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ABSTRACT

We discuss the existence and uniqueness of points of coincidence and common fixed
points for a pair of self-mappings defined on a C*-algebra valued b-metric space endowed
with a graph. Our results extend and supplement several recent results in the literature.
Strength of hypotheses made in the first result have been weighted through illustrative

examples.

RESUMEN

Discutimos la existencia y unicidad de puntos de coincidencia y puntos fijos comumes
para un par de aplicaciones definidas en un b-espacio métrico a valores en una algebra
C* dotado de un grafo en si mismo. Nuestros resultados extienden y suplementan
diversos resultados recientes en la literatura. La fuerza de las hipétesis impuestas al

primer resultado se evalta a través de ejemplos ilustrativos.
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1 Introduction

In 1922 [5], Polish mathematician S. Banach proved a very important result regarding a contrac-
tion mapping, known as the Banach contraction principle. This fundamental principle was largely
applied in many branches of mathematics. Several authors generalized this interesting theorem
in different ways(see [II, 2 [0 13, 18| 25| 26, 27]). In this context, Bakhtin [4] and Czerwik [11]
developed the notion of b-metric spaces and proved some fixed point theorems for single-valued
and multi-valued mappings in the setting of b-metric spaces. In 2014, Z. Ma et.al.[22] introduced
the concept of C*-algebra valued metric spaces by using the set of all positive elements of an unital
C*-algebra instead of the set of real numbers. In [21], the authors introduced another new concept,
known as C*-algebra valued b-metric spaces as a generalization of C*-algebra valued metric spaces
and b-metric spaces.

In recent investigations, the study of fixed point theory endowed with a graph plays an im-
portant role in many aspects. In 2005, Echenique [I5] studied fixed point theory by using graphs.
After that, Espinola and Kirk [16] applied fixed point results in graph theory. Recently, combining
fixed point theory and graph theory, a series of articles(see [3, [8, @, 10, 20, 24] and references
therein) have been dedicated to the improvement of fixed point theory.

The idea of common fixed point was initially given by Junck [19]. In fact, the author introduced
the concept of weak compatibility and obtained a common fixed point result. Several authors
have obtained coincidence points and common fixed points for various classes of mappings on a
metric space by using this concept. Motivated by some recent works on the extension of Banach
contraction principle to metric spaces with a graph, we reformulated some important common
fixed point results in metric spaces to C*-algebra valued b-metric spaces endowed with a graph.
As some consequences of this study, we deduce several related results in fixed point theory. Finally,
some examples are provided to illustrate the results.

2 Some basic concepts

We begin with some basic notations, definitions and properties of C*-algebras. Let A be an unital
algebra with the unit I. An involution on A is a conjugate linear map a — a* on A such that
a** = a and (ab)* = b*a* for all a,b € A. The pair (A,x*) is called a *-algebra. A Banach
x-algebra is a x-algebra A together with a complete submultiplicative norm such that || a* ||=|| a ||
for all a € A. A C*-algebra is a Banach x-algebra such that || a*a ||=|| a ||? for all a € A. Let H
be a Hilbert space and B(H), the set of all bounded linear operators on H. Then, under the norm
topology, B(H) is a C*-algebra.

Throughout this discussion, by A we always denote an unital C*-algebra with the unit I and
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the zero element 0. Set Ap = {x € A : x = x*}. We call an element x € A a positive element,
denote it by x = 0, if x € A, and o(x) C [0, 00), where o(x) is the spectrum of x. Using positive
elements, one can define a partial ordering < on Ay, as follows:

x 2y if and only if y —x = 0.
We shall write x <y if x <y and x #y.
From now on, by A,, we denote the set {x € A : x = 0} and by A', we denote the set
{a€e A:ab=Dba,Vb e A}

Lemma 2.1. [T}, (23] Suppose that A is an unital C*-algebra with a unit 1.

(i) For any x € Ay, we have x X I & x ||< 1.
(ii) If a € Ay with || a||< I, then I—a is invertible and || a(I—a)~" ||< 1.
(iii) Suppose that a,b € A with a,b > 0 and ab = ba, then ab = 0.

(iv) Let a € A',ifbce Awithb=c=0, andl—a € A; is an invertible operator, then
I—a) b= (I—a)'c.

Remark 2.2. [t is worth mentioning that x <y = x ||<|| y || for x,y € A;. In fact, it follows
from LemmalZ1 (i).

Definition 2.3. [29] Let X be a nonempty set. Suppose the mapping d : X x X — A satisfies:

(i) 6 < d(x,y) for all x,y € X and d(x,y) =0 if and only if x =y;
(i) d(x,y) =d(y,x) for all x,y € X;

(ii) d(x,y) = d(x,z) + d(z,y) for all x,y,z € X.

Then d is called a C*-algebra valued metric on X and (X, A, d) is called a C*-algebra valued metric
space.

Definition 2.4. [J]] Let X be a nonempty set and s > 1 be a given real number. A function
d: X x X = R" is said to be a b-metric on X if the following conditions hold:

(i) d(x,y) =0 if and only if x =y;
(i) d(x,y) =d(y,x) for all x,y € X;

(ii) d(x,y) <s(d(x,z) + d(z,y)) for all x,y,z € X.

The pair (X, d) is called a b-metric space.
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Definition 2.5. [21] Let X be a nonempty set and A € A; such that A = 1. Suppose the
mapping d: X x X — A satisfies:

(i) © =< d(x,y) for all x,y € X and d(x,y) =0 if and only if x =y;
(i1) d(x,y) = d(y,x) for all x,y € X;

(i) d(x,y) = A(d(x,z) + d(z,y)) for all x,y,z € X.

Then d is called a C*-algebra valued b-metric on X and (X, A,d) is called a C*-algebra valued

b-metric space.

It seems important to note that if A = C,A =1, then the C*-algebra valued b-metric spaces
are just the ordinary metric spaces. Moreover, it is obvious that C*-algebra valued b-metric spaces
generalize the concepts of C*-algebra valued metric spaces and b-metric spaces.

Definition 2.6. [26] Let (X, A, d) be a C*-algebra valued b-metric space, x € X and (xn) be a
sequence in X. Then

(i) (xn) converges to x with respect to A if for any € > 0 there is ng such that for all n > ny,

| d(xn,x) ||[< €. We denote it by nlgréoxn =x or xn — x(n — o0).

(i) (xn) is Cauchy with respect to A if for any € > 0 there is gy such that for all n,m > ny,
[ dlxn,xm) [[< €.

(ii) (X, A, d) is a complete C*-algebra valued b-metric space if every Cauchy sequence with respect

to A is convergent.

Example 2.7. If X is a Banach space, then (X, A, d) is a complete C*-algebra valued b-metric
space with A = 2P~ 11 if we set
dix,y) = x—y "1
where p > 1 is a real number. But (X,A,d) is not a C*-algebra valued metric space because if
X =R, then | x—y |P<|x—2z|P +|z—y [P is impossible for all x >z > y.

Definition 2.8. Let (X, A, d) be a C*-algebra valued b-metric space with the coefficient A = 1.
We call a mapping f: X — X a C*-algebra valued contraction mapping on X if there exists B € A
with || B [|?< ”}]\—” such that

d(fx,fy) < B*d(x,y)B
for all x,y € X.

Definition 2.9. Let (X, A, d) be a C*-algebra valued b-metric space with the coefficient A = 1.
A mapping f: X — X is called a C*-algebra valued Fisher contraction if there exists B € A; with
|| BA ||< W such that
d(fx, fy) < B [d(fx,y) + d(fy,x)]

for all x,y € X.
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Definition 2.10. Let (X, A, d) be a C*-algebra valued b-metric space with the coefficient A = 1.
A mapping f: X — X is called a C*-algebra valued Kannan operator if there exists B € A; with
I B|< W such that
d(fx, fy) < Bld(fx,x) + d(fy,y)]

for all x,y € X.

Definition 2.11. [2] Let T and S be self mappings of a set X. If y = Tx = Sx for some x in X,
then x is called a coincidence point of T and S and y is called a point of coincidence of T and S.

Definition 2.12. [T9] The mappings T,S : X = X are weakly compatible, if for every x € X, the
following holds:
T(Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.13. [2] Let S and T be weakly compatible selfmaps of a nonempty set X. If S
and T have a unique point of coincidence y = Sx = Tx, then y is the unique common fized point of
SandT.

Definition 2.14. Let (X, A, d) be a C*-algebra valued b-metric space with the coefficient A = 1.
A mapping f: X — X is called C*-algebra valued expansive if there exists B € A with 0 <|| B ||?<
H}TH such that
B*d(fx, fy)B = d(x,y)

for all x,y € X.

We next review some basic notions in graph theory.

Let (X, A, d) be a C*-algebra valued b-metric space. Let G be a directed graph (digraph) with
a set of vertices V(G) = X and a set of edges E(G) contains all the loops, i.e., E(G) D A, where
A ={(x,x) : x € X}. We also assume that G has no parallel edges and so we can identify G with the
pair (V(G),E(G)). G may be considered as a weighted graph by assigning to each edge the distance
between its vertices. By G~' we denote the graph obtained from G by reversing the direction of
edges i.e., E(G™") ={(x,y) € X x X : (y,x) € E(G)}. Let G denote the undirected graph obtained
from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat G
as a directed graph for which the set of its edges is symmetric. Under this convention,

E(G) =E(G)UE(G™).

Our graph theory notations and terminology are standard and can be found in all graph theory
books, like [7, 12, I7]. If x, y are vertices of the digraph G, then a path in G from x to y of length
n (n € N) is a sequence (xi)], of n + 1 vertices such that xo =%, xn =y and (xi—1,%i) € E(G)
fori=1,2,---,n. A graph G is connected if there is a path between any two vertices of G. G is
weakly connected if G is connected.
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Definition 2.15. Let (X, A, d) be a C*-algebra valued b-metric space with the coefficient A = 1
and let G = (V(G),E(G)) be a graph. A mapping T : X — X is called a C*-algebra valued G-
contraction if there evists a B € A with || B ||*< m such that

d(fx, fy) < B*d(x,y)B,

for all x,y € X with (x,y) € E(G).

Any C*-algebra valued contraction mapping on X is a Go-contraction, where Gg is the complete
graph defined by (X, X x X). But it is worth mentioning that a C*-algebra valued G-contraction
need not be a C*-algebra valued contraction (see Remark [3.23)).

Definition 2.16. Let (X, A, d) be a C*-algebra valued b-metric space with the coefficient A = 1
and let G = (V(G),E(G)) be a graph. A mapping T : X — X is called C*-algebra valued Fisher

G-contraction if there exists B € A with || BA |< W such that

d(fx, fy) < Bd(fx,y) + d(fy,x)]

for all x,y € X with (x,y) € E(G).

It is easy to observe that a C*-algebra valued Fisher contraction is a C*-algebra valued Fisher
Go-contraction. But it is important to note that a C*-algebra valued Fisher G-contraction need
not be a C*-algebra valued Fisher contraction. The following example supports the above remark.

Example 2.17. Let X = [0,00) and B(H) be the set of all bounded linear operators on a Hilbert
space H. Define d : X x X — B(H) by d(x,y) =l x —y |? I for all x, y € X. Then (X,B(H),d)
is a C*-algebra valued b-metric space with the coefficient A = 21. Let G be a digraph such that
V(G) =X and E(G) = AU{(3%%,3(x+1)):x e Xwithx>2,t=0,1,2, ---}.

Let f: X — X be defined by fx = 3x for all x € X.
Forx =32, y=3%z+1), z> 2, we have

d(fx,fy) = d (32,3 (z+1))
32t+21

? 2t(g.2
— 8 8z +10)1
583 (8z° + 8z +10)

B [d(3"z,3'(z+ 1) +d (3" (z+1),3'2)]
B [d(fx,y) + d(fy, x)],

A

where B = %I € B(H), with || BA ||< W. Thus, f is a C*-algebra valued Fisher G-contraction.

We now verify that f is not a C*-algebra valued Fisher contraction. In fact, if x =3,y =0,
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then for any arbitrary B € B(H); with || BA ||< W = %(which implies 3BA < 1), we have

B [d(fx,y) + d(fy,x)] = BId(f3,0) + d(f0,3)]
= 90BI
= 4558A
= 2—7(3BA)(81 I)
< 811
d(fx, fy).

Definition 2.18. Let (X, A, d) be a C*-algebra valued b-metric space with the coefficient A = 1
and let G = (V(G),E(G)) be a graph. A mapping f: X — X is called C*-algebra valued G-Kannan
if there exists B € A, with || B ||< W such that

d(fx, fy) = B[d(fx,x) + d(fy,y)]
for all x,y € X with (x,y) € E(G).

Note that any C*-algebra valued Kannan operator is C*-algebra valued Go-Kannan. However,
a C*-algebra valued G-Kannan operator need not be a C*-algebra valued Kannan operator (see

Remark B.28]).

Remark 2.19. Iff is a C*-algebra valued G-contraction(resp., G-Kannan or Fisher G-contraction),
then f is both a C*-algebra valued G~ -contraction(resp., G'-Kannan or Fisher G~'-contraction)

and a C*-algebra valued G—contmction(resp., G-Kannan or Fisher é—contmction}.

3 Main Results

In this section we always assume that (X, A,d) is a C*-algebra valued b-metric space with the
coefficient A =T and G is a directed graph such that V(G) = X and E(G) D A.

Let f, g : X = X be such that f(X) C g(X). If xo € X is arbitrary, then there exists an element
x7 € X such that fxo = gxj, since f(X) C g(X). Proceeding in this way, we can construct a
sequence (gxn) such that gxn, = fxn_1, n=1,2,3, ---.

Definition 3.1. Let (X,A,d) be a C*-algebra valued b-metric space endowed with a graph G
and f, g : X = X be such that f(X) C g(X). We define Cgs the set of all elements xo of X such that

(gXn, gxm) € E(G) for my n=0,1,2, --- and for every sequence (gxn) such that gxn = fxn_1.

If g = I, the identity map on X, then obviously C4r becomes C¢ which is the collection of all

elements x of X such that (f™x,f™x) € E(G) for m, n=0,1,2, ---.



48 Sushanta Kumar Mohanta CUBO

20, 1 (2018)

Theorem 3.2. Let (X,A,d) be a C*-algebra valued b-metric space endowed with a graph G and
the mappings f, g : X — X be such that

d(fx, fy) < B*d(gx,gy)B (3.1)

for all x,y € X with (gx,gy) € E(G), where B € A and || B ||?< . Suppose £(X) C g(X) and
TAT

g(X) is a complete subspace of X with the following property:

() If (gxn) is a sequence in X such that gxn — x and (gxn,gxn+1) € E(G) for alln > 1,
then there exists a subsequence (gxn,) of (gxn) such that (gxn,,x) € E(G) for alli>1.
Then f and g have a point of coincidence in X if Cg¢ # (). Moreover, f and g have a unique point

of coincidence in X if the graph G has the following property:

(%) If x, y are points of coincidence of f and g in X, then (x,y) € E(G).
Furthermore, if f and g are weakly compatible, then f and g have a unique common fized point in

X.

Proof. Suppose that Cg¢ # 0. We choose an xo € Cg¢ and keep it fixed. Since f(X) C g(X),
S

there exists a sequence (gxy) such that gxn = fxn_1, n=1,2, 3, --- and (gxn, gxm) € E(G) for

m,n=01,2,---.
It is a well known fact that in a C*-algebra A, if a,b € A and a <X b, then for any x € A both
x*ax and x*bx are positive elements and x*ax < x*bx[23].

For any n € N, we have by using condition (3] that
d(gxn, gxn+1) = d(fxn_1,fxn) < B*d(gxn_1, gxn)B. (3.2)

By repeated use of condition [B2)), we get

d(gxn, gxn+1) = (B")"d(gxo, gx1)B™ = (B™)"BoB™, (3.3)

for all n € N, where Bo = d(gxo, gx1) € Ay.
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For any m,n € N with m > n, we have by using condition (33 that

IA

Ald(gxn, gxns1) + d(gXni1, gXm )]
= Ad(gxn) gXn+1 ) + Azd(gxn+1 ) gxn+2) + -
+A™ T A(gxm—2, GxXm—1) + AT A(gXn—1, GXm)

d(gxn, gxm)

< A(B*)nBOBn +A2(B*)n+1BOBn+1 +A3(B*)n+ZBOBn+2 4.
_’_Amfnfl(B*)mfZBOBmfZ+Am7n71(8*)m71808m71
m—n—1

< Z Ak(B*)n+k71BQBn+k7] +Am7n(B*)mleoBm71

k=1
m—n

— Ak(B*)n+k—1BOBn+k—1
k=1
m—n

j H Ak(B*)nJrkf]BanJrkf] HI
k=1

m—n
< IBoll X IASBIPT
k=1
m—n .

= IBollIBIPM AL (TAIIBIH T

k=1
B B | A 1
< ” 0 H ” ” H ”I) since H B H2<

1= Al lB]?
— B asn— oo.

Al

Therefore, (gxn) is a Cauchy sequence with respect to A. Since g(X) is complete, there exists an
u € g(X) such that lim gx, =u = gv for some v € X.
n—oo

As xo € Cyy, it follows that (gxn, gxns+1) € E(G) for all n > 0, and so by property (x), there

exists a subsequence (gxn,) of (gxn) such that (gxn,,gv) € E(G) for all i > 1.

Using condition ([B1I), we have

d(fv,gv) = Ald(fv, fxn,) + d(fxn,, gv)]
=< AB*d(gv, gxn,)B + Ad(gxn,+1,9V)

— 0B asi— oco.

This implies that d(fv,gv) = 0 and hence fv = gv = u. Therefore, u is a point of coincidence of f
and g.

The next is to show that the point of coincidence is unique. Assume that there is another
point of coincidence u* in X such that fx = gx = u* for some x € X. By property (**), we have
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(u,u*) € E(G). Then,

d(w,u*) = d(fv,fx)
=< B*d(gv,gx)B
= B*d(u,u")B,
which implies that,
| dlu,u*) || < || B*d(u,u”)B ||
< B dlw, w) [ B ]
= |IB? dlw,u) | .

Since || B ||?< H}TH <1, it follows that d(u,u*) =0 i.e., u =u*. Therefore, f and g have a unique
point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.I3] f and g have a unique common
fixed point in X. O

The following corollary gives fixed point of Banach G-contraction in C*-algebra valued b-
metric spaces.

Corollary 3.3. Let (X,A,d) be a complete C*-algebra valued b-metric space endowed with a
graph G and the mapping f : X — X be such that

d(fx, fy) < B*d(x,y)B (3.4)

or all x,y € X with (x,y) € ~,were € A wit < m=7- OSuppose (X, A, d, as the
lx,yeX h (x,y) € E(G), where B € A h| B|? ”;\” S (X, A, d, G) has th

following property:

’ ~

(%) If (xn) is a sequence in X such that xn — x and (Xn,Xn+1) € E(G) for allm > 1, then
there exists a subsequence (xn,) of (xn) such that (xn,,x) € E(G) for alli>1.
Then f has a fized point in X if C¢ # (). Moreover, f has a unique fized point in X if the graph G

has the following property:

(* * ) If x, y are fized points of f in X, then (x,y) € E(G).

Proof. The proof can be obtained from Theorem by considering g = I, the identity map on
X. O

Corollary 3.4. Let (X, A, d) be a C*-algebra valued b-metric space and the mappings f, g : X —

X be such that (31) holds for all x,y € X, where B € A with || B ||*< H}TH If f(X) C g(X) and
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g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover,

if f and g are weakly compatible, then f and g have a unique common fized point in X.

Proof. The proof follows from Theorem B2 by taking G = G, where Go is the complete graph
(X, X x X).
O

The following corollary is analogue of Banach Contraction Principle.

Corollary 3.5. Let (X,A,d) be a complete C*-algebra valued b-metric space and the mapping
f: X — X be such that (37)) holds for all x,y € X, where B € A with || B ||2< ma7- Then f has a
unique fized point w in X and f™x — u for all x € X.

Proof. It follows from Theorem [B.2] by putting G = Gp and g = L. O

Remark 3.6. We observe that Banach contraction theorem in a complete metric space can be
obtained from Corollary by taking A = C,A = 1. Thus, Theorem is a generalization of
Banach contraction theorem in metric spaces to C*-algebra valued b-metric spaces.

From Theorem [B.2] we obtain the following corollary concerning the fixed point of expansive
mapping in C*-algebra valued b-metric spaces.

Corollary 3.7. Let (X,A,d) be a complete C*-algebra valued b-metric space and let g: X — X
be an onto mapping satisfying
B*d(gx, gy)B = d(x,y)

for all x,y € X, where B € A with || B ||?< H}TH' Then g has a unique fized point in X.

Proof. The conclusion of the corollary follows from Theorem B2 by taking G = Gp and f=1. O

Corollary 3.8. Let (X,A,d) be a complete C*-algebra valued b-metric space endowed with a
partial ordering T and the mapping f: X — X be such that [34)) holds for all x,y € X with x C y
or, y C x, where B € A and || B ||?< ”}1\—”. Suppose (X, A, d,C) has the following property:

(1) If (xn) is a sequence in X such that X, — X and Xn, Xn+1 are comparable for alln > 1,
then there exists a subsequence (xn,) of (xn) such that xn,, x are comparable for alli > 1.
If there exists xo € X such that f™xo, f™xo are comparable for myn = 0,1,2, ---, then f has a
fixed point in X. Moreover, f has a unique fized point in X if the following property holds:

(t1) If x, y are fized points of f in X, then x,y are comparable.

Proof. The proof can be obtained from Theorem B2l by taking g = [ and G = G;, where the graph
Gy is defined by E(G32) ={(x,y) e X x X:x Ty oryLC x}. O
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Theorem 3.9. Let (X, A,d) be a C*-algebra valued b-metric space endowed with a graph G and
the mappings f, g : X — X be such that

d(fx, fy) =< B [d(fx, gy) + d(fy, gx)] (3.5)

for all x,y € X with (gx, gy) € E(G), where B € A; and || BA ||< W. Suppose f(X) C g(X) and

g(X) is a complete subspace of X with the property (x). Then f and g have a point of coincidence
in X if Cg¢ # 0. Moreover, f and g have a unique point of coincidence in X if the graph G has the
property (xx). Furthermore, if f and g are weakly compatible, then f and g have a unique common
fixed point in X.

Proof. It follows from condition (B.5]) that B(d(fx, gy) + d(fy, gx)) is a positive element.

Suppose that Cg¢ # 0. We choose an xo € Cg¢ and keep it fixed. We can construct a sequence

(gxn) such that gxn, = fxn—1, n=1,2,3,---. Evidently, (gxn, gxm) € E(G) for myn =0,1,2,---.

For any n € N, we have by using condition (3.3]) and Lemma 2.1iii) that

d(fxn_1,fxn)

Bld(fxn—1,g%xn) + d(fxn, gxn_1)]
Bld(fxn_1,fxn_1) + d(fxn, fxn_2)]
BA[A(fxn, FXn_1) + d(fxn_1, fXn_2)]
BA d(gxni1,9xn) +BA d(gxn, gxn—1)]

d(gxna 9Xn+1)

A1 Ik

which implies that,
(I - BA)d(an, gXn+1 ) = BAd(an, gXn—1 ) (3'6)

Now, A, B € A/ implies that BA € A,. Since || BA ||< 1, by Lemma 2] it follows that (I —BA)
is invertible and || BA(I—BA)~" ||=|| (I—BA)~'BA ||< 1. Moreover, by Lemma 21 BA <1 i.e.,
I—BA = 0. Since BA € A;, we have (I — BA) € A;. Furthermore, (I—BA)~! € A;. By using
Lemma Z1[(iv), it follows from (B6) that

d(gxn, gxny1) 2 (I— BA)_] BA d(gxn, gxn—1) = td(gxn—_1, gXxn), (3'7)

where t = (I—BA) 'BA € A,.

By repeated use of condition [B.7), we get
d(gxn, gxni1) = t™d(gxo, gx1) = t" By, (3.8)

for all n € N, where Bo = d(gxo,gx1) € A,.
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We now prove that if || BA ||< then || t || < it

HAH+1’ TAT]
We have,
It = | (I-BA) 'BA
< | (T=BA)" [ BA|
1
< a1 BAl
1— [ BA |
1 . 1
< ,since || BA||<

A A +1

For any m,n € N with m > n, we have by using condition (8:8)) that

PN

A[d(gxn) IXn+1 ) + d(gxn—H ) gxm)]
= Ad(gxna 9Xn+1) + Azd(gxn+1 y 9Xn+2) 4

d(gxn, gxm)

+Am—n—1 d(gxmfZa gXm—1 ) + Am—n—1 d(ngﬂ*] ’ ng)

< At"Bo + A%t" 1By + A" 2Bg + - - -
+Am—n—1tm—ZBO +Am_n_1tm_1Bo
m—n
=< Z AKtMRTB since A= Tand A € A
TTL_TL
=< Z ” Akthrkf]BO H I
k=1
m—n
k—1
< I BollTATNEI™ Y (ANt "T
k=1
1
= A Bo FITAT TN ]
T—[[A [ t]

— 0 asn— oco.

Therefore, (gx,) is a Cauchy sequence with respect to A. As g(X) is complete, there exists an
u € g(X) such that lim gx,, =u = gv for some v € X. By property (x), there exists a subsequence
n—oo

(gxn,) of (gxn) such that (gxn,,gv) € E(G) for all i > 1.

Using condition ([B.5]), we have

d(fv,gv) = Ald(fv,fxn,) + d(fxn,, gv)]
= ABld(fv, gxn,) + d(fxn,, gv)] + Ad(gxn,+1,9V)
=< ABAId(fv,gv) + d(gv, gxn,)] + ABd(gxn, 1, 9V) + Ad(gxn, +1,9V)

which implies that,

(I— BAz)d(fv, gv) =< BAzd(gv, gxn,) + ABd(gxn,+1,9v) + Ad(gxn,+1, gv).
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Since || BA? ||< IIf”\/IZI\J”H <1, we have (I — BA2)~! exists. By using Lemma 2] it follows that

d(fv,gv) =< (I—BA?)7'BA%d(gv, gxn,) + (I—BA?)'ABd(gxn, +1,gV)
+(I—BA?) ' Ad(gxn,+1, V)

— 0B asi—oo.
This implies that d(fv, gv) =0 i.e., fv = gv = u and hence u is a point of coincidence of f and g.
Finally, to prove the uniqueness of point of coincidence, suppose that there is another point

of coincidence u* in X such that fx = gx = u* for some x € X. By property (xx), we have
(u,u*) € E(G). Then,

dlu,u*) = d(fv,fx)
=< Bld(fv, gx) + d(fx, gv)]
= Bld(u,u") + d(u,u”)]
=< ABld(u,u*) + d(u,u*)]

which implies that,
d(u,u*) < (I—AB) T ABd(u,u*).

So, it must be the case that

[ dw,u?) ||

IN

| (I—AB)"'ABd(u,u*) ||
| (I—AB) 'AB ||| d(w,u*) | .

IN

Since || (I—AB)~'AB ||< 1, we have || d(u,u*) [|= 0 i.e., u = u*. Therefore, f and g have a
unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.I3] f and g have a unique common
fixed point in X. O

Corollary 3.10. Let (X,A,d) be a complete C*-algebra valued b-metric space endowed with a
graph G and the mapping f : X — X be such that

d(fx, fy) < B[d(fx,y) + d(fy, x)] (3.9)

for all x,y € X with (x,y) € E(G), where B € A+ and || BA ||< ||A||+1 Suppose (X, A, d, G) has
the property (*) Then f has a fized point in X if C¢ # (). Moreover, f has a unique fized point in
X if the graph G has the property (x * )

Proof. The proof can be obtained from Theorem [3.9] by putting g = 1. O
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Corollary 3.11. Let (X,A,d) be a C*-algebra valued b-metric space and the mappings f, g :
X = X be such that (F3) holds for all x,y € X, where B € A; and || BA ||< W. If f(X) C g(X)
and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X.

Moreover, if f and g are weakly compatible, then f and g have a unique common fized point in X.

Proof. The proof can be obtained from Theorem [B.9] by taking G = Go. O

Corollary 3.12. Let (X, A, d) be a complete C*-algebra valued b-metric space and the mapping
f: X — X be such that (33) holds for all x,y € X, where B € A, with || BA |< W. Then f
has a unique fized point in X.

Proof. The proof follows from Theorem [3.9] by taking G = Gop and g = 1.
O

Remark 3.13. We observe that Brian Fisher’s theorem in a complete metric space can be
obtained from Corollary by taking A = C,A = 1. Thus, Theorem is a generalization of

Brian Fisher’s theorem in metric spaces to C*-algebra valued b-metric spaces.

Corollary 3.14. Let (X,A,d) be a complete C*-algebra valued b-metric space endowed with a
partial ordering T and the mapping T : X — X be such that (39) holds for all x,y € X with x C y
or, y C x, where B € A; with | BA ||< W. Suppose (X, A, d,C) has the property (1). If there
exists xo € X such that f™xo,f™xo are comparable for my,n =0,1,2, ---, then f has a fizved point
in X. Moreover, f has a unique fixed point in X if the property (1) holds.

Proof. The proof can be obtained from Theorem [3.9] by taking G = G, and g = 1. O

Theorem 3.15. Let (X,A,d) be a C*-algebra valued b-metric space endowed with a graph G
and the mappings f, g : X — X be such that

d(fx, fy) < Bld(fx, gx) + d(fy, gy)] (3.10)

for all x,y € X with (gx, gy) € E(G), where B € A; and || B ||< W. Suppose f(X) C g(X) and
g(X) is a complete subspace of X with the property (x). Then f and g have a point of coincidence
in X if Cg¢ # 0. Moreover, f and g have a unique point of coincidence in X if the graph G has the
property (xx). Furthermore, if f and g are weakly compatible, then f and g have a unique common
fized point in X.

Proof. We observe that B(d(fx, gx) + d(fy, gy)) is a positive element.

Suppose that Cg¢ # 0. We choose an xo € Cg¢ and keep it fixed. We can construct a sequence

(gxn) such that gxn, = fxn_1, n=1,2,3,---. Evidently, (gxn, gxm) € E(G) for myn =0,1,2,---.
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For any n € N, we have by using condition (3I0) that

d(gxn, gxni1) = d(fxn_1,fxn)
Bld(fxn—1,9xn—1) + d(fXn, gxn)]

PN

B d(gxn, gxn—1) + B d(gxn, gxni1)
which implies that,

(I—B)d(gxn, gxn+1) = Bd(gxn, gxn—_1)- (3.11)

Since B € A; and || B ||< %, by Lemma 211 it follows that B < T and (I — B) is invertible with
| B(I—B)~" ||=|| (I-B)~'B |< 1. Furthermore, (I—B), (I—B)~" € A}, andso, (I-B)"'B € A’,.
Again, by using Lemma 21{iv), it follows from condition BIT]) that

d(gxn, gxn11) < (I—B) "B d(gxn, gxn_1) = td(gxn_1,gxn), (3.12)
where t = (I—B)" "B € A,.

By repeated use of condition (B12), we get

d(gxn, gxn41) = t™d(gxo, gx1) = t"Bo, (3.13)

for all n € N, where Bo = d(gxo, gx1) € A,.

We now prove that if || B ||< W, then || t ||< H}TH'
We have,

It = [1-B)"B|
< @=B) Bl
1
< ——— | B
=B B
1 . 1
< —,since || B <

Al A +1
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For any m,n € N with m > n, we have by using condition (BI3) that

d(gxn,gxm) = Ald(gxn,gxn+1) + d(gxni1, gxm)]
= Ad(gxna 9Xn+1) + Azd(gxn+1 s 9Xn+2) + -
+A™ A (gxm 2y gXm—1) + A™T A (gXm 1, gXm)
< At"Bp + AZt" By + At 2By 4 - -
+Am—n—1tm—ZBO +Am—n—1tm—1BO
m—n
< ) AMMEIBg, since A=land A €A
k=1
m—n
< Z ” Aktn+k71Bo H I
k=1
m—n
< A BollFAE™ D (LAt
k=1

1

= A Bo llFA NI ™ =777
1= Al

— O asn— oco.

Therefore, (gxy) is a Cauchy sequence with respect to A. By completeness of g(X), there exists
an u € g(X) such that lim gx, = u = gv for some v € X . By property (x), there exists a
n—oo

subsequence (gxn,) of (gxyn) such that (gxn,,gv) € E(G) for all i > 1.

Using condition BI0), we have

d(fv,gv) = Ald(fv, fxn,) + d(fxn,, gv)]
=< ABIld(fv,gVv) + d(fxn,, gxn, )] + Ad(gXn,+1, gVv)

which implies that,

(I—AB)d(fv,gv) < ABd(gxn,+1,9%n,) + Ad(gXn,+1,gV).
Since || AB ||< % <1, we have (I — AB)~! exists and (I—AB) € A;. By using Lemma 2.1 it
follows that

d(fv,gv) = (I—AB) "ABd(gxXn, +1,9%n,) + (I — AB) 'Ad(gxn, 1, gv).

Then,

| d(fv,gv) || < [ (I—AB)'AB ||[| d(gxn,+1,9%n,) ||
+ I (T=AB)"A ||| d(gxn,11,9V) |
| (I—AB) TAB ||| t ™ | Bo ||
+ | (T=AB) A dlgxn.+1,9V) |

— 0 asi— oo.

IN
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This implies that d(fv,gv) =0 i.e., fv = gv = u and hence u is a point of coincidence of f and g.

Finally, to prove the uniqueness of point of coincidence, suppose that there is another point
of coincidence u* in X such that fx = gx = u* for some x € X. By property (xx), we have
(u,u*) € E(G). Then,

dlu,u*) = d(fv,fx)
Bld(fv, gv) + d(fx, gx)]
0

PN

which implies that, d(u,u*) = 0 i.e., u = u*. Therefore, f and g have a unique point of coincidence
in X.

If f and g are weakly compatible, then by Proposition 2.I3] f and g have a unique common
fixed point in X. O

Corollary 3.16. Let (X,A,d) be a complete C*-algebra valued b-metric space endowed with a
graph G and the mapping f : X — X be such that

d(fx, fy) < Bld(fx,x) + d(fy,y)] (3.14)

for all x,y € X with (x,y) € E(G), where B € A+ and || B H< \AH+1 Suppose (X, A, d, G) has the

property (*) Then f has a fized point in X if C¢ # 0. Moreover, T has a unique fized point in X if
the graph G has the property (x * ).

Proof. The proof can be obtained from Theorem [B.15] by putting g = L. O

Corollary 3.17. Let (X,A,d) be a C*-algebra valued b-metric space and the mappings f, g :
X — X be such that (310) holds for all x,y € X, where B € A, and || B ||< W. If £f(X) C g(X)
and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X.
Moreover, if f and g are weakly compatible, then f and g have a unique common fized point in X.

Proof. The proof can be obtained from Theorem B.15 by taking G = Go. O

Corollary 3.18. Let (X, A, d) be a complete C*-algebra valued b-metric space and the mapping
f: X — X be such that (3.1]) holds for all x,y € X, where B € A with || B ||< Then f has

a unique fized point in X.

HAH+1

Proof. The proof follows from Theorem [3.15 by taking G = Gy and g = 1.
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Remark 3.19. We observe that Kannan’s fized point theorem in a complete metric space can
be obtained from Corollary by taking A = C,A = 1. Thus, Theorem is a generalization
of Kannan’s fized point theorem in metric spaces to C*-algebra valued b-metric spaces.

Corollary 3.20. Let (X,A,d) be a complete C*-algebra valued b-metric space endowed with a
partial ordering C and the mapping f: X — X be such that {3-14]) holds for all x,y € X withx C y
or, y C x, where B € A; with || B ||< W. Suppose (X, A, d,C) has the property (1). If there
exists xo € X such that f™xo,f™xo are comparable for myn =0,1,2, ---, then f has a fived point
in X. Moreover, f has a unique fixed point in X if the property (1) holds.

Proof. The proof can be obtained from Theorem B.15] by taking G = G, and g = 1. O

We furnish some examples in favour of our results.

Example 3.21. Let X = R and B(H) be the set of all bounded linear operators on a Hilbert
space H. Define d : X x X — B(H) by d(x,y) =| x —y PP I for all x,y € X, where 1 is the
identity operator on H. Then (X,B(H),d) is a complete C*-algebra valued b-metric space with the
coefficient A = 41. Let G be a digraph such that V(G) = X and E(G) = AU{(%,O) m=1,2,3---}

Let f, g : X = X be defined by

X . 4

fx = o 1fx;«ég
4

== ], le:g

and gx = 2x for all x € X. Obviously, f(X) C g(X) = X.
Ifx=0, y :%,nzhz, 3, .-+, then gx =0, gy:% and so (gx, gy) € E(G).

Forx=0, y= %, we have

d(fx, fy) d (O, an)
1
103.n3 I
25n3 I
1
= 3 d(gx, gy)
= B"d(gx, gy)B,

where B =11 € B(H).



CUBO

60 Sushanta Kumar Mohanta

20, 1 (2018)

Therefore,
d(fx, fy) < B* d(gx, gy)B

for all x,y € X with (gx,qy) € E(G), where B € B(H) and | B |I?< H}TH' We can verify that
0 € Cygr. In fact, gxn = fxn_1, n = 1,2,3,--- gives that gx; = f0 = 0 = x1 = 0 and so
gx2 = fx1 =0 = x2 = 0. Proceeding in this way, we get gxn =0 form =0, 1, 2, --- and hence

(gxn, gxm) = (0,0) € E(é) formyn=0,1,2,---.

Also, any sequence (gxn) with the property (gXn, gXn+t1) € E(G) must be either a constant

sequence or a sequence of the following form

gxn, = 0, if nisodd

1
= o if n is even
where the words ’odd’ and ’even’ are interchangeable. Consequently it follows that property (x)
holds. Furthermore, f and g are weakly compatible. Thus, we have all the conditions of Theorem
and O is the unique common fized point of f and g in X.

Remark 3.22. [t is worth mentioning that weak compatibility condition in Theorem[3.2 cannot
be relaxed. In Example[3.21), if we take gx = 2x —9 for all x € X instead of gx = 2x, then 5 € Cgs
and f(5) = g(5) = 1 but g(f(5)) # f(g(5)) i.e., f and g are not weakly compatible. However, all
other conditions of Theorem[3.Q are satisfied. We observe that 1 is the unique point of coincidence

of f and g without being any common fized point.

Remark 3.23. In FEzxample [3.21], f is a C*-algebra valued G-contraction but it is not a C*-

algebra valued contraction. In fact, for x = %, y =0, we have

d(fx, fy) d(1,0)
= 1

125 64
64 "125
125

= ad(xvy)

= B*d(x,y)B,

for any B € B(H) with || B ||?< H}TH' This implies that f is not a C*-algebra valued contraction.

The following example shows that property (%) is necessary in Theorem [3.2

Example 3.24. Let X = [0,00) and B(H) be the set of all bounded linear operators on a Hilbert
space H. Define d : Xx X — B(H) by d(x,y) =| x—y |2 I for allx, y € X, where 1 is the identity op-
erator on H. Then (X,B(H), d) is a complete C*-algebra valued b-metric space with the coefficient
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A =41. Let G be a digraph such that V(G) = X and E(G) = AU{(x,y) : (x,y) € (0,1]x(0, 1], x > y}.

Let f, g : X = X be defined by

and gx = 3 for all x € X. Obviously, f(X) C g(X) =X.
For x,y € X with (gx, gy) € E(G), we have

1
d(fx,fy) = 2_7d (gx,gy)

1
< §d(gx, gy)

= B*d(gx,gy)B,

where B = %I € B(H) with || B ||2< ”}T”'

We see that f and g have no point of coincidence in X. We now verify that the property (*)
does not hold. In fact, (gxn) is a sequence in X with gxn — 0 and (gXn, gXn+1) € E(G) for all
n € N where x,, = % But there exists no subsequence (gxn,) of (gxn) such that (gxn,,0) € E(G).

Example 3.25. Let X = R and B(H) be the set of all bounded linear operators on a Hilbert
space H. Choose a positive operator T € B(H). Define d : X x X — B(H) by d(x,y) = x—y |°> T for
all x,y € X. Then (X,B(H),d) is a complete C*-algebra valued b-metric space with the coefficient
A =16l. Let f, g: X — X be defined by

fx = 2, ifx#5
= 3, ifx=5

X.

and gx = 3x —4 for all x € X. Obuiously, f(X) C g(X) =
= AU{(2,3), (3,5} Ifx=2y= %, then

Let G be a digraph such that V(G) = X and E(G)
gx =2, gy =3 and so (gx, gy) € E(G).

Again, if x = %, y =3, then gx =3, gy =5 and so (gx, gy) € E(G).

It is easy to verify that condition (33) of Theorem [T holds for all x,y € X with (gx, gy) € E(G).
Furthermore, 2 € Cg¢ i.e., Cgr # 0, f and g are weakly compatible, and (X,B(H),d,G) has the
property (x). Thus, all the conditions of Theorem are satisfied and 2 is the unique common

fized point of f and g in X.

Remark 3.26. It is observed that in Fxample [3.24, f is not a Fisher G-contraction. In fact,
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forx =3,y =25, we have

Bld(fx,y) +d(fy,x)] = BId(2,5)+ d(3,3)]

= 243BT

243
= —BAT
16
243
Tex17 ]717BAT

< T
d(fx, fy),

for any B € B(H), with || BA ||< W. This implies that f is not a Fisher G-contraction.

The following example supports our Theorem

Example 3.27. Let X = [0,00) and B(H) be the set of all bounded linear operators on a Hilbert
space H. Choose a positive operator T € B(H). Define d : X x X — B(H) by d(x,y) =| x—y |?> T for
all x,y € X. Then (X,B(H),d) is a complete C*-algebra valued b-metric space with the coefficient
A =21. Let G be a digraph such that V(G) = X and E(G) = AU{(4'x, 4 (x+1)) : x € X with x >
2, t=0,1,2,---}.

Let f, g: X — X be defined by fx = 4x and gx = 16x for all x € X. Clearly, f(X) = g(X) = X.

If x =42z, y =4""2(z+ 1), then gx = 4'z, gy =4'(z+ 1) and so (gx, gy) € E(G) for all
z> 2.

Forx =42z, y=4""2(z+1), z > 2 with B = 11-1, we have
d(fx, fy) = d(@"'z,4" Nz +1))
— 421:72'1'
< L42t—2(187,2 +18z+9)T
117
1

777 1 (472, 4'%2) +d (4" Tz +1),4z+1))]

B [d(fx, gx) + d(fy, gy)I.

Thus, condition [310Q) is satisfied for all x,y € X with (gx,gy) € E(G). It is easy to verify that
0 € Cyr. Also, any sequence (gxn) with gxn — x and (gXn, gXn41) € E(G) must be a constant
sequence and hence property (x) holds. Furthermore, f and g are weakly compatible. Thus, we have

all the conditions of Theorem [313 and 0 is the unique common fized point of f and g in X.

Remark 3.28. It is easy to observe that in Example[3.27, f is a C*-algebra valued G-Kannan

operator with B = %I. But f is not a C*-algebra valued Kannan operator because, if x =4,y =0,
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then for any arbitrary B € B(H); with || B ||< - = %(which implies 3B < 1), we have

IA[+1
B[d(fx,x) + d(fy,y)] = BIld(f4,4)+ d(f0,0)]

= 144BT

144
= 3 355¢(3B)(256T)

< 256T
= d(fx, fy).
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