ON GENETIC ALGEBRAS WITH PRESCRIBED DERIVATIONS R.COSTA #### 1- INTRODUCTION The terminology and notations of this paper are those of [1]. We recall that a baric algebra over the real field R is an ordered pair (A,ω) where A is a (finite dimensional non associative, non commutative) real algebra and $\omega:A-\blacktriangleright R$ is a non zero homomorphism of algebras. An important class of baric algebras is the class of genetic algebras (in Gorshor's sense). A real algebra A, of dimension n+1, is genetic if it has a basis C_0, C_1, \ldots, C_n such that, if $$\begin{array}{c} n \\ C_1C_j = \sum_{\substack{Y \ i,jk}} C_k \ (i,j=0,1,\ldots,n) \ \text{then:} \\ k=0 \end{array}$$ (1) Young = 1 (2) York = Yrok = 0 if K < j (3) $\gamma_{ijk} = 0$ when $1 \le i, j$ and $k \le \max\{i, j\}$ In this case, $C_0, C_1, \dots C_n$ is called a canonical basis of A. It can be proved ([14], Chapter 5) that the real numbers Y_{01} and Y_{10} (i = 0,1,...,n) are, in fact, independent of the canonical basis of A. They are called left (resp.rigth) train roots, in short, troots, of A. When A is commutative, $Y_{01} = Y_{00}$ (i=1,...n). Desertamento de Matemática y Estadística. Universidad de Sao Paulo, Brasil. Profesor vizitante Universidad de la Frontera (Abril 1986) Visita financiada por UNESCO, Programa de Participación H 2126. Every genetic algebra may be equipped with a unique non zero homomorphism ω . This function is defined on a canonical basis by $\omega(C_0)$ =1 and $\omega(C_1)$ =0, 1≤ 1 fn. The Kernel of ω , which is the n-dimensional ideal generated by C_1,\ldots,C_n will be indicated N. In [1], we have stutied the derivation algebra of the gametic algebra for a n+1-allelio and 2m-ploid population, denoted by G(n+1,2m). In particular we have proved (§3) that all algebras G(2,2m) have the same derivation algebra, namely, the non Abelian Lie algebra of dimension 2. We have proved also that the derivation algebra of G(n+1,2) has dimension n(n+1), which is the maximum dimension of derivation algebras of genetic algebras of dimension n(1,1), n(We recall, for further use, some facts about G(2,2m). This algebra is commutative and has a canonical basis C_0 , C_1,\ldots,C_m such that $$C_1C_{\underline{j}} \left\{ \begin{array}{ccc} 2m & m \\ {\binom{i+j}{j}}^{-1} {\binom{i+j}{j}} C_{i+\underline{j}} & \text{if } i+\underline{j} \leq m \\ & \text{O} & \text{if } m \leq i+\underline{j} \end{array} \right.$$ The t-roots of G(2, 2m), denoted by t_0 , t_1 , ..., t_m are the $\binom{2m}{l-1}\binom{m}{l}$ real numbers $$t_{K} = {2m \choose k}^{-1} {m \choose k} (K=0, 1, ..., m)$$ and so $$1=t_0>t_1=\frac{1}{k}>t_2>...>t_m=\binom{2m}{k}-1>0$$ Consider now the linear mappings $\mathfrak{d}, \pi; G(2,2m) {\longrightarrow} G(2,2m)$ given by $$\partial(C_i)=iC_i$$ (i=0, i, ..., m) and $$\eta(C_i) = \frac{t_{i+1}}{t_{i}-t_{i+1}} C_{i+1} \quad (i < m), \, \eta(C_m) = 0$$ We have proved ([1],th 3) that ∂ and η form a basis for the derivation algebra of G(2,2m). We observe that ∂ has proper values $0,1,...,m,\eta$ is nilpotent of index m+1. Moreover $\omega \partial = \omega \circ \eta = 0$ and $\partial \circ \eta = 0$ no $\partial \circ \eta = 0$. In this paper we construct a large class of non Eveowing niver limit notes and a sandagle interest entire transformation of the manufacture of the sand interest entirely and sandagle interest entirely and sandagle interest entirely actions at the note mensional ideal generated by as notes and will be attended to the sandagle. #### LEMMA 1 Let A a be real vector space of dimension m+1. Suppose $\partial_1 m : A - A$ and w : A - B are linear mappings such that: u : A - B = A and u : A - B = A are linear mappings such that: (1) ∂ has proper values 0, 1, ..., m (2) η is nilpotent of mindex m+1 (3) ω ≠ 0 and wo = woη = 0 (4) 2011-no3=n Then t-roots of G(2,2m), denoted by to t, ..., tm are the Then, there exists a unique $C_0\in A$ such that $D(D_0)=D(D_0)$ and $D(D_0)=D(D_0)$ such that $D(D_0)=D(D(D_0)$ such that $D(D_0)=D(D_0)$ such that $D(D_0)=D(D(D_0)$ su ### PROOF 1=to>t1=K>t2>...>tm=(K)-1>0 Let A; be the proper subspaces of a, that is, consider now the linear mappings 3, m G(2, 2m)—G(2, 2m) given G(2, 2m) with G(2, 2m) with G(2, 2m) 0=(C1)=1C(x) wi=(xi) w=((x)6) w=x(60w)=0 m(C1)=t1+1 C1+1 (1cm), m(Cm)=0 Hence ω (x)= 0, x \in ker ω . So A_1 c ker ω . This implies $A_1 \oplus \ldots \oplus A_{m-1}$ c ker ω . As they have the same dimension m_1 and m_2 have ker $m_2 A_1 \oplus \ldots \oplus A_{m-1}$ (so the other hand m_1 has a cyclic vector z (its minimal polynomial has degree m_1). Necessarily, z \in ker ω , because m_1 and m_2 is m_1 and m_2 and m_3 and m_4 otherwise $\{z,\eta(z),\ldots,\eta m(z)\}$ c ker u_i and so w=0, contrary to (3). It is also clear that a scalar multiple of a cyclic vector is again a cyclic vector. Hence we may suppose w(z):1. Decompose z as $z=C_0+C_1+\ldots+C_m$ with $C_1\in A_i$, $0\le i\le m$. We prove now that C_0 is also a cyclic vector for η . We have for $x\in A_i$: $\partial (\eta(x) = (\eta \rho \partial + \eta)(x) = \eta(ix) + \eta(x) = (i+1)\eta(x).$ So $\eta(A_1)$ c A_{i+1} (icm) and $\eta(A_m)$ = 0. We have the set of equations in triangular form from which it is clear that $C_0, \eta(C_0), \ldots, \eta^m(C_0)$ is also a basis of A. The unicity of C_0 is clear: If C'_0 satisfies $\partial(C'_0) = 0$ then $C'_{0} = \mu C_0$ ($\mu \in \mathbb{R}$) because 0 is a simple proper value of ∂ . Hence $1 = (C'_0) = \mu$ (C_0) = μ so $C'_0 = C_0$. From now on, A will be a fixed real vector space of dimension m*1, equipped with a non zero linear formu, two linear mappings $\partial_t \pi_t - h A$ such that $\text{wo} \partial_{\pm} \text{wo} \pi_t = 0$, $\partial_t \pi_t - h A$ such that $\text{wo} \partial_{\pm} \text{wo} \pi_t = 0$, $\partial_t \pi_t - h A$ such that $\text{wo} \partial_{\pm} \text{wo} \pi_t = 0$, $\partial_t \pi_t - h A$ such that $\text{wo} \partial_{\pm} \text{wo} \pi_t = 0$, $\partial_t \pi_t - h A$ such that \pi_$ Recall that each bilinear mapping $\mu A \times A - A + A$ defines on the vector space A a structure of algebra (non associative, non commutative, in general) denoted (A, μ) . We say μ is admissible for ω_i $\partial_i = \mu_i + \mu_i = \mu_i + \mu_i = \mu_i + \mu_i = \mu_i = \mu_i + \mu_i = \mu_i$ We denote by Ω_{m+1} the set of all admissible(for ω , ∂ and η) bilinear mappings ν : A x λ — λ A. As usual, we indicate $\mu(a,b)$ by ab and we omit the mapping ν when refering to the algebra (λ,ν) . We shall denote the derivation algebra of A by Der A. By the own definition of $\Omega_{\rm Im+1}$, we have 2 \leq dim Der A for any A \in $\Omega_{\rm Im+1}$. By([1], th.1), we have also dim Der A \leq m(m+1). Any member A \in $\Omega_{\rm Im+1}$ such that dim Der A = 2 will be called a minimal element of $\Omega_{\rm Im+1}$. This is the case of G(2, 2m). Conversely, if dim Der A=m(m+1), we say A is a maximal element of $\Omega_{\rm Im+1}$, as it happens to G(m+1, 2). # PROPOSITION 1: All members of Ω_{m+1} are genetic algebras relative to the same basis C_0 C_1 , ..., C_m where C_1 = η^1 (C_0). Moreover, C_0 is an idempotent for each one of these algebras. The real number $\frac{1}{2}$ is a t-root for all commutative algebras in Ω_{m+1} . #### PROOF: Take the cyclic basis C_0, C_1, \ldots, C_m of A, given by Lemma 1. Given now O & i, j & m $$\partial(C_iC_j)=\partial(C_i)C_j+C_i\partial(C_j)=iC_iC_j+jC_iC_j=(i+j)C_iC_j$$ If m< i+j we must have $C_1C_3{=}0$ because i+j is not a proper value of δ . When $i+j\leq m$ C_1C_j is a proper vector of δ (or the zero vector) corresponding to the proper value i+j of δ . Hence $C_1C_3{=}$ $\alpha_{i,j}C_{i+j}$ for some real number $\alpha_{i,j}$. In particular, $c_0^C_{0}{=}\alpha_{0,j}C_0$, so $\alpha_{0,0}{=}i{=}\omega(C_0)$ and $C_0^C_{0,j}$. We have proved that C_0 C_1 , ..., C_m is a canonical basis of A. Moreover the left (resp.right) t-roots are i, $\alpha_{0,1}$,..., $\alpha_{0,m}$ (resp., i, $\alpha_{1,0}$,..., $\alpha_{m,0}$). Taking again the equality $C_1C_3{=}\alpha_{i,j}C_{i+j}$ (!+j $\leq m$) we get, applying π $$\eta(C_1C_j) = \eta(C_1)C_j + C_1\eta(C_j) = C_{i+1}C_j + C_iC_{j+1}$$ or If $i+j+1 \le m$ then we may cancel and obtain α_{i+1} , $j+\alpha_i$, $j+1=\alpha_{i,j}$. In particular $\alpha_{00}=1=\alpha_{01}+\alpha_{10}=2\alpha_{01}$ if A is commutative, and K is a t-root. We will describe more accurately the class Ω_{m+1} in the following way: Each A in Ω_{m+1} has the cyclic basis C_O C_1, \dots, C_m of proper vectors of \tilde{a} , with $u(C_O) = 1$. Moreover, $C_1C_j = \alpha_{1,j}C_{1+j}$ (i+j \leq m), $C_1C_j = 0$ (m < i+j) and $\alpha_{1,j}=\alpha_{1,j}+\alpha_{1,j+1}$ if $j+j+1 \leq m$. From this, we can associate to A the matrix $$\widetilde{A} = \begin{bmatrix} \alpha & \alpha & \cdots & \alpha & \alpha \\ 0 & 0 & 0 & 0 & \cdots & 0 & m-1 \\ \alpha & 0 & 1 & \cdots & \alpha & \cdots & 0 \\ 10 & 1 & 1 & \cdots & 1 & m-1 \\ \alpha & 0 & m-1, 1 & 0 & \cdots & 0 \\ m & 0 & 0 & \cdots & 0 & \cdots \end{bmatrix}$$ where α_{00} = 1. The recurrence relation $\alpha_{1,j}$ = α_{1+1} , j+ α_{1} , j+1 (1+j+15m) shows that each $\alpha_{1,j}$ (1+j-1m) can be expressed as a linear combination of α_{0m} $\alpha_{1,jm-1}$, \dots , α_{m-1} , j, α_{m0} with integral coefficients, in the following way: We have $\alpha_{1,j}=\alpha_{i+1,\ j}+\alpha_{i,\ j+1}=\alpha_{i+2,\ j}+\alpha_{i+1,\ j+1}+\alpha_{i,\ j+2}=$ $=\alpha_{i+3,\ j}+3\alpha_{i+2,\ j+2}+3\alpha_{i+1,\ j+3}+\alpha_{i,\ j+3}$ and so on. We obtain $$\alpha_{i,j} = \alpha_{i+r_i,j} + \binom{r}{i} \alpha_{i+r-i,j+i} + \dots + \alpha_{i,j+r} = \binom{r}{k} \alpha_{i+r-k,j+k}$$ for all r such that $i+j+r \leq m$. In particular, taking $i+j+r=m$ that is, $r=m-i-j$, we get $$m-i-j$$ $m-i-j$ $\alpha_{i,j} = \sum_{k=0}^{L} \binom{m-i-j}{k} \alpha_{m-j-k, j+k}$ our desired relation. This formula can be replaced by $$(1) \ \alpha_{i,j} = \sum_{l=j}^{m-1} \binom{m-i-j}{l-j} \ \alpha_{m-l,\;l} \ (\text{calling } j+k=1)$$ and by $$\alpha_{i,j} = \sum_{k=1}^{m-1} {m-i-j \choose m-i-1} \alpha_{m-1, \text{ (because } \binom{m}{k} = \binom{m}{m-k})}.$$ In particular the left (resp.right) train roots are given by $$(2) \quad \alpha_{0,j} \underset{l=j}{\overset{m}{\underset{j}{\vdash}}} \binom{m-j}{l-j} \alpha_{m-l,\ l} \underset{l=j}{\overset{m}{\underset{l=j}{\vdash}}} \binom{m-j}{m-l} \alpha_{m-l,\ l} \underset{l=j}{\overset{m-j}{\underset{l=j}{\vdash}}} \binom{m-j}{l-j} \alpha_{1,\ m-l}$$ $$(3) \quad \alpha_{j} \circ_{1}^{\mathbb{Z}} \circ_{0}^{\mathbb{Z}} (1) \circ_{m-1}^{\mathbb{Z}})_{\alpha_{m-1}, 1} \circ_{1}^{\mathbb{Z}} \circ_{m-j}^{\mathbb{Z}} (1) \circ_{m-1}^{\mathbb{Z}} \circ_{m-1}^{\mathbb{Z}} \circ_{m-1}^{\mathbb{Z}} \circ_{m-k}^{\mathbb{Z}})_{\alpha_{k}, m-k}$$ (4) $$\alpha_{\text{ook}=0}^{\text{m}} \binom{\text{m}}{\text{k}} \alpha_{\text{k, m-k}=1}$$ We consider now the affine hyperplane H_1 of R^{m+1} define by $$H_1 = \{(x_0, x_1, \dots, x_m) \in \mathbb{R}^{m+1} \mid_{k=0}^{m} {m \choose k}_{x_k=1}^{m} \}$$. We have shown that, to each member A of Ω_{m+1} we can associate, via matrix \tilde{A} , the point $P: (\alpha_{nm} \alpha_1, m-1, \cdots, \alpha_{m-1}, p, q, p)$, the. Suppose conversely, we have a point $P: (\alpha_{nm} \alpha_1, m-1, \cdots, \alpha_{mn})$. There existe one and only one matrix \tilde{A} , of order m+1, whose elements α_1 ; satisfy: (a) α_{i j}=O if m < i+j; (b) aij=ai+1, j+ai, j+1 if i+j+1 ≤ m; (c) a00=1. Whit this matrix in hand, we define a bilinear mapping on the vector space A by putting $C_1C_2=\alpha_1C_{1+1}(i+j\sin)$ and $C_1C_3=0$ otherwise. It is routine to verify that this bilinear mapping is ω_i δ_i , η -admissible. The coordinates of the point $P=(\alpha_{om} \alpha_1, m-1, \ldots, \alpha_{mo}) \in H_1$, corresponding to a given A in Ω_{m+1} , are called the H_1 -coordinates of A. We have proved: # PROPOSITION 2: The correspondence associating to A $\in \Omega_{m+1}$ its H_1 -coordinates is a one-to-one correspondence between Ω_{m+1} and H_1 . In particular, Ω_{m+1} is a m-parametric family of genetic algebras. As it is well known, H₁ has a natural affine basis, the set of points $$P_{O}=(1,0,...,0),...,P_{k}=(0,...,\binom{m}{k}^{-1},...,0)$$,..., $P_m = (0,0,\ldots,0,1)$. This means that every point $P = (x_0,x_1,\ldots,x_m) \in H_1$ can be written as That is, every point P of H_1 is a baricenter of P_0, \dots, P_m . On the other hand, we have the concept of mixture of algebras, as given by Heuch [9], Holgate [10] or Worz-Busekros [13]:If p_1, \dots, p_g : A x A \rightarrow A are bilinear mappings and $\lambda_1, \ldots, \lambda_S \in \mathbb{R}$ with $\lambda_1 + \ldots + \lambda_S = 1$, then $\lambda_1 \mu_1 + \ldots + \lambda_S \mu_S$: A \times A \longrightarrow A is called the mixture of μ_1, \ldots, μ_S with coefficients $\lambda_1, \ldots, \lambda_S$. If, in addition, $\lambda_1 \ge 0$ we call $\lambda_1 \mu_1 + \ldots + \lambda_s \mu_s$ a proper mixture (or a convex combination) of μ_1,\ldots,μ_S . Suppose now we are given points Q_1,\ldots,Q_S of H_1 . Let $Q=\lambda_1Q_1+\ldots+\lambda_SQ_S\in H_1$, with $\lambda_1+\ldots+\lambda_S=1$, a baricenter of Q_1, \ldots, Q_g . Let now $\mu, \mu_1, \ldots, \mu_g$ be the bilinear mappings (that is, algebras belonging to Q_{m+1}) corresponding to Q_1, \ldots, Q_g as in Prop.2. It is easy to prove that $\mu = \lambda_1 \mu_1 + \ldots + \lambda_g \mu_g$. # PROPOSITION 3: This is the content of: The correspondence between $\mathrm{H_1}$ and Ω_{m+1} given above is such that to a baricenter of points there corresponds the mixture of corresponding algebras. If we call A_i (i=0,1,...,m)the algebras corresponding to the points P_0, P_1, \ldots, P_m defined above, we have: ### COROLLARY: Every member of Ω_{m+1} is a mixture of A_0, A_1, \ldots, A_m . # PROPOSITION 4: Every member of Ω_{m+1} is completely determined by its left (or right) train roots. ### PROOF (left) We have seen that the left train roots are given by $$\begin{array}{ccc} m-j & m-j \\ \alpha_{0,j} \tilde{\mathbb{I}}_{0,0}^{\infty} & i \end{array} \qquad \alpha_{i_1,m-i} \quad (o \leq j \leq m)$$ This system of linear equalities can be reversed giving $\alpha_{i,\,m-i}$ as linear combinations of the $\alpha_{o,i}$: $$\begin{array}{c} & & \\ \alpha_{K,m-k} = D \\ 1 = O \end{array} (-1)^{i+k} {\binom{K}{i}} \alpha_{O,m-i} \quad (0 \le K \le m) \end{array}$$ If we call $H_2 = \{(x_0, x_1, \dots, x_m) \in \mathbb{R}^m + 1 : x_0 = 1\}$, formulae above give a one-to-one correspondence between H_1 and $H_2.$ By composition we get a one-to-one correspondence between Ω_{m+1} and $H_2.$ But now the H_2 -coordinates of any A in Ω_{m+1} are its left train roots, hence our result. ### REMARK 1: where $$t_{k} = {2m \choose k} {m \choose k}^{-1}$$. We could ask: which is the member of Ω_{m+1} whose H_1 -coordinates are proportional to the sequence $\binom{m}{0}$ $$\binom{m}{1}, \ldots, \binom{m}{m-1}, \binom{m}{m}$$? hence $$\rho \ \binom{2m}{m} \)^{-1} \ \ \underset{\text{because}}{\overset{m}{\underset{K=0}{\Sigma}}} \binom{m}{k}^2 \ \ _{\text{=}} \ \binom{2m}{m}. \quad \text{So we have}$$ the coordinates $\binom{2m}{m}^{-1} \binom{m}{0}, \binom{n}{1}, \ldots, \binom{m}{m}$ and we see, with some calculations, that the answer is just G(2, 2m). # REMARK 2: It is clear that $A\in \Omega_{m+1}$ is a commutative algebra if and only if its $H_1\text{-coordinates}$ are symmetric: $\alpha_{k,\,m-k}\text{-}\alpha_{m-k,\,k}$ for all k=0, i, . . . , m or what is the same, A is symmetric. # REMARK 3: $\text{G}(\text{m+1,2})\text{= }\text{Y}\text{,}\text{A}_{\text{O}}\text{+ }\text{Y}\text{,}\text{A}_{\text{m}}\text{.}$ In fact, the matrices of A_{O} and A_{m} are and $\lambda_1,\dots,\lambda_S\in\mathbb{R}$ with $\lambda_1+\dots+\lambda_S=1$, then $\lambda_1\nu_1+\dots+\lambda_S\nu_S$: A \times A \to A is called the mixture of ν_1 , ..., ν_S with coefficients $\lambda_1,\dots,\lambda_S$. If, in addition, $\lambda_1\geq 0$ we call λ_1 $\nu_1+\dots+\lambda_S\nu_S$ a proper mixture (or a convex combination) of ν_1,\dots,ν_S . Suppose now we are given points Q_1,\dots,Q_S of H_1 . Let $Q:=\lambda_1Q_1+\dots+\lambda_SQ_S\in H_1$, with $\lambda_1+\dots+\lambda_S:=1$, a baricenter of $Q_1,\dots,Q_S:=1$. Let now $\mu, \mu_1, \ldots, \mu_S$ be the bilinear mappings (that is, algebras belonging to Ω_{m+1}) corresponding to $\Omega_1, \ldots, \Omega_S$ as in Prop.2. It is easy to prove that $\mu = \lambda_1 \mu_1 + \ldots + \lambda_S \mu_S$. This is the content of: # PROPOSITION 3: The correspondence between $\mathrm{H_1}$ and Ω_{m+1} given above is such that to a baricenter of points there corresponds the mixture of corresponding algebras. If we call A_i (i=0,1,...,m)the algebras corresponding to the points P_0,P_1,\ldots,P_m defined above, we have: ### COROLLARY: Every member of Ω_{m+1} is a mixture of A_0, A_1, \ldots, A_m . # PROPOSITION 4: Every member of Ω_{m+1} is completely determined by its left (or right) train roots. # PROOF (left) We have seen that the left train roots are given by $$\begin{array}{c} m-j \\ \alpha_{0,j}\sum\limits_{i=0}^{T} \binom{m-j}{i} \alpha_{i,\,m-1} \ (o \leq j \leq m) \end{array}$$ This system of linear equalities can be reversed giving $\alpha_{1,m-1}$ as linear combinations of the $\alpha_{0,1}$: $$\begin{array}{c} & & \\ \alpha_{K,m-k} = \sum\limits_{i=0}^{\infty} (-i)^{i+k} \binom{K}{i} \alpha_{0,m-i} & (0 \le K \le m) \end{array}$$ If we call $H_2 = \{(x_0, x_1, \dots, x_m) \in \mathbb{R}^m + 1 : x_0 = 1\}$, formulae above give a one-to-one correspondence between H_1 and H_2 . By composition we get a one-to-one correspondence between Ω_{m+1} and H_2 . But now the H_2 -coordinates of any A in Ω_{m+1} are its left train roots, hence our result. ### REMARK 1: The H_1 -coordinates of G(m+1,2) are $(1,0,\ldots,0,\frac{1}{N})$. Its H_2 -coordinates are, of course, $(1,\frac{1}{N},\frac{1}{N},\ldots,\frac{1}{N})$. Its is clear that the H_2 -coordinates of G(2,2m) are $(1,\frac{1}{1},\ldots,\frac{1}{m})$ where $$t_{k} = {2m \choose k} {m \choose k}^{-1}$$. We could ask: which is the member of Ω_{m+1} whose H_1 -coordinates are proportional to the sequence $\binom{m}{0}$ $$\binom{m}{1}, \ldots, \binom{m}{m-1}, \binom{m}{m}$$? If $(x_0, x_1, \ldots, x_m) \rho\binom{m}{0}$, $\binom{m}{1}$, ..., $\binom{m}{m}$, we must have $$\sum_{\substack{K=0 \\ k \neq 0}}^{m} {m \choose k}_{p} \qquad {m \choose k}_{=} \sum_{\substack{E \neq 0 \\ k \neq 0}}^{m} {m \choose k}_{=} \sum_{\substack{E \neq 0 \\ k \neq 0}}^{m} {m \choose k}_{=1}^{2}$$ hence $$\rho \left(\frac{2m}{m}\right)^{-1} \ \text{because}_{K^{\Sigma}_{0}} {m \choose k}^{2} = {2m \choose m}. \quad \text{So we have}$$ the coordinates $\binom{2m}{m}^{-1} \binom{m}{\binom{n}{0}}, \binom{m}{\binom{1}{1}}, \ldots, \binom{m}{m}$ and we see, with some calculations, that the answer is just G(2, 2m). ### REMARK 2: It is clear that $A \in \Omega_{m+1}$ is a commutative algebra if and only if its H_1 -coordinates are symmetric: $\alpha_{K_1} m - K^{-\alpha} \alpha_{m-K_1} k$, $K_2 = 0$, $K_3 = 0$, $K_4 ### REMARK 3: $\text{G}(\text{m+1},2)\text{= }\text{1/}\text{A}_0\text{+ 1/}\text{A}_m\text{.}$ In fact, the matrices of A_0 and A_m are $$\tilde{\mathbf{X}}_{0}^{z} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 \end{bmatrix} \tilde{\mathbf{X}}_{m}^{z} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & 0 & \dots & 0 \end{bmatrix}$$ and so the matrix of % An+% Am is | _ | cite maci in | 0. 16 . | -0 . /t m | |---|-------------------------|---------|-----------| | | r | | N. N. N. | | | 1 think | % · · | . % | | | 1/2 | 0 | . 0 | | | A STATE OF THE STATE OF | | | | | · Contain | | 1200 | | | | | | | | * | 0 | . 0 | | | | | 120 - | So $C_iC_0=C_0C_i=\mathcal{H}C_i$ (1 \le i \le m) and $C_iC_j=0$ (1 \le i, j \le m). We give now another characterization of G(2,2m) in Ω_{m+1} . We have seen in [1], th. 3, that the sequence $\frac{t_1}{t_1}$, $\frac{t_2}{t_1}$, ..., $\frac{t_m}{t_{m-1}}$ is the arithmetic sequence $\frac{t_m}{t_1}$ $$\underline{m}, \ \underline{m-1}, \ldots, \underline{1}, \\ \underline{m} \ \underline{m} \ \underline{m}$$ This means that in the matrix $\tilde{A}=(\alpha_{i,j})$ corresponding to G(2,2m) we have. $\frac{\alpha_{0, m-k+1}}{\alpha_{1, m-k}} = \frac{k}{m} \quad (k=1, \ldots, m)$ # PROPOSITION 5: The only member A of Ω_{m+1} whose matrix $\tilde{A}=(\alpha_{i,j})$ satisfies the relations: $m\alpha_{0,m-k+1}=k\alpha_{1,m-k}$ $(1 \le k \le m)$ is the gametic algebra G(2,2m). #### PROOF: By Prop. 4 it is enough to determine the left t-roots of A. We have, with k=1, m α_{cm} = α_1 , m-1 and so α_0 , m-1= α_0 α_1 , m-1= α_1 (m+1) α_0 m. From α_0 , m-1 = α_1 α_1 m-2, we obtain α_1 , m-2 = α_0 , m-1 = α_1 α_1 α_2 α_2 α_3 α_4 α_4 α_5 α $$\binom{m+1}{2} \alpha_{\text{com}}$$. In a similar way, $\alpha_{0, m-2} = \binom{m+2}{2} \alpha_{\text{com}} \dots, \alpha_{01} = \binom{m+1}{2} \alpha_{\text{com}} \alpha_{00} = \binom{m}{m} \alpha_{00}$ But $\alpha_{00}=1$ so $\alpha_{0m}=\binom{2m}{m}^{-1}$ and $\alpha_{0,m-k}=\binom{2m}{m}^{-1}\binom{m+k}{k}$ which are exactly the train roots of G(2, 2m). ### 3- ALTERNATE ALGEBRAS In this paragraph, we describe a subclass of Ωmil closely related to the gametic algebra G(m+1,2). Recall that every algebra A has an opposite algebra denoted A^0 , where $(xy)^0$ -yx for all x, y \in A. It is clear that if $A \in \Omega_{m+1}$, the same holds for A^0 and tÃ=ú, where "t" means transpose. ### THEOREM 1: Let A be a member of Ω_{m+1} , with corresponding matrix $\tilde{A}=(\alpha_{i,j}), 0 \le i, j \le m$. The following conditions are equivalent: - (i) $\alpha_{0,1} + \alpha_{10} = 1 \ (1 \le j \le m)$ - (ii) $\alpha_{om} + \alpha_{mo} = 1$ and $\alpha_{k,m-k} + \alpha_{m-k,k} = 0$ (15k5m-1) - the submatrix (aij), isi,jsm, is skew symmetric - (iv) For all u,v EN=ker w, uv+vu=0 - For all $x,y \in A, xy+yx=\omega(x)y+\omega(y)x$ (V) (Vi) - For all $x \in A$, $x^2 = \omega(x)x$ - (Vii) % A +% A 0=G(m+1,2) # PROOF: i, j=1 - (i) =>(ii): Follows by direct computation: write the system of equalities $\alpha_{0,j}+\alpha_{j,0}=1$ (j=1,...,m) using (2) and (3) and reduce by elementary transformations of linear equations. - (ii) =>(iii): follows directly from formula (i) $$(iii) \Longrightarrow (iv): \text{if } u = \Sigma \lambda_1 C_1 \text{ and } v = \Sigma \mu_3 C_3 \text{ then } \\ i = i \qquad \qquad j = 1 \\ uv + vu = \sum \lambda_1 \mu_1 (C_1 C_1 + C_1 C_1) = \sum \lambda_1 \mu_1 (\alpha_{1,1} + \alpha_{1,1}) C_{1+,1} = 0$$ (iv) \Longrightarrow (v): First of all, $C_k C_{m-k} + C_{m-k} C_k = 0$ (15k5m-1) implies $\alpha_{k,m-k}+\alpha_{m-k,k}=0$. It follows by direct computation that $\alpha_{0,j}+\alpha_{j,0}=1(j=1,...,m)$. We have now, for any u E N, i+ i≤m Take now $x=\omega(x)C_0+u, y=\omega(y)C_0+v, u, v \in N$. Then: $xy = \omega(x)\omega(y)C_0+\omega(x)C_0v+\omega(y)uC_0+uv$ $yx = \omega(x)\omega(y)C_{0} + \omega(y)C_{0}u + \omega(x)vC_{0} + vu$ $xy+yx=2\omega(x)\omega(y)C_{0}+\omega(x)(C_{0}v+vC_{0})+\omega(y)(C_{0}u+uC_{0})=$ = $2\omega(x)\omega(y)C_{0}+\omega(x)v+\omega(y)u=\omega(x)y+\omega(y)x.$ $(v) \implies (vi)$: Take x=y $(vi) \implies (vi)$: For any x \in A, we have $x^2 = \omega(x)x$, equality involving the second power of x in $\frac{v}{N}$ A + $\frac{v}{N}$ A.0. But this algebra is commutative and it is well known that G(m+1,2) is the only commutative baric algebra satisfying this equation. (vii) \Longrightarrow (i): The matrix of % A + % A⁰ is % \tilde{A} + %^t \tilde{A} and so Hence $\frac{1}{2}a_{0,j} + \frac{1}{2}a_{0,j} = \frac{1}{2}a_{0,j} + \frac{1}{2}a_{0,j} = 1$, $1 \le j \le m$ ### DEFINITION Any member A of Ω_{m+1} satisfying the equivalent conditions of th.1 is called an alternate algebra. #### REMARK: In every alternate algebra A, we have multiple t-roots: $\alpha_{01} : \alpha_{02}$ and $\alpha_{10} : \alpha_{20}$, because $\alpha_{11} : 0$. It is also clear that G(m+1, 2) is the only alternate commutative algebra in Ω_{m+1} . ### THEOREM 2: Let $A \in \Omega_{m+1}$. The following conditions are equivalent: - (i) A is a maximal element of Ωm+i - (ii) There exist λ, μ ∈ R such that λ+μ=1 and A=λA_Q+μA_m ### PROOF: (i) \Longrightarrow (ii): As dim Der A=m(m+1), we must have Der A=[d:A \rightarrow A \bowtie od=0}. In fact,by ([i],th i) every derivation d must satisfy \bowtie od=0 and the subspace of linear mappings d: A \rightarrow A such that \bowtie od=0 has dimension m (m+1), as the Kernel of the linear mappings d \rightarrow \bowtie od. Take now any $a \in A$ with $\omega(a)=1$ and define $d_a:A \rightarrow A$ by $d_a(x)=\omega(x)a-x$ (see [1], th.2). We have $\omega od_a=0$ and so d_a is a derivation of A. It follows that $d_a(a^2)=a-a^2=ad(a)+d(a)a=0$ so $a=a^2$, and every element of weight 1 is an idempotent. Observe that d_a , restricted to N, is the reflexion $x\rightarrow x\rightarrow (a-x)$ and $x\rightarrow x\rightarrow (a-x)$ we have $\begin{array}{lll} C_{0}+C_{1}=&(C_{01}+C_{1})=&C_{0}+C_{0}C_{1}+C_{1}C_{0}+C_{1}=C_{0}+(\alpha_{01}+\alpha_{10})C_{1}+C_{1}\\ \text{which implies}&&\alpha_{01}+\alpha_{10}=1\text{ so A is alternate}.\\ \text{Moreover, if 15i,j5m, we have} \end{array}$ $$d_{Co}(C_iC_j) = -C_iC_j = -C_iC_j - C_iC_j = -2C_iC_j$$ so C_1C_1 =0 It follows that α_{01} =...= α_{om} = λ and α_{10} =...= α_{mo} = μ and finally A= λ A $_0$ + μ A $_m$, with λ + μ =1. (ii) = (i): The matrices of Ao and Am are respectively $$\tilde{A}_0 = \begin{bmatrix} i & 1 & \dots & 1 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \text{ and } \tilde{A}_m = \begin{bmatrix} i & 0 & \dots & 0 \\ i & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ i & 0 & \dots & 0 \end{bmatrix}$$ so the matrix of \Ao+\Am is | | | | , | | |---|----|----------|------------|------------| | | 1 | , A | Ô | x | | | עע | 0 | 0 | 0 | | | | | | | | | | | | | | | | K SHCIFT | 731 . 1 90 | Z yo .visa | | É | h | 0 | 0 | 0 | | | _ | | | 4 95 12 | We have: $C_0u=\lambda u$, $uC_0=\mu u$ and uv=0 for all u, $v\in N$. If $x=\omega(x)C_0+u$ and $y=\omega(y)C_0+v$, $u,v\in N$, then $xy=\omega(x)\omega(y)C_0+\lambda \omega(x)v+\mu \omega(y)u$. Suppose we have $B_0,B_1,\ldots,B_m\in N$. Define d:A $\rightarrow A$ by $d(C_1)=B_1$ ($i=0,1,\ldots,m$). We prove d is a derivation: $\begin{array}{l} xd\left(y\right) + d\left(x\right)y = x\left(\omega\left(y\right)B_{0} + d\left(v\right)\right) + \left(\omega\left(x\right)B_{0} + d\left(u\right)\right)y = \omega\left(y\right)xB_{0} + xd\left(v\right) + \\ \omega\left(x\right)B_{0}y + d\left(u\right)y = \omega\left(y\right)\left(\omega\left(x\right)C_{0} + u\right)B_{0} + \omega\left(x\right)C_{0} + u\right)Ad\left(v\right) + \omega\left(x\right)B_{0} \\ \left(\omega\left(y\right)C_{0} + v\right) + d\left(u\right)\left(\omega\left(y\right)C_{0} + v\right) = \omega\left(y\right)\omega\left(x\right)AB_{0} + \omega\left(x\right)Ad\left(v\right) + \omega\left(x\right) \\ \omega\left(y\right)uB_{0} + \omega\left(y\right) + \omega\left(y\right)\omega\left(y\right)B_{0} + \omega\left(x\right)Ad\left(v\right) + \omega\left(y\right)\omega\left(u\right) = d\left(x\right)A \end{aligned}$ So, there is a one-to-one correspondence between derivations of $\lambda\lambda_0+\mu\lambda_m$ and sequences (B_0,B_1,\dots,B_m) , $B_1\in N$. This means dim $\text{Der}(\lambda\lambda_0+\mu\lambda_m)=m(m+1)$ and A is maximal in Ω_{m+1} . #### 4.- MINIMAL ELEMENTS # THEOREM 3: Suppose the H_1 -coordinates $(\alpha_{om}, \alpha_1, \alpha_{om-1}, \dots, \alpha_{m-1,1}, \alpha_{mo})$ of $A \in \Omega_{m+1}$ satisfy: (1) $\alpha_{j,m-j} \ge 0$, $0 \le j \le m$ (2) There exists 15k5m-1 such that $\alpha_{k,m-k} > 0$ Then A is a minimal element of Ω_{m+1} . #### PROOF We remark that A and its opposite algebra A^0 have the same derivation algebra and the H_1 -coordinates of A^0 are $(\alpha_{mo},\alpha_{m-1},1,\dots,\alpha_1,m-1,\alpha_{om})$. Hence we may suppose that Km^-k in (2). We denote again by k the least k such that $\alpha_{k,m-k}>0$. We look now to the matrix \hat{A} , which can be broken in four blocks $\hat{A}_1,\dots,\hat{A}_k$ as follows: The sizes of the blocks are: $\tilde{A}_1\colon (K+1)\times (m-k+1); \tilde{A}_2\colon (k+1)\times k; \tilde{A}_3\colon (m-k)\times (m-k+1); \; \tilde{A}_4\colon (m-k)\times k.$ It is clear that $\tilde{A}_4\text{-0}$ and | | α
om | α σ | a om | |-----|---------|-----|------| | | 0 | 0 | 0 | | | | | 21 | | à = | | | | | | | | | | - | 0 | 0 | 0 | by our choice of k. (This means α_{0m} is a left t-root with multiplicity 2K). The elements of \tilde{A}_3 are all non negative. We look to \widetilde{A}_1 . Every element of \widetilde{A}_1 is strictly positive because it depends on σ_k , m-k. Moreover, $\sigma_{0,j}+\sigma_{0,j}<1$ for $j=2,\dots,m$ this follows from formulae (2) and (3). Also $\sigma_{0,j}>\sigma_{0,j}$ $(j=2,\dots,n)$, a consequence of the same formulae. Suppose now d is a derivation of A. If $d(C_0) = Da_1C_1$, $C^2_0 = C_0$ By equating coordinates, we get: $$\alpha_i(\alpha_{0i}+\alpha_{i0})=\alpha_i (i=1,...,m)$$ As $\alpha_{01}+\alpha_{10}=1$ and $\alpha_{0,j}+\alpha_{j0}<1$ if $j=2,\ldots,m$,we get $\alpha_2 \approx \ldots =\alpha_m=0$ and so: $d(C_0)=\alpha C_1$, where $\alpha=\alpha_1$ Again, from C_0C_1 = $\alpha_{01}C_1$ and calling $d(C_1)$ = Σ β_1C_1 , we obtain: $$\begin{array}{ccc} \mathbf{m} & \mathbf{m} \\ \mathbf{\Sigma} & \beta_{\mathbf{i}} \alpha_{0,\mathbf{i}} \mathbf{C}_{\mathbf{i}} + \alpha \alpha_{1,\mathbf{i}} \mathbf{C}_{2} = \mathbf{\Sigma} & \alpha_{0,\mathbf{i}} \beta_{\mathbf{i}} \mathbf{C}_{\mathbf{i}} \\ \mathbf{i} = \mathbf{i} & \mathbf{i} = \mathbf{i} \end{array}$$ By equating coordinates: $$\begin{cases} \beta_{1}^{\alpha} \alpha_{1}^{-\beta} \beta_{1}^{\alpha} \alpha_{1} \\ \beta_{2}^{\alpha} \alpha_{2}^{2} + \alpha \alpha_{1}^{1} = \beta_{2}^{\alpha} \alpha_{1} \\ \beta_{1}^{\alpha} \alpha_{1}^{-\beta} \beta_{1}^{\alpha} \alpha_{1}^{\alpha} (3 \le i \le m) \end{cases}$$ The first equation is an identity, the second gives $\beta_2{=}\alpha$ and the remaining ones give $\beta_1{=}0,~3\text{Mim}$, which means $$d(C_1)=\beta C_1+\alpha C_2$$, where $\beta=\beta_1$. Observe now the left principal powers of C1: $$\begin{array}{c} c_{1}^{2}\alpha_{11}c_{2}\neq0 \\ c_{1}^{2}-c_{1}c_{1}=c_{1}\alpha_{11}c_{2}=\alpha_{11}\alpha_{12}c_{3}\neq0 \\ c_{1}^{m-k+1}c_{1}^{m-k}=c_{1}^{m-k}=c_{1}\alpha_{11}c_{2}=c_{11}c_{11}c_{2}=c_{11}c_{11}c_{2}=c_{11}c_{11}c_{2}=c_{11}c_{2}=c_{11}c_{2}=c_{21}c_{2}=c_{21}c_{2}=c_{21}c_{2}=c_{21}c_{2}=c_{21}c_{21}c_{21}=c_{21}c_{21}c_{21}c_{21}=c_{21}c_$$ From these equations, we have: $$d(C_2) = \underbrace{\frac{1}{\alpha_{11}}} d(C_1^2) = \underbrace{\frac{1}{\alpha_{11}}} [C_1(\beta C_1 + \alpha C_2) + (\beta C_1 + \alpha C_2) C_1] =$$ = $$\frac{1}{\alpha_{11}}$$ [\beta_{1}\alpha_{11}\cent{C}_{2} + \alpha_{12}\cent{C}_{3} + \beta_{1}\alpha_{11}\cent{C}_{2} + \alpha_{21}\cent{C}_{3}] = 2\beta \cent{C}_{2} + \alpha \cent{C}_{3}. Similarly we obtain $$d(C_j)=j\beta C_j+\alpha C_{j+1}$$ for $2\leq j\leq m-k$. The effect of d on the remaining vectors C_{m-K+1},\ldots,C_m can be obtained from the last row of X_1 . In fact, $C_{m-K+1}=a^{-1}k$, $m-2k+1C_kC_{m-2k+1},\ldots,C_{m}=a^{-1}k$, $m-kC_kC_{m-k}$, which gives, by a direct computation, $$d(C_i)=j\beta C_i+\alpha C_{i+1}$$ for $m-k+1\leq j\leq m$. We have proved that d=qn+80 We don't know whether theorem 3 gives all minimal elements of Ω_{m+1} . # 5- DIAGONALIZABLE DERIVATIONS Every member A of Ω_{m+1} has at least one diagonalizable derivation namely ∂_t . It may happen that A have several linearly independent diagonalizable derivations, as it happens to G(m+1,2) (f(1)th 4). # THEOREM 4: Let $a \in \Omega_{M+1}$, whose matrix (α_{ij}) satisfies: (1) $$\alpha_{0,j} \neq \alpha_{0,j+1} (j=1,...,m-1)$$ (2) $\alpha_{0,m} + \alpha_{m,0} \neq 1$ If d:A \rightarrow A is a derivation such that $d(C_1)=\lambda C_1, \lambda \in \mathbb{R}$, then $d=\lambda \partial$. # PROOF: The first condition $\alpha_{0,j} \neq \alpha_{0,j+1}$ means $\alpha_{1,j} \neq 0$ and so the left principal powers of C_1 are all non zero: $$\begin{array}{c} 2 \\ C_1 = \alpha_{11}C_2, \dots, C_1 = \alpha_{11}\alpha_{12} \dots \alpha_{1,m-1}C_m \end{array}$$ We have $d(C_1)=\lambda C_1$. Then $d(C_1)=d(\alpha_{11}C_2)=\alpha_{11}d(C_2)$ and $\frac{2}{d(C_1^2)} = d(C_1)C_1 + C_1d(C_1) = 2\lambda C_1 = 2\lambda \alpha_{11}C_2, \text{ that is, } d(C_2) = 2\lambda C_2.$ Similarly, $d(C_3)=3\lambda C_3,\ldots,d(C_m)=m\lambda C_m$ and C_1,\ldots,C_m are proper vectors of d, with proper values $\lambda,2\lambda,\ldots,m^\lambda$. According to ([1],th 1),0 must be a proper value of d. Let us prove that $d(c_0)=0$ (which gives $d=\lambda \delta$). Call $d(C_0)=\beta_1C_1+\ldots+\beta_mC_m,\beta_1\in\mathbb{R}$. From $C_1C_0=\alpha_1O_1$, we get: $\lambda C_1C_0+C_1d(C_0)=\alpha_1O_1C_1$ or $C_1d(C_0)=0$ Now $0=C_1(\beta_1C_1+\ldots+\beta_mC_m)=\beta_1\alpha_{11}C_2+\ldots+\beta_{m-1}\alpha_{1,m-1}C_m$ implies $\beta_1 = \dots = \beta_{m-1} = 0$ and so $d(C_0) = \beta_m C_m$. But, as $C_0 = C_0$, we have: $C_0(\beta_m C_m) + (\beta_m C_m) C_0 = \beta_m C_m$ or $\beta_m (\alpha_{om} + \alpha_{mo}) = \beta_m$ and by (2), $\beta_m = 0$ ### REMARK: Let A be the alternate algebra of Ω_6 whose H_1 -coordinates are (1/2,1,0,0,-1,1/2). It is routine to verify that d: A \rightarrow A given by $C_0 \rightarrow 0, C_1 \rightarrow C_1, C_2 \rightarrow 0, C_3 \rightarrow C_3, C_4 \rightarrow 2C_4, C_5 \rightarrow 3C_5$ is a derivation, C_1 is a proper vector of d but ∂ and d are linearly independent. We have, in this example, $\alpha_{01} = \alpha_{02}$ and $\alpha_{05} + \alpha_{50} = 1$. #### REFERENCES - [1] Costa, R. On the derivation algebra of gametic algebras for polyploidy with multiple alleles. Rol.Soc.Bras.Mat. - 13, Nº2, 69-81 (1982). - [2] Costa, R. On the derivation algebra of zygotic algebras for polyploidy with multiple alleles.Bol.Soc.Bras.Mat. - 14, Nº1, 63-80 (1983). - [3] Etherington, I.M.H.Genetic algebras.Proc.Roy.Soc. Edinburgh 59 (1939) 242-258. - [4] Etherington, I.M.H. Non-associative algebra and the symbolism of genetics.Proc.Roy.Soc.Edinburgh B 61 (1941) 24-42. - [5] Gonshor, H.Special train algebras arising in genetics. Proc.Edinburgh Math.Soc.(2) 12 (1960) 41-53. - [6] Gonshor, H.Special train algebras arising in genetics II. Proc.Edinburgh Math.Soc.(2) 14 (1965) 333-338. - [7] Heuch, I.An explicit formula for frequency changes in genetic algebras. J.Math.Biol.5 (1977) 43-53. - [8] Heuch, I. The genetic algebras for polyploidy with an arbitrary amount of double reduction. J.Math.Biol <u>6</u> (1978) 343-352. - [9] Heuch, I. Genetic algebras considered as elements in a vector space, SIAM J.Appl.Math. 35 (1978) 659-703. - [10] Holgate, P. Genetic algebras associated with polyploidy. Proc Edinburgh Math.Soc.(2) 15 (1966) 1-9. Corrigendum, ibid. 47 (1970) 120. - [11] Jacobson, N. Lie algebras. Interscience Publishers, New York, London, Sydney, 1962. - [12] Micali, A.; Campos, T.; Silva, C.; Ferreira, S.; Costa, R. Dérivations dans les algébras gametiques. Comm. in Algebra 12 (2) 239-243 (1984) - [13] Wörz-Busekros, A. Polyploidy with an arbitrary mixture of chromosome and chromatid segregation. J.Math.Biol. (1978) 353-365. - [14] Worz-Busekros, A. Algebras in genetics. Lecture Notes in Biomathematics, 36, Springer-Verlag, 1980. Universidad de São Paulo Instituto de Matemática e Estadística Caixa Postal 20.570- Agência Iguatemi São Paulo- SP.BRASIL.