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1~ INTRODUCTION

The terminology and notations of this paper are those
of [1). We recall that a baric algebra over the real field R
is an ordered pair (A,w) where A is a (finite dimensional
non associative, non commutative) real algebra and w:A—pR
is a non zero homomorphism of algebras.
An important clase of baric algebras is the class of genetic
algebras (in Gorshor’s sense). A real algebra A, of
dimension n+i, is genetic if it has a basis CO,Cl,..A,Cn
such that, if

n
Lo i) ‘/i_jkck () =05 4y o oyn)) - thent
K=0
(1) Yoo = 1
(2) Yojk = Yjok = 0 1f K<)

@) Yijk = 0 when 1¢i,j and K ¢ max{i, j}

In this case, Cg,Cy,..Cp 1S called a canonical
basis of A. It can be proved ([14), Chapter 5) that the
real numbers Yojj and Yjo; (1 = 0,4,...,n) are, in fact,
independent of the canonical basis of A.

They are called left (resp.rigth) train roots, in short, t-
roots, of A. When A is commutative, Yjpi=Yjpj(1=1,...,n).
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ON GENETIC ALGEBRAS

Every genetic algebra may be equipped with a unique non zero
homomorphism w. This function is defined on a canonical
basis by w(Cp)=1 and w(C{)=0, 1¢ i <n. The Kernel of w,
which is the n-dimensional ideal generated by Cy,...,Cp
will be indicated N.

In (1), we have stutied the derivation algebra of the
gametic algebra for a n+i-allelic and 2m-ploid population,
denoted by G(n+i,2m). In particular we have proved (§3)
that all algebras G(2,2m) have the same derivation algebra,
namely, the non Abelian Lie algebra of dimension 2. We have
proved also that the derivation algebra of G(n+{,2) has
dimension n(n+i), which is the maximum dimension of
derivation algebras of genetic algebras of dimension n
([1),thi,cor.1).

We recall, for further use, some facts about G(2,2m). This

algebra is commutative and has a canonical basis Cp,
€y, .. yCpy such that

2m m

e5C; (i,J)_i (iu)qu if i+j<m

(o] 1f méi+j

The t-roots of G(2, 2m), denoted by tg ty, ..., ty are the

2m ym
real numbers tk:( K ) (k) (k=0, {, ...,m) and so

am
1:t_0>tl:%>t2>...>tm:( K )-150

Consider now the linear mappings 3, m G(2, 2m)}9G(2, 2m) given
by

3(Cy)=1Cj (iz0,1,...,m) and

n(C;)=tist  Ciyq (i<m), M(Cp)=0
titivg

We have proved ([1),th 3) that 9 and m form a basis for
the derivation algebra of G(2,2m). We observe that 3 has
proper values 0,,.,m,m is nilpotent of index m+{,
Moreover wod = wom = 0 and don - nod = n.

In this paper we construct a large class of non

—
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commutative genetic algebras:pf dimension m+i havang two

| -depivations satisfying 'the above conditions. We proveno
some: pesults concerning the denivation algebra ofi these:
Algebrass yd bafsvensy [sabi (snc n I Aoiriw

2(-THE CLASS Qs v iab

Let A,‘be a‘ Nal \(eo’t_onn space .of dumnsxon mM am.i w:A-QRu
5a nons WZero ear , form,-Take a basis ct,ci. a1 a5 B
;such (<that, w(Co) dyand) w(€g) =0 (4$asm) 1 have. a dlr‘ectr
tsum, decampos itiion: A=RG, ©/N where:N=kKer. 'Let,,,now A ABA |
begivenmby 3(Gj ) =1dCyq (=040 ')«m)u and . cn::A-pA be: given,,
by n(Cj) = Cj;¢ (i<m) and n(Gy)= O. It is easy to-seeithat),
acm—'rpa T, Wod=won=0, d has proper values 0, 4, ...,m and m is
nilpotent of> index i {

yo aizsd [sdinmonsy & 2&d
We show now that this process of construgﬁ,xon crf 8 anc\ 'n 13
essencially unique.

1 a0t 5081 aw

LEMMA { ES
|
Let A a be real vector space ofidimengion m+i. Suppose

3,n:A—pA and w:Al—)R are u‘hear mappings such that:
MLHe FL 440 i! Veapl ;

(1) 3 has proper values 0,1, ...,m
(2) m is nilpotent af index m+1
(3) w# 0 and wod = wom = O

(4) dom—mod=m

"l'hen; t.here exxsts a umquec €‘A such that w(Co) 1,

Co M(Co) - - .wf"(co) is a basis of Aand é(w Co))=in. (o)
for alll 1=0; £i5 ¢

PROOF

o<t-\ o / FeN= I<pt=t

Let Al be the proper subspaces of 3, that is,
3) O S S)0 abi 2n
A‘-[xGA a(x) 1xl, O<x<m
If 11, we have for x€A;j:
0=(woa)x:w(a(x).)fw(xx):xw(x) M =( D)6

() : 1+4ie i

Hence w (x)= 0, x € Ker w. So Aj ¢ Ker w. This implies
A¢®. ., 8An c Ker w, As they have the same dimension m,,

we have Ken w=A¢®, .. GAm\

On, the other hand, /m has a cyclxc vector, 7 (its mmunal
polynamial has degree mti),Necessarily, z € Kerw, because 10

e A
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otherwise (z,m(z),...,™m(z))} ¢ Ker w, and so w = 0, contrary
to (3). It is also clear that a scalar multiple of a cyclic
vector 1s again a cyclic vector. Hence we may suppose
w(z)=1. Decampose z as z:=Cp+Cy+...+Cy With C; €A;,0 ¢ 1 $m,
We prove now that Cy is also a cyclic vector for m.
We have for X€A;:

3(m(x)= (Mod+m) (x)=m(ix)+n(xX)= (i+1)n(x).

So mM(Aj)c Ajyq (i<m) and m(Ay) = 0. We have the set of
equations in triangular form

2 :C + G Fone +C +C
(o] 1 m-1 m

Mmz): MC )+ ...+mC )+mC )
: 0 m2 Lo

My B T
o]

fram which it is clear that Cg, m(Cp), A...TF‘(CQ) is also a
basis of A.

The unicity of Cg is clear: If c'p satisfies 3(C’ 0) =
then C’ 0 pCo (M € R) because 0 1s a simple proper value of
Hencei-(co)’u(co) uscco Co-

0
]

Fram now on, A will be a fixed real vector space of
dimension m+i, equipped with a non zero linear formw, two
linear mappings 3, m:APA such that wod=wom=0, dommod=m,
m 1is nilpotent of indexm + { and 3 has proper values
0,4, ...,m. By Lemma {, these assumptions determine the
(unique) basis Cp M(Co), ..., TP (Cg). We shall denote this
basis by Cg, Cy, ..+, Gy that is, Cij=mi(Cp).

Recall that each bilinear mapping WA x APA defines on
the vector space A a structure of algebra(non associative,
non commutative, in general) denoted (A p). We say p is
admissible for w, 9 and m if w(p(a b)=w(a)w(b), 3I(p(a b)=
=p(3(a), b) + w(a 3(b)), M(p(a b))=p(n(a), b) + p(a m(b)) for
all a b € A. These conditions mean that when A is equipped
with the multiplication p, w becames a hamomorphism of
algebras and 3 and n are derivations of this algebras
(A p).

We denote by Qp,.q the set of all admissible(for w 3 and m)
bilinear mappings p:A x APA. As usual, we indicate p(a, b)
by ab and we aomit the mapping p when refering to the
algebra (A p).
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We shall denote the derivation algebra of A by Der A. By
the own definition of Qpq, Wwe have 2 ¢ dim Der A for
any A € Qp.¢. By([1),th.1), we have also dim Der A < m(m+i).
Any member A € Qn.q such that dim Der A = 2 will be called
a minimal element of Q.. This is the case of G(2, 2m).
Conversely, if dim Der A=m(m+i), we say A is a maximal
element of Qn.q, as it happens to G(m+i, 2).

PROPOSITICN 1:

All members of Qp ¢ are genetic algebras relative
to the same basis Cp Cy, ..., Gp where Cj= 1\1((‘0)
Moreover, Co is an idempotent for each one of these
algebras. The real number % is a t-root for all commutative
algebras in Qmyq.
PROCF:

Take the cyclic basis Cp Cy, ..., Gy Of A given by
Lemma 1.

Givennow O ¢ i, j ¢m

3(C4Cy)=a(Cy )C4+C;d(Cy)=1C{Cy#+JC4Cy= (i+3)CiCy

If m < 1+) we must have CiCy=0 because i+j is not a proper
value of 3. When i+j ¢m C;C; is a proper vector of 3(or
the zero vector) corresponding g.o the proper value i+j of 2.
Hence C;Cj= uuché for some real number ajj

In particular, C20=a,Co 80 Ggo=1=w(C%0) and C2p= Co We have
proved that Co Cy, ..., Gy is a canonical basis of A.
Moreover the left (respmxght.) t-roots are i, gy, ..., q0m
(resp.1,ayp ..., Gyp). TakKing again the equality CicJ=u,JCi,J
(14) < m) we get, applying w

ﬂ(C,CJ):'n(C‘)CJoCm(CJ):CX”CyC‘CJH or
(@341, 5*95, 541)C14 41791 1C14 ja 1

If 14)+1 ¢ m then we may cancel and obtain aj,q J*94, J41704 5
In particular ag:=i:zap¢ + Qy0=2004 if A is cammutative,
and % 1s a t-root .

We will describe more accurately the class Qp, ¢ in the
following way: Each A in Qn ¢ has the cyclic basis
Co Cyy ..+, Gy of proper vectors of 3, with w(Cg)=1.

Moreover, C,Cj = ayiCyyj (i) €m), CiCj = 0 (m< 1+4)) and
Ay33Ai4q, g4y jeg i 1)+ S m.
Fram this, we can associate to A the matrix

Y S @ 3
\
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where ago= 1. The recurrence relation ajj=ay.q j*aj j4f
(1+)+1¢m) shows that each u1J(1+J<m) can be expressed as
a linear cambination of agp g m-1
integral coefficients, in the follcwmg way :

ON GENETIC ALGEBRAS

o

(e}

©O%m-4, 1 Omo With

We have ajj=ti,q, j*ay j+17Q142, 5*T14e, j+1*34, jeas

20443, 3*3““2. J+a+3°x+1, J+3*94, 343 and so on.

We obtain

Sig=itn i (1 )qur-i, A ey, J+r;’_:o(k)°nr~k, J+K

for all r such that i+j+r ¢ m. In particular, taking
1+J+r=m, that 1s, r=m-1-j, we get

m-1i-) 1=
o137y E K )om-g-K‘ J+k our desired relation. This

formula can be replaced by

SY sm=iy
(1) u”ig} ( 1-j )c"m—l, | (calling j+K=1)
and by

L i) m. . m

[

a‘JfEJ\ mi-1 )"m-l, lbecause'\k)z\m_k)y

In particular the left (resp.right) train roots are given by

m (m-J m {m—J \ 50
(@) aoy5L; 1—3)%— 1E;\ mel ooy 1T (

m- m_J TR0l g m
() ajoiZ, ( °m—l o'm-j-1/%m-1, 1;E J(

e

1 ’ax‘m—x

)
m—K)GK, m-K
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m
(4) Wgo(:)a"- k=t

We consider now the affine hyperplane Hy of RE*!
m
; m+ (“‘)
define by Hy={(XQ,X{,. Xy )ER k:_)"D K/xg=11.

We have shown that, to each member A of Qpq we can
associate, via matrix A the point P: (Gom O, m-1s + + +» G4, 4
Gmp) of Hy. Suppose conversely, we have a point P of f-l,.
denoted for convenience by P:= (Ggm O s+« Omo)-
There existe one and only one matrix of order m + 1,
whose elements ajj satisty:

(a) a,J=O if m < i+j;
(b) @jj=aj4q,j+aj, jaq if 14J+1 € my
(¢) agp=1.

Whit this matrix in hand, we define a bilinear mapping
on the vector space A by putting CICJmUC,,J(hJ&m) and
CXCJ = O otherwise. It is routine to verify that this
bilinear mapping is w, 3, m-admissible.

The coordinates of the point P= (Ggm @4, m1 ++ +» Omo )€ Hy,
corresponding to a given A in Qpq, are called the Hy-
coordinates of A. We have proved:

PROPOSITION 2: )

The correspondence associating to A € Qp .4 its Hy-
coordinates is a one-to-one correspondence between Qp.4
and Hy. In particular, Qpm,q 1s a m-parametric family of
genetic algebras.

As it 1s well Known, Hy has a natural affine basis, the

-1
set of points P0=(1,0,...,0),...,Pk=(0,...,(:) sadid 10D
....,sz(o,o,....o,l). This means that every point
P:(XQ,X{,...,Xp )€ Hy can be written as

P,;{:oxk (:)Pk wnerekz‘b Xk (:):l

That 1s,every point P of Hy is a baricenter of Po,.v Py
On the other hand, we have the concept of miXxture of
algebras, as given by Heuch [9), Holgate [10) or Worz-
Busekros [13):If py,...,Wg!A X A-PA are bilinear mappings
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and Ay, ..., Ag € R with Ag+...+hg = 1, then Aqby +...+ Aghg!
A X A-pA 1s called the mixture of py,..., Pg Wwith
coefficients Ay, ..., Ag.

If, 1n addition, A\; 20 we call Ay py +...+ Agbg a proper
mixture (or a convex cambination)of py, ..., Vg-

Suppose now we are given points Qy, ..., Qg of Hy. Let
Q = A\fQq+...+AgQg € Hy, with \+...+#Ag = i, a baricenter of
GRG0

Let now p, Yy, ..., bg be the bilinear mappings (that is,

algebras belonging to Qp.q) corresponding to Q Qg ..., Qg
as 1n Prop.2. It 1is easy to prove that p = Aqpg+...+Aglg.
This 1s the content of:

PROPOSITION 3:
The correspondence between Hy and Qn,¢ given above
is such that to a baricenter of points there corresponds

the mixture of corresponding algebras.

If we call A; (1=0,1,.,m)the algebras corresponding

to the points Pg,Py,...,Pp defined above, we have:
QOROLLARY:
Every member of Qm,4 is a mixture of Ag,Ay,...,Ap.

PROPOSITION 4:

Every member of Qp,q 1s completely determined by
its left (or right) train roots.

PROOF (left)
We have seen that the left train roots are given by

) mj
%Ji’::o ( i )Ux,m-i (0’ J & m)

This system of linear equalities can be reversed giving
@y m-iy as linear combinations of the agj

14K (K)
ck-m'KfZ:o('“ i/Go,m-1 (0 <k <m)

Ifewe call Ho =uf(XpsX ) consxm) €RD * 4 ¢ xq = 41,
formulae above give a one-to-one correspondence between

20
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Hy and Hp. By composition we get a one-to-one
correspondence between Qm+1 and Hp. But now the
Hp-coordinates of any A in Qp.4 are its left train
roots, hence our result.

REMARK i
The Hj-coordinates of G(mtf,2) are (%0, ...,0,%). Its

Hp-coordinates are, of course, (i,% % ...,%). Its 1s clear
that the Hp-coordinates of G(2 2m) are (4, ty, ..., tp)

m
=1
where ty= ( (k] .
We could aski which is the member of Q.4 whose

&

Hy-coordinates are proportional to the sequence (:)

s o L

m.m m
1f (XO-Xx-~'--"rn)P(O)- (1),..., (m)‘ we must have
m m m m
L (:]p (:) Zp (:)2: pE (k)2:1
k=0 k=0 k=0
hence
an ! 2m

2] (m )_ becausek)go(k)e :( m ) So we have
m, m

ol

calculations, that the answer is just G(2, 2m).

M

the coordinates T::)_i(( i) (m) and we see, with same

REMARK 2:

It 1e clear that A€ Qp 4 1s a camutative algebra if and
only if i1ts Hy-coordinates are symmetric: Ak, m-K=%m-K, K for
all K=0,4, ...,m or what is the same, A 1s symmetric.

REMARK 3:

G(m+i, 2)= % Ag + % Ap. In fact, the matrices of Ay and An
are
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and Ay, ... hg € R With Ag+...#hg = 1, then APy +...% Aghg!
A x A-pA is called the mixture of VYy,..., Pg With
coefficients Ay, ..., Ag.

If, in addition, Ay 2 O we call Aq py +...+ Agbg a proper
mixture (or a convex combination)of pg, ..., Ms-

Suppose now we are given points Gy, ..., @ of Hj. Let
Q = AjQy+...+AgQg € Hy, with A+...4)xg = 1, 3 baricenter of
Qq, +.., Qg

Let now p, pg, ..., pg be the bilinear mappings (that is,
algebras belonging to Qp.q) corresponding to G Qy, ..., Qg
as in Prop.2. It is easy to prove that p = A{pg+...+Aglg.
This 1is the content of:

PROPOSITION 3:
The correspondence between Hy and Qpn.¢ €iven above
is such that to a baricenter of points there corresponds

the mixture of corresponding algebras.

If we call Aj (1=0,4,..,m)the algebras corresponding

to the points Pg,Py,...,Pp defined above, we have:
COROLLARY:
Every member of Qm,q is a mixture of Ag,Aq,...,Ap.

PROPOSITION 4:

Every member of Qmpm,q is completely determined by
its left (or right) train roots.

PROOF (left)
We have seen that the left train roots are given by

) omg
L RN ) Ai,m-g (0 3 €m)

This system of linear equalities can be reversed giving
@y m-i as linear combinations of the agj

1+K (‘K
Gk.m-Kfi:O(_“ x)“o.m—x (0<K ¢m)

If. we call Hp = ((XgXy)ee0iXm) € RD + 1 2 x4 = 1],
formulae above give a one-to-one correspondence between

[;W__\\ 20



Hy and Hp. By composition we get a one-to-one
correspondence between Qm.,y and Hp. But now the
Hp-coordinates of any A in Qp.4 are its left train
roots, hence our result.

REMARK {:
The Hj-coordinates of G(mti, 2) are (%0,...,0,%). Its

Hp-coordinates are, of course, (4,%% ...,%). Its is clear
that the Hp-coordinates of G(2 2m) are (4, ty, ..., ty)

2l
where ty= ( K ) (K) 1.
We could aski which is the member of Qp, 4 whose

Hy-coordinates are proportional to the sequence c)

b

m.m m
I£ (xo.x‘.....ﬁn)p(g). (1)...., (m)- we must have
m m m o
Lt (I:)D (‘:L Ip (:)2= PL (k)ezi
k=0 K=0 k=0
hence

am 8 > 2m
(] [m ] becausek);.‘o(k) :( m ) So we have

Tn_‘ m m

the coordinates m) ((:), (1). Vi (m) and we see, with same

calculations, that the answer is just G(2, 2m).

REMARK 2:

It 1z clear that A€ Qu 4 18 a comutative algebra if and
only if its Hy-coordinates are symmetric:ay m-gk=Gpm-k, g for
all K=0,4, ...,mor what is the same, A is symmetric.

REMARK 3:

G(me 1, 2)= % A + % Ay, In fact, the matrices of Ay and Ay
are

4 { \
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1 o (0 5P 0)
0 0 (e 5D
X - K =
0 ; m
0 0 0 « 0

and so the matrix of % Ag+% Ap is

1 HARAS . #1T K
% O 440
K 0 0

S0 CjCp=CoCi=4Ci (1 ¢ i ¢ m) and CiCj=0(1 £ i,j < m).
We give now another characterization of G(2, 2m) in
Qmeq. We have seen in [i), th. 3, that the sequence

Ryt Tl GF RN tm is the arithmetic sequence
toty ty-ta to-17tm
m ety 4,

m m
Thie means that in the matrix A= (“13) corresponding to
G(2, 2m) we have.

= kK (k=1,...,m)

ay , mk m
PROPOSITION 5:

The only member A of Qp.q Whose matrix K:(ch)
satisfies the relationsimag m-k+1=Kaym-g (¢ € kK ¢ m)

is the gametic algebra G(2,2m).

PROOF:

By Prop.4 it 1s enough to determine the left t-roots of A. We have,
With K=1, M Ggp=04 p-4 and so Og m-§%am*a4, m-1= (@+1)dgm:
From mig m-y = 2 G, p-p We obtain oy m-p M o -y =M(Mtd )dgm=

2 2

o1 (mo2
(snzlctm,. In a ;numlar way, agm2 * ‘2 )“an"‘l"m‘

(m-i/'-’m °oo=(m)“an-

TSR ee

Il \
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= 1 (““
But ago=! SO Qg ( m ) and oo pg= \ @ ) K ) which are
exactly the train roots of G(2, 2m).

3- ALTERNATE ALGEBRAS

In thie paragraph, we describe a subclass of Q
closely related to the gametic algebra G(m+i,2).

Recall that every algebra A has an opposite algebra
denoted AO, where (xy) syx for alll %, y € As It ig
clear that if A € Qp.q, the same holds for A0 and
tX-X9, where "t" means transpose.

m+i1

THEOREM

Let A be a member of Qp.y, With corresponding
matrix K:(a”-), 0¢1,j¢m, The following conditions are
equivalent:

(1) Qoytdjo=1 (1£3¢m)

(11) Gom+Omo=1 and ay m-g+dp-g g=0(i<k<m-1)

(111) the submatrix (au), 1€1,)¢m, 18 skew symmetric
(av) For all u,v €N=Ker w, uv+vu=0

(v) For all x,y€ A, xgwx =W (X)y+w(y)x
(v1) For all x € A, xc=w(x)x
(vil) % A +% AQ:G(m+1,2)

PROOF:

(1) ==>%(11):Follows by direct computation: write the system
of equalities agpjtdyo = 1 (J=i,...,m) using (2) and (3) and
reduce by elanen%arvy transfomanons of linear equations.

(11) ==»(111):follows directly fram formula (1)

m m
(111) ==»(1v): 1f u=E\Cj and v=IZu_]CJ then
(0 J=1
m
uvevus B Ayp5(CC5+C4Cy )= E xluj(aum”)c,ﬂ.o
1, J=1

(av) =P (v): First of all, CyCp +CpkCx=0 (1<k<m-1)
implies Ay m-g+qm-k k=0 It follows by direct
computation that a0J+aJ°:l(J=1,....m). We have now,
for any u € N,

23 [ ”\
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Cou+uCos Co( £ A\Cj )+( : MC )co. L i (CqCi+CiCo)=
i=1 i=1

m
= L A (apj+aig)Ci=
f=A 1=1

TaKe now x:=w(x)Cgtu,y=w(y)Cq+tv, u,v € N. Then:
xy:w(x)u(y)C0+w(x)cov+w(y)uco+uv
yx=w(x)w(y )Corw (¥ )Cou+w (X)vCqatvu

Xy+yX=2w (x)w (y )Cotw (x) (Cov+VvCp)+w (¥ ) (Cqu+ulqp)=
=2w (X )w (¥ )Cotw (X )v+w (¥ Ju=w (X)y+w(y)x.

(v) == (vi): Take x:=y

(vi) == (vi1): For any x € A, we have X2 = w(x)x, equality
involving the second power of x in % A + ¥ AO. But this
algebra is commutative and it is well known that G(m+i,2) is
the only commutative baric algebra satisfying this equation.

(Vii)==(i): The matrix of % A + % A0 is ¥ X + ytX
and so

g G S A
YA+ % TR - T A
R 0

Hence Yoo ; +%aoy = % Goj +@jo=1 1€)<m

DEFINITICN:

Any member A of Q4 satisfying the equivalent
conditions of th.1 1is called an alternate algebra.

REMARK:

In every alternate algebra A, we have multiple t-roots:
apy = Ggp and ayg = app because agy = 0. It 1s also
clear that G(m+{, 2) 1s the only alternate cammutative
algebra in Qn, 4.

24
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THEOREM 2:
Let A € Qp.4. The following conditions are equivalent:

(1) A 1s a maximal element of Qpq
(11) There exist A\ p € R such that X+p=1 and

A= Mg+ Ay
PROOF:

(1) == (11): As dim Der A=m(m+1), we must have Der
A={d:APA |wod=0}. In fact,by ([1),th 1) every derivation
d must satisfy wod=0 and the subspace of linear mappings
d: A-»A such that wod= 0 has dimension m (m+i), as the
Kernel of the linear mappings d - wod.

TaKe now any a € A with w(a)=1{ and define da'A-bA
by dj(x)=w(x)a-x (see [i], th.2). We have woda-o and so
dy Ls a derivation of A. It follows that d, (a )= a -al:-
=ad(a)+d(a)a=0 so a.ae‘ and every element of weight 1 is
an idempotent. Observe that d,, restricted to N, is the
reflexion x-p-x(for any a). TaKing i<im we have

2 2 2
CotCi= (Cpj+Cj)= Cu+CoCi+CiCo+Ci=Cot (agj+aig)Ci+Cy
which implies og+Qjo=1 S0 A 1is alternate.
Moreover, if 1¢i,jsm, we have

do((CiC)=CiCy=~CiC3=C;Cj=-2C{C}

20 C‘CJ:O It follows that agq=...zagp=\ and ayp=.
and finally A=AAg+pApy, with A+p=1.
(11)==>(1): The matrices of Ay and Ap are respectively

+*Aqmok

14 Fip 0
o © 0
A= s
o
0 0

so the matrix of AAg+UAp is
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A A
0 . 0
0 . 0
(o] . 0

We have: Cgu= \u, uCp= pu and uv=0 for all u, v € N. If
x=w(x)Cqtu and y=w(y)Cqo+v, u,v € N, then xy=w(x)w(y)Cq+
+Aw (X )V+pw (y)u. Suppose we have Bg,By,...,By € N.
Define d:A —$A by d(Cj)=Bj (i=0,1,...,m). We prove d is a
derivation:

xd (y )+d (X)y =X (w (¥ )Bg+d (V) )+ (w (x)Bgrd (u) )y =w (¥ )XBg#xd (v )+
w (x)Boy+d (u)y=w(y)(w(x)Cqo+u)Bgt (w(X)Cqo+u)d (v)+w(x)Bg
(w(y)Cqtv)+d (u) (w(y)Cotv)=w (y )w (X )ABgtw (X )Ad (V )+w (x)

w (y )Bgrw (¥ )pd (u)=w (x)w (Y )Bgrw (x)Ad (v )+w (y )pd (u)=d (xy ).

So, there is a one-to-one correspondence between derivations
of \MAg + VAy and sequences (Bg,By,...,Bp), Bj € N.

This means dim Der (AAg+VAp)=m(m+1) and A is maximal in
Qn+y-

4- MINIMAL ELEMENTS

THEOREM 3:
Suppose the Hy-coordinates (Qom,a{,m-41:"* ,Gm-l,pﬂmo)
of A € Qm,q satisfy:

(1) aj m-j2 0, 0 <)m
(2) There exists i<k<m-1 such that Qg ,m-K >0

Then A is a minimal element of Qm,1.

26
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PROOF

We remark that A and its opposite algebra A° have
the same derivation algebra and the Hy—coordinates of
A° are(ame,@m-1,41 144 m-1,9om). Hence we may
suppose that k<m-K in (2).

We denote again by k the 1egst K such that “k,m-K’o‘
We look now to the matrix A, which can be broken in

four blocks ﬂi, S ,.3\4 as follows:
column m-kK
[_ X ! e (A
1 : 2
S = H row K
X (B
3 ! 4

’l‘he sizes of the blgcks are: .:\1:(Kﬂ)x(m—k&i);xz:(ku)xk;
Azi(m-K)x(m-K+1); Ay: (m-K)xk. It 1s clear that h:o and

a a s o g
om om om

!0 0 0
o f
A = i
2 i
1
|
|0 (6] 0
=

by our choice of K. (This means agm s a left t-root
with multiplicity 2K). The elements of A3 are all non
negative v

We look to Ki. Every element of Ay is strictly
positive because it depends on ag, m-k-:
Moreover, agj + @jo < ! for j=g, ..., m this follows fram
formulae (2) and (3). Also agy » %3 (J=&,...,n), a
consequence of the same formulae.

27
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m
Suppose now d is a derivation of A. If d(C°)=Ealcx.Cao=Co

1=4

m m
implies Zaj (apj+ajq)C;=La;Cj.

i=4 i=1
By equating coordinates, we get:
Q; (Foy*ajo)=aj (i=1,...,m)
As aggtago=i and agjtaj, <t if j=2,...,m,we get aps, .=y =0
and so:

d(Cp)=aCy, where a=ay

m
Again, from CqCy=agyCy and calling d(Cy)=E B;C;j, We obtain:
izt

m 2 m
CO(E s‘ci)mci:um(r BiCj) or
dsdl i=1

B

=g

m
BjaoiCi+aa1Ca=l apyB;Cy
=1 =1

By equating coordinates:

] ]

a =B a

101 t ot
Baapa+aay1=Raapq

Ba =pa (SRS ISSET):
i Gopd (ot

The first equation is an identity, the second gives Bp=a
and the remaining ones give Bi=0, 3¢i<m, which means

d(Cy)=BCy+aCp,where B=py.
Observe now the left principal powers of Cy:
2
Cy=ay4Cp #0
3 2
C=C4C=Cyay{Cp=ay1aypC3 #0
m-K+1 mK
Cy=  C4Cy  =044Q1p.. Oy m-KCmket 7O

From these equations, we have:
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2
d(Cp)=_t d(Cy)=_1 [Cy(BCy+aCp)+(BCy+aCp)Cy)=
o Gt

=_1 [ByayyCotaayaCatBiay(CotaapyC3)=2BCo+aly.
i

Similarly we obtain

d(CJ):JBCraCJ,i for 2¢j<m-K.

The effect of d on the remaining vectors Cp_g,q4y..+,Cp
can be obtained from the last row of ‘x‘l‘ In fact,Cp_g,q=
a7l m-2k+1CkCm-2k+ 11+ 1Cm=a "k, m-kCkCm-k» Which gives,
by a direct computation,

d(CJ)=JBCJ*GCJ+1 for m-K+1<j<m.

We have proved that d=an+Bd

We don’t Know whether theorem 3 gives all minimal elements
of Qmiq.

5- DIAGONALIZABLE DERIVATIONS

Every member A of Qp.4 has at least one
diagonalizable derivation namely . It may happen that A
have several linearly independent diagonalizable derivations,
as 1t happens to G(m+1,2) ([1),th 4).

THEOREM 4:
Let a € Qu4y, Whose matrix(a;;) satisfies:

(1) Goj #do, 344 (J1, .. m=1)
(2) Gom*omo

If d:A-»A is a derivation such that d(Cy¢)=ACy,\ € R,
then d=)a.

PROOF:

The first condition Ao j # Gg, j+1 means 01_, # 0 and
so the left principal powers of Cy are all non zero:

2 m
Cy=a44Ca, .. Cy=a4Ag2. .0 f,m~1Crm
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@
We have d(Cy)=\Cy. Then d(Cq)=d(ay4Cp)=ay4d(Cp)
and

2 H
d(Cy)=d(Cq)C1+Cqd (Cy)=2ACq=2hay4Cp, that is, d(Cp)=2ACap.

Similarly, d(C3)=3\C3,...,d(Cp)=mACy and Cy,...,Cp are
proper vectors of d, with proper values A,2\,...,mA.

According to ([1],th 1),0 must be a proper value of d.
Let us prove that d(cp)=0 (which gives d=)3). Call d(Cq)=
B1Cy+.. +BpCm,Bj € R.

From C4Cp=a4oCy,we get:\C4Cq+Cyd(Cp)=ayghCy or Cyd(Cq)=0

Now 0=Cy(B4Cy+...+ByCp)=B1a14Cot.. . +Bp 1Ay m-1Cp implies
2
By=...sBp-1=0 and so d(Cq)-ByCp. But, as Cp=Cp,we have:

CoBmCm)* (BmCm )Co=PmCm Or Bm(Gom+Ameo)= By and by (2),
=

REMARK:

Let A be the alternate algebra of Q¢ whose Hy-
coordinates are (%,1,0,0,-1,%). It is routine to verify
that d: A -pA given by Co$0,C{$Cy,Co0,C3HC3,Cyd
2Cy,Cs5»3Cp is a derivation, Cy is a proper vector of d
but 3 and d are linearly independent. We have, in this
example, apq=app and agstasp=1.
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