

For any n ∈ N, we have by using condition (3.1) that

d(gxn, gxn+1) = d(fxn−1, fxn) � B∗d(gxn−1, gxn)B. (3.2)

By repeated use of condition (3.2), we get

d(gxn, gxn+1) � (B∗)nd(gx0, gx1)B
n = (Bn)∗B0B

n, (3.3)

for all n ∈ N, where B0 = d(gx0, gx1) ∈ A+.
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For any m,n ∈ N with m > n, we have by using condition (3.3) that

d(gxn, gxm) � A[d(gxn, gxn+1) + d(gxn+1, gxm)]

� Ad(gxn, gxn+1) +A2d(gxn+1, gxn+2) + · · ·

+Am−n−1d(gxm−2, gxm−1) + Am−n−1d(gxm−1, gxm)

� A(B∗)nB0B
n +A2(B∗)n+1B0B

n+1 +A3(B∗)n+2B0B
n+2 + · · ·

+Am−n−1(B∗)m−2B0B
m−2 + Am−n−1(B∗)m−1B0B

m−1

�
m−n−1∑

k=1

Ak(B∗)n+k−1B0B
n+k−1 + Am−n(B∗)m−1B0B

m−1

=

m−n∑

k=1

Ak(B∗)n+k−1B0B
n+k−1

�
m−n∑

k=1

‖ Ak(B∗)n+k−1B0B
n+k−1 ‖ I

� ‖ B0 ‖
m−n∑

k=1

‖ A ‖k ‖ B ‖2(n+k−1) I

= ‖ B0 ‖ ‖ B ‖2n ‖ A ‖
m−n∑

k=1

(

‖ A ‖ ‖ B ‖2
)k−1

I

�
‖ B0 ‖ ‖ B ‖2n ‖ A ‖

1− ‖ A ‖ ‖ B ‖2
I, since ‖ B ‖2<

1

‖ A ‖

→ θ as n → ∞.

Therefore, (gxn) is a Cauchy sequence with respect to A. Since g(X) is complete, there exists an

u ∈ g(X) such that lim
n→∞

gxn = u = gv for some v ∈ X.

As x0 ∈ Cgf, it follows that (gxn, gxn+1) ∈ E(G̃) for all n ≥ 0, and so by property (∗), there

exists a subsequence (gxni
) of (gxn) such that (gxni

, gv) ∈ E(G̃) for all i ≥ 1.

Using condition (3.1), we have

d(fv, gv) � A[d(fv, fxni
) + d(fxni

, gv)]

� AB∗d(gv, gxni
)B+Ad(gxni+1, gv)

→ θ as i → ∞.

This implies that d(fv, gv) = θ and hence fv = gv = u. Therefore, u is a point of coincidence of f

and g.

The next is to show that the point of coincidence is unique. Assume that there is another

point of coincidence u∗ in X such that fx = gx = u∗ for some x ∈ X. By property (∗∗), we have
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(u, u∗) ∈ E(G̃). Then,

d(u, u∗) = d(fv, fx)

� B∗d(gv, gx)B

= B∗d(u, u∗)B,

which implies that,

‖ d(u, u∗) ‖ ≤ ‖ B∗d(u, u∗)B ‖

≤ ‖ B∗ ‖‖ d(u, u∗) ‖‖ B ‖

= ‖ B ‖2‖ d(u, u∗) ‖ .

Since ‖ B ‖2< 1
‖A‖ ≤ 1, it follows that d(u, u∗) = θ i.e., u = u∗. Therefore, f and g have a unique

point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.13, f and g have a unique common

fixed point in X.

The following corollary gives fixed point of Banach G-contraction in C∗-algebra valued b-

metric spaces.

Corollary 3.3. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

graph G and the mapping f : X → X be such that

d(fx, fy) � B∗d(x, y)B (3.4)

for all x, y ∈ X with (x, y) ∈ E(G̃), where B ∈ A with ‖ B ‖2< 1
‖A‖ . Suppose (X,A, d,G) has the

following property:

(∗)́ If (xn) is a sequence in X such that xn → x and (xn, xn+1) ∈ E(G̃) for all n ≥ 1, then

there exists a subsequence (xni
) of (xn) such that (xni

, x) ∈ E(G̃) for all i ≥ 1.

Then f has a fixed point in X if Cf 6= ∅. Moreover, f has a unique fixed point in X if the graph G

has the following property:

(∗ ∗ )́ If x, y are fixed points of f in X, then (x, y) ∈ E(G̃).

Proof. The proof can be obtained from Theorem 3.2 by considering g = I, the identity map on

X.

Corollary 3.4. Let (X,A, d) be a C∗-algebra valued b-metric space and the mappings f, g : X →
X be such that (3.1) holds for all x, y ∈ X, where B ∈ A with ‖ B ‖2< 1

‖A‖ . If f(X) ⊆ g(X) and
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g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover,

if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof follows from Theorem 3.2 by taking G = G0, where G0 is the complete graph

(X,X × X).

The following corollary is analogue of Banach Contraction Principle.

Corollary 3.5. Let (X,A, d) be a complete C∗-algebra valued b-metric space and the mapping

f : X → X be such that (3.4) holds for all x, y ∈ X, where B ∈ A with ‖ B ‖2< 1
‖A‖ . Then f has a

unique fixed point u in X and fnx → u for all x ∈ X.

Proof. It follows from Theorem 3.2 by putting G = G0 and g = I.

Remark 3.6. We observe that Banach contraction theorem in a complete metric space can be

obtained from Corollary 3.5 by taking A = C, A = 1. Thus, Theorem 3.2 is a generalization of

Banach contraction theorem in metric spaces to C∗-algebra valued b-metric spaces.

From Theorem 3.2, we obtain the following corollary concerning the fixed point of expansive

mapping in C∗-algebra valued b-metric spaces.

Corollary 3.7. Let (X,A, d) be a complete C∗-algebra valued b-metric space and let g : X → X

be an onto mapping satisfying

B∗d(gx, gy)B � d(x, y)

for all x, y ∈ X, where B ∈ A with ‖ B ‖2< 1
‖A‖ . Then g has a unique fixed point in X.

Proof. The conclusion of the corollary follows from Theorem 3.2 by taking G = G0 and f = I.

Corollary 3.8. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

partial ordering ⊑ and the mapping f : X → X be such that (3.4) holds for all x, y ∈ X with x ⊑ y

or, y ⊑ x, where B ∈ A and ‖ B ‖2< 1
‖A‖ . Suppose (X,A, d,⊑) has the following property:

(†) If (xn) is a sequence in X such that xn → x and xn, xn+1 are comparable for all n ≥ 1,

then there exists a subsequence (xni
) of (xn) such that xni

, x are comparable for all i ≥ 1.

If there exists x0 ∈ X such that fnx0, f
mx0 are comparable for m, n = 0, 1, 2, · · · , then f has a

fixed point in X. Moreover, f has a unique fixed point in X if the following property holds:

(††) If x, y are fixed points of f in X, then x, y are comparable.

Proof. The proof can be obtained from Theorem 3.2 by taking g = I and G = G2, where the graph

G2 is defined by E(G2) = {(x, y) ∈ X× X : x ⊑ y or y ⊑ x}.
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Theorem 3.9. Let (X,A, d) be a C∗-algebra valued b-metric space endowed with a graph G and

the mappings f, g : X → X be such that

d(fx, fy) � B [d(fx, gy) + d(fy, gx)] (3.5)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where B ∈ A
′

+ and ‖ BA ‖< 1
‖A‖+1

. Suppose f(X) ⊆ g(X) and

g(X) is a complete subspace of X with the property (∗). Then f and g have a point of coincidence

in X if Cgf 6= ∅. Moreover, f and g have a unique point of coincidence in X if the graph G has the

property (∗∗). Furthermore, if f and g are weakly compatible, then f and g have a unique common

fixed point in X.

Proof. It follows from condition (3.5) that B(d(fx, gy) + d(fy, gx)) is a positive element.

Suppose that Cgf 6= ∅. We choose an x0 ∈ Cgf and keep it fixed. We can construct a sequence

(gxn) such that gxn = fxn−1, n = 1, 2, 3, · · · . Evidently, (gxn, gxm) ∈ E(G̃) for m,n = 0, 1, 2, · · · .

For any n ∈ N, we have by using condition (3.5) and Lemma 2.1(iii) that

d(gxn, gxn+1) = d(fxn−1, fxn)

� B[d(fxn−1, gxn) + d(fxn, gxn−1)]

= B[d(fxn−1, fxn−1) + d(fxn, fxn−2)]

� BA[d(fxn, fxn−1) + d(fxn−1, fxn−2)]

= BAd(gxn+1, gxn) + BAd(gxn, gxn−1)]

which implies that,

(I− BA)d(gxn, gxn+1) � BAd(gxn, gxn−1). (3.6)

Now, A, B ∈ A
′

+ implies that BA ∈ A
′

+. Since ‖ BA ‖< 1
2
, by Lemma 2.1, it follows that (I−BA)

is invertible and ‖ BA(I − BA)−1 ‖=‖ (I− BA)−1BA ‖< 1. Moreover, by Lemma 2.1, BA � I i.e.,

I − BA � θ. Since BA ∈ A
′

+, we have (I − BA) ∈ A
′

+. Furthermore, (I − BA)−1 ∈ A
′

+. By using

Lemma 2.1(iv), it follows from (3.6) that

d(gxn, gxn+1) � (I− BA)−1BAd(gxn, gxn−1) = td(gxn−1, gxn), (3.7)

where t = (I− BA)−1BA ∈ A
′

+.

By repeated use of condition (3.7), we get

d(gxn, gxn+1) � tnd(gx0, gx1) = tnB0, (3.8)

for all n ∈ N, where B0 = d(gx0, gx1) ∈ A+.
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We now prove that if ‖ BA ‖< 1
‖A‖+1

, then ‖ t ‖< 1
‖A‖ .

We have,

‖ t ‖ = ‖ (I− BA)−1BA ‖

≤ ‖ (I− BA)−1 ‖‖ BA ‖

≤
1

1− ‖ BA ‖
‖ BA ‖

<
1

‖ A ‖
, since ‖ BA ‖<

1

‖ A ‖ +1
.

For any m,n ∈ N with m > n, we have by using condition (3.8) that

d(gxn, gxm) � A[d(gxn, gxn+1) + d(gxn+1, gxm)]

� Ad(gxn, gxn+1) +A2d(gxn+1, gxn+2) + · · ·

+Am−n−1d(gxm−2, gxm−1) + Am−n−1d(gxm−1, gxm)

� AtnB0 +A2tn+1B0 +A3tn+2B0 + · · ·

+Am−n−1tm−2B0 +Am−n−1tm−1B0

�
m−n∑

k=1

Aktn+k−1B0, since A � I and A ∈ A
′

+

�
m−n∑

k=1

‖ Aktn+k−1B0 ‖ I

� ‖ B0 ‖ ‖ A ‖ ‖ t ‖n
m−n∑

k=1

(‖ A ‖ ‖ t ‖)k−1
I

� ‖ B0 ‖ ‖ A ‖ ‖ t ‖n
1

1− ‖ A ‖ ‖ t ‖
I

→ θ as n → ∞.

Therefore, (gxn) is a Cauchy sequence with respect to A. As g(X) is complete, there exists an

u ∈ g(X) such that lim
n→∞

gxn = u = gv for some v ∈ X. By property (∗), there exists a subsequence

(gxni
) of (gxn) such that (gxni

, gv) ∈ E(G̃) for all i ≥ 1.

Using condition (3.5), we have

d(fv, gv) � A[d(fv, fxni
) + d(fxni

, gv)]

� AB[d(fv, gxni
) + d(fxni

, gv)] +Ad(gxni+1, gv)

� ABA[d(fv, gv) + d(gv, gxni
)] +ABd(gxni+1, gv) +Ad(gxni+1, gv)

which implies that,

(I − BA2)d(fv, gv) � BA2d(gv, gxni
) + ABd(gxni+1, gv) +Ad(gxni+1, gv).
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Since ‖ BA2 ‖< ‖A‖
‖A‖+1

< 1, we have (I − BA2)−1 exists. By using Lemma 2.1, it follows that

d(fv, gv) � (I− BA2)−1BA2d(gv, gxni
) + (I− BA2)−1ABd(gxni+1, gv)

+(I− BA2)−1Ad(gxni+1, gv)

→ θ as i → ∞.

This implies that d(fv, gv) = θ i.e., fv = gv = u and hence u is a point of coincidence of f and g.

Finally, to prove the uniqueness of point of coincidence, suppose that there is another point

of coincidence u∗ in X such that fx = gx = u∗ for some x ∈ X. By property (∗∗), we have

(u, u∗) ∈ E(G̃). Then,

d(u, u∗) = d(fv, fx)

� B[d(fv, gx) + d(fx, gv)]

= B[d(u, u∗) + d(u, u∗)]

� AB[d(u, u∗) + d(u, u∗)]

which implies that,

d(u, u∗) � (I −AB)−1 ABd(u, u∗).

So, it must be the case that

‖ d(u, u∗) ‖ ≤ ‖ (I−AB)−1ABd(u, u∗) ‖

≤ ‖ (I−AB)−1AB ‖ ‖ d(u, u∗) ‖ .

Since ‖ (I − AB)−1AB ‖< 1, we have ‖ d(u, u∗) ‖= 0 i.e., u = u∗. Therefore, f and g have a

unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.13, f and g have a unique common

fixed point in X.

Corollary 3.10. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

graph G and the mapping f : X → X be such that

d(fx, fy) � B [d(fx, y) + d(fy, x)] (3.9)

for all x, y ∈ X with (x, y) ∈ E(G̃), where B ∈ A
′

+ and ‖ BA ‖< 1
‖A‖+1

. Suppose (X,A, d,G) has

the property (∗)́. Then f has a fixed point in X if Cf 6= ∅. Moreover, f has a unique fixed point in

X if the graph G has the property (∗ ∗ )́.

Proof. The proof can be obtained from Theorem 3.9 by putting g = I.



CUBO
20, 1 (2018)

Common Fixed Point Results in C∗-Algebra . . . 55

Corollary 3.11. Let (X,A, d) be a C∗-algebra valued b-metric space and the mappings f, g :

X → X be such that (3.5) holds for all x, y ∈ X, where B ∈ A
′

+ and ‖ BA ‖< 1
‖A‖+1

. If f(X) ⊆ g(X)

and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X.

Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof can be obtained from Theorem 3.9 by taking G = G0.

Corollary 3.12. Let (X,A, d) be a complete C∗-algebra valued b-metric space and the mapping

f : X → X be such that (3.9) holds for all x, y ∈ X, where B ∈ A
′

+ with ‖ BA ‖< 1
‖A‖+1

. Then f

has a unique fixed point in X.

Proof. The proof follows from Theorem 3.9 by taking G = G0 and g = I.

Remark 3.13. We observe that Brian Fisher’s theorem in a complete metric space can be

obtained from Corollary 3.12 by taking A = C, A = 1. Thus, Theorem 3.9 is a generalization of

Brian Fisher’s theorem in metric spaces to C∗-algebra valued b-metric spaces.

Corollary 3.14. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

partial ordering ⊑ and the mapping f : X → X be such that (3.9) holds for all x, y ∈ X with x ⊑ y

or, y ⊑ x, where B ∈ A
′

+ with ‖ BA ‖< 1
‖A‖+1

. Suppose (X,A, d,⊑) has the property (†). If there

exists x0 ∈ X such that fnx0, f
mx0 are comparable for m, n = 0, 1, 2, · · · , then f has a fixed point

in X. Moreover, f has a unique fixed point in X if the property (††) holds.

Proof. The proof can be obtained from Theorem 3.9 by taking G = G2 and g = I.

Theorem 3.15. Let (X,A, d) be a C∗-algebra valued b-metric space endowed with a graph G

and the mappings f, g : X → X be such that

d(fx, fy) � B [d(fx, gx) + d(fy, gy)] (3.10)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where B ∈ A
′

+ and ‖ B ‖< 1
‖A‖+1

. Suppose f(X) ⊆ g(X) and

g(X) is a complete subspace of X with the property (∗). Then f and g have a point of coincidence

in X if Cgf 6= ∅. Moreover, f and g have a unique point of coincidence in X if the graph G has the

property (∗∗). Furthermore, if f and g are weakly compatible, then f and g have a unique common

fixed point in X.

Proof. We observe that B(d(fx, gx) + d(fy, gy)) is a positive element.

Suppose that Cgf 6= ∅. We choose an x0 ∈ Cgf and keep it fixed. We can construct a sequence

(gxn) such that gxn = fxn−1, n = 1, 2, 3, · · · . Evidently, (gxn, gxm) ∈ E(G̃) for m,n = 0, 1, 2, · · · .
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For any n ∈ N, we have by using condition (3.10) that

d(gxn, gxn+1) = d(fxn−1, fxn)

� B[d(fxn−1, gxn−1) + d(fxn, gxn)]

= Bd(gxn, gxn−1) + Bd(gxn, gxn+1)

which implies that,

(I− B)d(gxn, gxn+1) � Bd(gxn, gxn−1). (3.11)

Since B ∈ A
′

+ and ‖ B ‖< 1
2
, by Lemma 2.1, it follows that B � I and (I − B) is invertible with

‖ B(I−B)−1 ‖=‖ (I−B)−1B ‖< 1. Furthermore, (I−B), (I−B)−1 ∈ A
′

+ and so, (I−B)−1B ∈ A
′

+.

Again, by using Lemma 2.1(iv), it follows from condition (3.11) that

d(gxn, gxn+1) � (I− B)−1Bd(gxn, gxn−1) = td(gxn−1, gxn), (3.12)

where t = (I− B)−1B ∈ A
′

+.

By repeated use of condition (3.12), we get

d(gxn, gxn+1) � tnd(gx0, gx1) = tnB0, (3.13)

for all n ∈ N, where B0 = d(gx0, gx1) ∈ A+.

We now prove that if ‖ B ‖< 1
‖A‖+1

, then ‖ t ‖< 1
‖A‖ .

We have,

‖ t ‖ = ‖ (I− B)−1B ‖

≤ ‖ (I− B)−1 ‖‖ B ‖

≤
1

1− ‖ B ‖
‖ B ‖

<
1

‖ A ‖
, since ‖ B ‖<

1

‖ A ‖ +1
.
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For any m,n ∈ N with m > n, we have by using condition (3.13) that

d(gxn, gxm) � A[d(gxn, gxn+1) + d(gxn+1, gxm)]

� Ad(gxn, gxn+1) +A2d(gxn+1, gxn+2) + · · ·

+Am−n−1d(gxm−2, gxm−1) + Am−n−1d(gxm−1, gxm)

� AtnB0 +A2tn+1B0 +A3tn+2B0 + · · ·

+Am−n−1tm−2B0 +Am−n−1tm−1B0

�
m−n∑

k=1

Aktn+k−1B0, since A � I and A ∈ A
′

+

�
m−n∑

k=1

‖ Aktn+k−1B0 ‖ I

� ‖ B0 ‖‖ A ‖‖ t ‖n
m−n∑

k=1

(‖ A ‖‖ t ‖)k−1I

� ‖ B0 ‖‖ A ‖‖ t ‖n
1

1− ‖ A ‖‖ t ‖
I

→ θ as n → ∞.

Therefore, (gxn) is a Cauchy sequence with respect to A. By completeness of g(X), there exists

an u ∈ g(X) such that lim
n→∞

gxn = u = gv for some v ∈ X . By property (∗), there exists a

subsequence (gxni
) of (gxn) such that (gxni

, gv) ∈ E(G̃) for all i ≥ 1.

Using condition (3.10), we have

d(fv, gv) � A[d(fv, fxni
) + d(fxni

, gv)]

� AB[d(fv, gv) + d(fxni
, gxni

)] +Ad(gxni+1, gv)

which implies that,

(I− AB)d(fv, gv) � ABd(gxni+1, gxni
) + Ad(gxni+1, gv).

Since ‖ AB ‖< ‖A‖
‖A‖+1

< 1, we have (I−AB)−1 exists and (I−AB) ∈ A
′

+. By using Lemma 2.1, it

follows that

d(fv, gv) � (I−AB)−1ABd(gxni+1, gxni
) + (I− AB)−1Ad(gxni+1, gv).

Then,

‖ d(fv, gv) ‖ ≤ ‖ (I−AB)−1AB ‖ ‖ d(gxni+1, gxni
) ‖

+ ‖ (I−AB)−1A ‖ ‖ d(gxni+1, gv) ‖

≤ ‖ (I−AB)−1AB ‖ ‖ t ‖ni ‖ B0 ‖

+ ‖ (I−AB)−1A ‖ ‖ d(gxni+1, gv) ‖

→ 0 as i → ∞.
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This implies that d(fv, gv) = θ i.e., fv = gv = u and hence u is a point of coincidence of f and g.

Finally, to prove the uniqueness of point of coincidence, suppose that there is another point

of coincidence u∗ in X such that fx = gx = u∗ for some x ∈ X. By property (∗∗), we have

(u, u∗) ∈ E(G̃). Then,

d(u, u∗) = d(fv, fx)

� B[d(fv, gv) + d(fx, gx)]

= θ

which implies that, d(u, u∗) = θ i.e., u = u∗. Therefore, f and g have a unique point of coincidence

in X.

If f and g are weakly compatible, then by Proposition 2.13, f and g have a unique common

fixed point in X.

Corollary 3.16. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

graph G and the mapping f : X → X be such that

d(fx, fy) � B [d(fx, x) + d(fy, y)] (3.14)

for all x, y ∈ X with (x, y) ∈ E(G̃), where B ∈ A
′

+ and ‖ B ‖< 1
‖A‖+1

. Suppose (X,A, d,G) has the

property (∗)́. Then f has a fixed point in X if Cf 6= ∅. Moreover, f has a unique fixed point in X if

the graph G has the property (∗ ∗ )́.

Proof. The proof can be obtained from Theorem 3.15 by putting g = I.

Corollary 3.17. Let (X,A, d) be a C∗-algebra valued b-metric space and the mappings f, g :

X → X be such that (3.10) holds for all x, y ∈ X, where B ∈ A
′

+ and ‖ B ‖< 1
‖A‖+1

. If f(X) ⊆ g(X)

and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X.

Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof can be obtained from Theorem 3.15 by taking G = G0.

Corollary 3.18. Let (X,A, d) be a complete C∗-algebra valued b-metric space and the mapping

f : X → X be such that (3.14) holds for all x, y ∈ X, where B ∈ A
′

+ with ‖ B ‖< 1
‖A‖+1

. Then f has

a unique fixed point in X.

Proof. The proof follows from Theorem 3.15 by taking G = G0 and g = I.
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Remark 3.19. We observe that Kannan’s fixed point theorem in a complete metric space can

be obtained from Corollary 3.18 by taking A = C, A = 1. Thus, Theorem 3.15 is a generalization

of Kannan’s fixed point theorem in metric spaces to C∗-algebra valued b-metric spaces.

Corollary 3.20. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

partial ordering ⊑ and the mapping f : X → X be such that (3.14) holds for all x, y ∈ X with x ⊑ y

or, y ⊑ x, where B ∈ A
′

+ with ‖ B ‖< 1
‖A‖+1

. Suppose (X,A, d,⊑) has the property (†). If there

exists x0 ∈ X such that fnx0, f
mx0 are comparable for m, n = 0, 1, 2, · · · , then f has a fixed point

in X. Moreover, f has a unique fixed point in X if the property (††) holds.

Proof. The proof can be obtained from Theorem 3.15 by taking G = G2 and g = I.

We furnish some examples in favour of our results.

Example 3.21. Let X = R and B(H) be the set of all bounded linear operators on a Hilbert

space H. Define d : X × X → B(H) by d(x, y) =| x − y |3 I for all x, y ∈ X, where I is the

identity operator on H. Then (X,B(H), d) is a complete C∗-algebra valued b-metric space with the

coefficient A = 4I. Let G be a digraph such that V(G) = X and E(G) = ∆∪{( 1
n
, 0) : n = 1, 2, 3 · · · }.

Let f, g : X → X be defined by

fx =
x

5
, if x 6=

4

5

= 1, if x =
4

5

and gx = 2x for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.

If x = 0, y = 1
2n

, n = 1, 2, 3, · · · , then gx = 0, gy = 1
n

and so (gx, gy) ∈ E(G̃).

For x = 0, y = 1
2n

, we have

d(fx, fy) = d

(

0,
1

10n

)

=
1

103.n3
I

≺
1

25n3
I

=
1

25
d(gx, gy)

= B∗ d(gx, gy)B,

where B = 1
5
I ∈ B(H).
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Therefore,

d(fx, fy) � B∗ d(gx, gy)B

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where B ∈ B(H) and ‖ B ‖2< 1
‖A‖ . We can verify that

0 ∈ Cgf. In fact, gxn = fxn−1, n = 1, 2, 3, · · · gives that gx1 = f0 = 0 ⇒ x1 = 0 and so

gx2 = fx1 = 0 ⇒ x2 = 0. Proceeding in this way, we get gxn = 0 for n = 0, 1, 2, · · · and hence

(gxn, gxm) = (0, 0) ∈ E(G̃) for m, n = 0, 1, 2, · · · .

Also, any sequence (gxn) with the property (gxn, gxn+1) ∈ E(G̃) must be either a constant

sequence or a sequence of the following form

gxn = 0, if n is odd

=
1

n
, if n is even

where the words ’odd’ and ’even’ are interchangeable. Consequently it follows that property (∗)

holds. Furthermore, f and g are weakly compatible. Thus, we have all the conditions of Theorem

3.2 and 0 is the unique common fixed point of f and g in X.

Remark 3.22. It is worth mentioning that weak compatibility condition in Theorem 3.2 cannot

be relaxed. In Example 3.21, if we take gx = 2x− 9 for all x ∈ X instead of gx = 2x, then 5 ∈ Cgf

and f(5) = g(5) = 1 but g(f(5)) 6= f(g(5)) i.e., f and g are not weakly compatible. However, all

other conditions of Theorem 3.2 are satisfied. We observe that 1 is the unique point of coincidence

of f and g without being any common fixed point.

Remark 3.23. In Example 3.21, f is a C∗-algebra valued G-contraction but it is not a C∗-

algebra valued contraction. In fact, for x = 4
5
, y = 0, we have

d(fx, fy) = d(1, 0)

= I

=
125

64
.
64

125
I

=
125

64
d(x, y)

≻ B∗ d(x, y)B,

for any B ∈ B(H) with ‖ B ‖2< 1
‖A‖ . This implies that f is not a C∗-algebra valued contraction.

The following example shows that property (∗) is necessary in Theorem 3.2.

Example 3.24. Let X = [0,∞) and B(H) be the set of all bounded linear operators on a Hilbert

space H. Define d : X×X → B(H) by d(x, y) =| x−y |3 I for all x, y ∈ X, where I is the identity op-

erator on H. Then (X,B(H), d) is a complete C∗-algebra valued b-metric space with the coefficient
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A = 4I. Let G be a digraph such that V(G) = X and E(G) = ∆∪{(x, y) : (x, y) ∈ (0, 1]×(0, 1], x ≥ y}.

Let f, g : X → X be defined by

fx =
x

6
, if x 6= 0

= 1, if x = 0

and gx = x
2
for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.

For x, y ∈ X with (gx, gy) ∈ E(G̃), we have

d (fx, fy) =
1

27
d (gx, gy)

�
1

9
d (gx, gy)

= B∗ d(gx, gy)B,

where B = 1
3
I ∈ B(H) with ‖ B ‖2< 1

‖A‖ .

We see that f and g have no point of coincidence in X. We now verify that the property (∗)

does not hold. In fact, (gxn) is a sequence in X with gxn → 0 and (gxn, gxn+1) ∈ E(G̃) for all

n ∈ N where xn = 2
n
. But there exists no subsequence (gxni

) of (gxn) such that (gxni
, 0) ∈ E(G̃).

Example 3.25. Let X = R and B(H) be the set of all bounded linear operators on a Hilbert

space H. Choose a positive operator T ∈ B(H). Define d : X×X → B(H) by d(x, y) =| x−y |5 T for

all x, y ∈ X. Then (X,B(H), d) is a complete C∗-algebra valued b-metric space with the coefficient

A = 16I. Let f, g : X → X be defined by

fx = 2, if x 6= 5

= 3, if x = 5

and gx = 3x − 4 for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.

Let G be a digraph such that V(G) = X and E(G) = ∆ ∪ {(2, 3), (3, 5)}. If x = 2, y = 7
3
, then

gx = 2, gy = 3 and so (gx, gy) ∈ E(G̃).

Again, if x = 7
3
, y = 3, then gx = 3, gy = 5 and so (gx, gy) ∈ E(G̃).

It is easy to verify that condition (3.5) of Theorem 3.9 holds for all x, y ∈ X with (gx, gy) ∈ E(G̃).

Furthermore, 2 ∈ Cgf i.e., Cgf 6= ∅, f and g are weakly compatible, and (X,B(H), d,G) has the

property (∗). Thus, all the conditions of Theorem 3.9 are satisfied and 2 is the unique common

fixed point of f and g in X.

Remark 3.26. It is observed that in Example 3.25, f is not a Fisher G-contraction. In fact,
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for x = 3, y = 5, we have

B [d(fx, y) + d(fy, x)] = B [d(2, 5) + d(3, 3)]

= 243BT

=
243

16
BAT

=
243

16 × 17
17BAT

≺ T

= d(fx, fy),

for any B ∈ B(H)
′

+ with ‖ BA ‖< 1
‖A‖+1

. This implies that f is not a Fisher G-contraction.

The following example supports our Theorem 3.15.

Example 3.27. Let X = [0,∞) and B(H) be the set of all bounded linear operators on a Hilbert

space H. Choose a positive operator T ∈ B(H). Define d : X×X → B(H) by d(x, y) =| x−y |2 T for

all x, y ∈ X. Then (X,B(H), d) is a complete C∗-algebra valued b-metric space with the coefficient

A = 2I. Let G be a digraph such that V(G) = X and E(G) = ∆∪ {(4tx, 4t(x+ 1)) : x ∈ X with x ≥

2, t = 0, 1, 2, · · · }.

Let f, g : X → X be defined by fx = 4x and gx = 16x for all x ∈ X. Clearly, f(X) = g(X) = X.

If x = 4t−2z, y = 4t−2(z + 1), then gx = 4tz, gy = 4t(z + 1) and so (gx, gy) ∈ E(G̃) for all

z ≥ 2.

For x = 4t−2z, y = 4t−2(z + 1), z ≥ 2 with B = 1
117

I, we have

d(fx, fy) = d
(

4t−1z, 4t−1(z + 1)
)

= 42t−2T

�
1

117
42t−2(18z2 + 18z + 9)T

=
1

117

[

d
(

4t−1z, 4tz
)

+ d
(

4t−1(z+ 1), 4t(z + 1)
)]

= B [d(fx, gx) + d(fy, gy)].

Thus, condition (3.10) is satisfied for all x, y ∈ X with (gx, gy) ∈ E(G̃). It is easy to verify that

0 ∈ Cgf. Also, any sequence (gxn) with gxn → x and (gxn, gxn+1) ∈ E(G̃) must be a constant

sequence and hence property (∗) holds. Furthermore, f and g are weakly compatible. Thus, we have

all the conditions of Theorem 3.15 and 0 is the unique common fixed point of f and g in X.

Remark 3.28. It is easy to observe that in Example 3.27, f is a C∗-algebra valued G-Kannan

operator with B = 16
117

I. But f is not a C∗-algebra valued Kannan operator because, if x = 4, y = 0,
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then for any arbitrary B ∈ B(H)
′

+ with ‖ B ‖< 1
‖A‖+1

= 1
3
(which implies 3B ≺ I), we have

B [d(fx, x) + d(fy, y)] = B [d(f4, 4) + d(f0, 0)]

= 144BT

=
144

3× 256
(3B)(256T)

≺ 256T

= d(fx, fy).
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