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CONDITIONALLY INTEGRABLE PERTURBATIONS OF LINEAR DIFFERENTIAL SYSTEMS
by
Rigoberto Medina'and Manuel Pinto®

Abstract. We determine the asymptotic behavior of the solutions of

differential systems with conditionally iIntegrable coefficlents:
X'=(A(L)+V(t))X, X =(A+V(t))X,

where A(t)=dlag()\‘(t).a2(t)..‘.)«"(t)) satisfies the dichotomic condi-

tions of Levinson's Theorem [5],A is a constant nxn matrix and V is a

conditionally integrable nxn matrix.

1. Introduction. We call a function f defined on [to,m), tu a glven

real number, conditlionally integrable if J:’f(s)ds exists for all

tzlo, In that case, we will write fELC(tztn). We wish to study the

differential system:

y'=(a(t) + V(t))y, *)
where the matrix VELC(LZtU). This kind of systems are of lnterest in
physlics (Adiabatic oscillators Theory, [1],[8]). Throughout this ar-
ticle A(t) will denote a dliagonal matrix dlag(ll(t),/\a(t),,.,,An(t))=
A(t), where the elgenvalues satisfy the dichotomic conditions of Le-
vinson’s Theorem (5] on asymptotic Integration, namely " For each in-

dex 1#j either

t t
DI) J Re()xi(s)—h](s])ds—m as tow and I Re(A‘(s)—AJ(s)]ds%K for astst
a a
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or

t
D,) J‘tRe(Al(s)—xJ(s))ds<K for all astst".

We will write this last condition: AeDic(Lev.).
This fundamental theorem of Levinson cannot be applied to that

kind of system (*). In this paper, we study the vallidation of Levin-

son’s Theorem for systems as (*).

In section two we obtain similar results to Levinson’s theorem
which determine the behavior of the solutions of system (*). In sec-
tion 3 and 4 we study the perturbation of a system with constant coe-
fficlents

y’=(A+V(t))y,
where A is a constant nxn matrix with simple eigenvalues (section 3)
and non-simple eigenvalues (section 4). Using the results obtalned on
section 3, we obtaln an analog Lc of GHIZZETTI’S Theorem [3].
However, the general solution is not the analogous to the L‘-case, We
remark that on account of Pinto [7], the results obtained are imme-
diately extended to systems whose unperturbed systems
x'= A(t)x
has an exponential dichotomy (hence A diagonal is not necessary). Fi-

nally, in sectlon 5 several examples are shown.
2. General results. We begin with a corrected version of a Harris-
Lutz’s Theorem (4].
Theorem 2.1. Let A(t),V(t) and R(t) be nxn contlnuous matrices for
tlto such that:

1) A(t)=dlag(7\l(t)..‘..An(t))e Dic(Lev)

11) Q(t)= _[':ows)ds exists for tat ; and

111) vQ, AQ, QA and ReL‘(tzto),

Then
y'=(a(t)+V(t)+(R(t))y (1)
has a fundamental matrix Y(t)such that
Y(t) = [1+0(1)] exp(ﬁ A(s)ds) for t (2)
o

Proof.If we put y=(I+Q)z, then replacing y in (1) we get

2'= {(1+Q) T [A+V+R] (1+Q)- (1+Q) "'V)z (3)
Since [1+Q(t)]™" exists for t large enough, let us say for tzt =t .

e .\
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Then using the identity (1+Q) '=1-(1+Q)7'Q, (3) becomes
z'=(A(t)+R(t))z, (4)
where
ﬁ(t)=AQ‘VQ-“00-| )Q(A+AQ+VQ)+(1+Q) 'R(1+Q).
Since AeDic(Lev) and by 111), ﬁELI(l!to) the system (4) satisfles
Levinson’s theorem [S]. Thus system (1) has a fundamental matrix Y(t)
which verifles (2).

Remark. Harris-Lutz (4] has proved a similar theorem (Th. 3.1)
which demands Incorrect conditlons of integrability and the extra

assumption that diag V=0.

Theorem 2.2. (Non resonant case). Let V(t) be a continuous nxn ma-
trix for ttlu and ¢ be a fundamental matrix of
x'=A(t)x, (5)
such that ¢ 'Vgel (t=t ) and (¢"v¢)ff¢"(s)v(s)ms)ds,
¢“n¢eL|(tzto). Then there exists a fundamental matrix Y of
y’=(A(L)+V(t)+R(t))y, (6)
such that
Y(t)=¢[I + o(1)] for tom, (7)
Proof. Using the change of variable y=¢z, (6) becomes z’=¢"(V+R)¢ 2
Let z=(1+Q}w, uhere Q(t)=[} 47 (5)V(s)g(s)ds. Then
L W) @ V)0 RE(140) bu (8)
Since (I+Q)  exists and 1s bounded for lzt]ztﬂ large enough and
(¢"V¢)QeLl(t=Lo), then by theorem 2.1, system (5) has a fundamental
matrix W(t) such that W(t)=I+o(1) for tiw.
Therefore (6) has a fundamental matrix Y(t) which satisfles (7).
The conditional integrability of {'V¢ differentiates the non-

resonant from the resonant case:

Theorem 2.3 (Resonant case). Let ¢ be a fundamental matrix of (5).
Assune 1) A= dlag(¢ 'Vé)eDic(Lev. ),
11) Q(t)= [P(¢7'(s)V(s)9(5)-4(s))ds exists for tzt and
111) ¢7'V90, ¢ 'R¢, 80 and QA € L (t=t ).
Then (6) possesses a fundamental matrix Y(t) such that
¥(0)=[1+0()] exp ([} diag(@7'Vvg) for tom. (9
0

le.
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Proof. We perform y=¢z to transform (6) in
z'=(a(t)+V(t)+R(L))z, (10)
where A=diag(¢'Vg), ¢V=¢"'V¢-A and R=¢p 'R¢. Using 1) and 11) we ha-
ve that A € Dic(Lev.) and Q(t) exist for txt . Furthermore from 111)
(97'V$-4)Q, 40,08 and¢'R¢ e L (tzt ). Then, by Theorem 2.1, system
(10) has a fundamental matrix Z(t) such that z=ll*o(1)]exp(J‘: A) for
o

t . Hence (6) has a fundamental matrix Y which satisfies (9).
The difference between the resonant and non-resonant case is re-
presented by the apparition of the factor [f:dlagw_lvwdsl which gi-
°

ves an exponentlally stable part and a non-exponentially stable part.

As application, by using only Theorem 2.2. we can obtain the two

first theorems In Harris-Lutz [4] for the equation:
y"+(1+g)y = 0.
In fact, his theorem 2.1 [4] follows from our Theorem 2.2, taking

matrix corresponding to the fundamental system

e fundamental
113

(t)=cost, ¢z(t)=slnt. Theorem 2.2 [4] ls obtained taking ¢1(t)=e
-1t

d ¢=(t)=le
~ Remark. If we haven that (4) that R ¢ LI(tZto)' but its integra
11ty Is better than that of V(t), we can iterate our method a fini-
number of times. The two following Theorems represent the type of
sults which can be obtalned by iterating the method.
eorem 2.4. Assume
1) deDic(Lev.),
1) a()=[7 Vis)ds and G(0)=[7V(s)0(s)+(8,Q) (s)ds extst for tat,
where [A,Q]=AQ-QA and
111) 4G, @8, veQ-d, 403, QV,Q’A and Rel,.
Then (1) has fundamental matrix Y(t) which satisfies (2).
Proof. Since (I&Q)"exlsts and 1s bounded fortztlzto large enough, by
using the identity

(1+Q)"'=1-0+(1+Q) '0%, (11)
the vector z=(l+Q)'y satisfles
2'=(A+V4R) z, (12)

where V= VQ+(A,Q] and R= (1+Q)'(Q°A(14Q)+Q>VQ+QR(1+Q)]. Now, since
VeLc(t =t)and R e L (t=t), applying Theorem 2.1 to system (12)
glves that (1) has a fundamental matrix Y which satisfies (2).

. a
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Theorem 2.5. (Iterated version of Theorem 2.1). Assume
1) A=dlag(A+VQ)eDic(Lev.),
10 Q(6)=[7V and G(£)=[7(AVQ-2)+[A,Q] extst for t=t, and
111) AQ, @A, 43, vQd, AQd, Q(A+V)Q, Q®(A+V) and Rel. .
Then (6) possesses a fundamental matrix Y such that
Y(t)=[1+0(1)] exp(f: dlag(A(s)+V(s)Q(s))ds for tom.
0

Proof. Let y=(I+Q)z. Then using C=(I*Q)_l and (11) we have
z'= {8 +V + R)z (13)
where ¥=(A+VQ-A)+(A,Q] and ﬁ=Q(A0V)Q’CQ2(A‘V)(I‘Q]*CQR(HQ).

We have that by hypotheses VeLc(tztu) and ﬁELI(thol. Then by Theo-
rem 2.1, system (13) has a fundamental matrix 2Z(t) such that
2(t)=[I+0(1)] epr-: A for tsw, from where the conclusion follows.

o

Remark. Thls Theorem allows the possibility that the entrles which
are not on the dlagonal of A+VQ could be weak if the terms of dlago-
nal belong to Dic(Lev.). The iterated version in Pinto [6] 1is an

example of 1ts applicatlon.

3. Perturbation of Constant System. Simple Eigenvalues. The asympto-
tic behavior of the solutions of the linear system with constant coe-
fficlents:
X' =Ax (14)
are determined by the spectrum of the constant matrix A. If B(t) is a
"small" perturbatlon, then the asymptotic behavior of the solutions of
the system
x’=(A+B(t))x (15)
are agaln determined by system (14). In this section, we study the
valldation of the fundamental results of Levinson [5] and Coppel [2]
for a class of system (15), where A has simple eigenvalues and the
perturbation B(t) is conditionally integrable. If A has only one
elgenvalue, Theorem 4, Chap IV of Coppel [2] glves the asymptotic be-
havior of system (15) when Be Ll(t!to) but we cannot apply that theo-
rem in the weaker situation Be Lc(tzto).
By Theorem 2.1.we have the following corollary:
Corollary 3.1. Let A be a constant matrix with simple eigenvalues.

Let EELC(tttu).Q and QBeLl(tztu), (0([)=J‘TB(s)d5], Then (15) has a

I
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fundamental matrix Y(t) such that
3 Y(t)=[I+0(1)] exp(tA) for tom

We remark (see example 1, section 5) that Theorem 4 Cap. IV of
Coppel (2] an Corollary 3.1. solve different problems.

Now, suppose that A is In the canonical Jordan form consisting of
the block with Ao in the main diagonal and let B(t) = bu‘“]{ﬂ(n a

<j<n
continuous matrix for tzto,
Theorem 3.2.. Assume
=t

1)y, (£)=t="b () e L (t=t ), §,Je{1,2,....,n} and

-1 ®
2) t7q, q, v el (tet), 1, 5.ke(1,2,..n) (a ()= [T (s)ds).
Then

y'= (J(ADVB(Q))V. J(Aol = )\DI + J, (16)
re
Ol 0/ 0
1 oo 00
ot A R RS (17)
B g 00

a fundamental matrix Y(t) such that Y(t)=ll*o(l)]exp(tJ(?«u)) for

f. Let Dn(l)=dlag(1,t, cooy t"Y) e have
tJ“o) Aot tJo )«Ot JI
e D (t)=e *e D (t)=e D (t)e °.
n n n
] A
eusingthechangeofvariables y=e 08 oD“(t)z, system (16) becomes
z'=(a(t)+V(t))z (18)
-1 -1 T
ere A(t) = -D '(t)D (t)=t"'diag(0,-1,...,1-n), V(t)=e °Ce and
. -1
C(!’.)=Dn (t)B(t)Dn(t).
Using the hypotheses we can see that:
1) Q(t)=f:V(S)ds exists for tzt,
11) A(t)Q(t), Q(t)A(t) and Q(t)V(t) e Ll(tztg. and
111) A(t) e Dic(lev.).
Then, Theorem 2.1. implies that system (18) has a fundamental ma-

trix Z(t) such that
zm=[1+on)Jexprﬁuswshmou)deag(x,t“...,
a fundamental matrix Y(t) such that

tJ(Ao)

.t-(nﬂ)) Foril LG,
Therefore system (16) has
for

€ tJ
¥(t)=e ® e % (t)[1+o(1)dtag(t, ™, ..., t” )= (1a0 (D)l

. A
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tose,
Finally we verify that 1), 11) and 111) hold.
£ =
Since a(t)=ﬁ°v(s)ds=e °(ﬁc(s)ds)e °, the condition
o
jt Cls)dsaC(t) € L (t=t ) (19)

implies QVeLl(tato)and it is not difficult to see that (19) follows
-1
from qUVJkeLl(tzto). Similarly t quELl implies that AQ and
QAeL . Moreover, q,,v €L implies QVeL . Since 11i) is evident, the
1 Rk 1l 1
proof is complete.
In (2], Coppel has studied the asymptotic behavior of the solu-
tions of (16) when A-O obtalning that if Jw k 1 k(t)ldtm, for

i,ke{1,2,...,n}, then (14) possesses a fundamental matrix Y(t) such
that Y(t)=[I+o(1)exp(tJ) for t>w=. Thus, Theorem 3.2. is the falthful
analogous Lc of the result’s Coppel.
We can apply Theorem 3.2. to the differential equatlons of order n
M (a,#b, ()% "o sa b (£))x=0, (20)
where the characteristic polynomial of the homogenuous equation (with
b =0) has a root A with multiplicity n. Thus, we obtain the following
L -version of GHIZZETTI S theorem [31:
Theorem 3.3. Assume 1) vy (t)= ¢! bl(t)eLc(tztO) and
2) t‘ql(t), q,(t)v (b)e L (tzt ), te(1,2,...,n},
(q(t)=ﬁ“ v, (s)ds).
The equation (20) possesses a fundamental system of solutions

1 1
()(

X, t) ST si Osisk

X (8), x (t),..., x ,(t) such that lim ———
(0} sl k<i<n
Proof. Equation (20) s equivalent to the system
n
n}
-b -b
2 n
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We apply Theorem 3.2. to thls syslem Since b =0 except for b J J
-,n}, which

we must only verify v,(t)= t b (LeL (t=t ) te{1,2,
1s true by hypothesis. Simllarly, condlLlon t qu(t)eLc(tzto) is re-

duced to t_lql(t)sL‘(lzto). 1€{1,2,...,n) because the only elements
different from zero in the matrix Q(t) are G (PR (i Finally,
condition q”kaELc(tho); 1,),ke{1,2,...,n}, becomes qlvleL‘(tzto);
Qe nhe

4. Non-Simple Eigenvalues. Let A be a nxn constant matrix with non-
simple elgenvalues A; 1=1,2,...,s with multiplicity n, respectively.

Suppose that A is in the cononlcal Jordan form

A-m JU\ Do J(X )= Ay IU (21)
=1

where J, is a njxn, matrix of the type (17).

The matrix B(t) will be divided In blocks that we will denoted by

Bl,(t) and elements of each of these blocks will be denoted by
p;f;(tx Such elements will be specifled in the proof of the followlng

Theorem.

eorem 4.4. Suppose (21),

1) v;é(t): Pyl (bl (tat )i 1, Je(1,2,...,5) and

> 1) 1) Jk ] L)
2) (1), qu(vgr(VIel, (t2tp)i L Jokeld, )i (ald(t)= j (s)ds).
Then

y'=(A+B(t))y (22)
has a fundamental matrix Y(t) such that
s
Y(t)=[I+o(1)]) exp (o t J(/\‘)) for tom.
1=1

Proof. The unperturbed system x’=( oJ(Al)]x has the fundamental
=1

ot
matrix X(t)=e" “=[ mwl(tll, where

1=1
1 0. 0
I.J(Al) ¢ Ao @ AT
W ()= e = | SR (e ol 16 S T (1626220
nlﬂ
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Let Dn=dlﬂg(Dn(t).Dn(U,A.,.Dn(t]), where

n
D (t)= diag(1,t, -+, t ")
1

k=1 k=1 x
I!_:ln| l‘-‘:x("|”) |§l(n‘-ll
Dn(L)= diag(t 5ot PAELIeT ), for 2skss.
k
We make the change of varlables
y=T(t)z, T=Tlo % L) Ts, (23)
where
tJ(Al) J(All
T =e Dnl(t)=Dn (t)e I )= T4
Then (23) transforms (22) into
s s
z'=[ 0 A 417" (@ J)T-T'T/+T 'BTIz=[A(1)+V (1) )z, (24)
i=1 1=1
s s =
where  A(t) = A+ A(t), A =o A I, A&(t) =0t 'E, and
I o Yt 1 =1 1
V(t)= T'()B(L)T(L), with E = diag(o, -1, ..., -(n-1)),

k=1 k-1 k
Ek- dlag(-(lgln‘). -(Iglnln). 5 —(|}=:‘nl—l)), 2skss.

For computing the elements of T7'BT we need to specify the elements
- ]1 1 S

of T ' even more, B and T. As T,=D_ e (3, =J(x,)), T '(t)= o T '(t)=
1 ny 1 1 1=1"1

8 70 s nxn,
o D"I(t). and B(t)=[su (t)]u“ we have that T 'BT=(T|'B,,T,)

1
1s1,kss.
Now, we verify that 1) and 2) imply 1) VeLc(tzto) and 11) AQ, 0A,

QVeL, (t=t ), where Q(t)=I:V(s)ds.

J
o k el
Since Ty B’ka () D Blan e ", we obtain V=T 'BTeL, If and only
1f D 'B D el for l.ke(l 2} ..A.s).
n o1 on {e)
S
For 1=k=1:
b tb
11 12
- t-lbn 522
p'B =[ o €L _, because
n it n L
1 1 1=p3 2=n,
t b t b b
n1 n 2 n

11 e geR
vuﬂ(l) t ban(t) €L, for «pBe(l,2, ....n}




PAG. 10

For 1=k=.

22448
belongs to LC because vm(t) t

-y ss _4B-a, ss
Analogously, D, BssDnseLc because vua(t)—t baﬂ(t)eLc
s-1 s
«, Be{ [nvl. 2 [nﬁ.
i=1 1=
Thus, we have analysed the diagonal of V(t) in every possible case
Let us look at the other blocks
n n +1 n +n -1
T i bl(n +2) & bl(n +n_)
1 1 ]
o | n
1 2
=1 b t b t b
n‘8‘20n2= 2(n +1) 2(n +2) 2(n +n ) fel
n
2 2
tb t°b, i e
n (n +1) 3(n +2) n (n +n.)
12 = B-a 12
cause v (t)=t “baa(t)el.c for ae(l,...,n } and Be{n +1,...,n+n ).
Thus, inductively,
s-1 s-1 s
),_‘_ ny ‘[ n,+1 )l: n-1
t . . .
bR t b % it LR
1( ? n‘on) 1( ? nl*e) 1(E ny)
s-1 8-1 - 1
Ly o0 Ein
| *b . .
T o sty o R On U SO
n isng 2( ? nl¢1) 2( § n14z) z(§ nl)
H=L s
? nl-(n‘—l) ? nl-l(n‘-l)
t . .
A = (e t LR
I():nlﬂ) 1L ny)
1 1

CUBO

R. MEDINA - M. PINTO

e A

2
P +1)(n +1)
1 1

=3
P 2) (n,+1)

Sy
t

P(n 4n)(n, +1) £

(o 41)(n, +2)

n,1
b
z(n“l)(n‘*n;

i

B(n +2) (n,+2) 7 Pa +2)(n 4n)
~(n-2)
Bl #n)(n +2) Cln,tn ) (n +n)

-, 22
baB(t)eLc, for u.ﬂe(n‘*l,444.nx¢nzL

for
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Bnns

18, 8"
belongs to Lc(tztol, because vﬂg(t)— t (l)eL (t=t ), for

5-1

s-1
ae{1,...,n }, Be{ ):nlol, Ing+2, ..., n,}. Therefore, in general
. 1=1 1=1

Ttam

we have that Vel if v”(t)nt”'“b:g(t)eLcunol. where bib’lt) are the

entries of the blocks BU

on other side, Q(t)=[}T” (s)B(s)T(s)ds=lItT BTkl 151, kss

(m-l

T
el (s)B,, (s)D (s)e ¥).
"k

Since A(t)= Aorﬂ(t) then AQ' AoQOAQ. Therefore QELI(tzto) implies
AOELl(latu). Furthermore

-3 J
atv)-le H([vaneaste Kle L (et ),
since qaﬂ“') lIt (n)ds(L (t=t ) ), for 1,ke{1,2,...,s}. Then
-3 g
QUt)V(t)=[e ‘q;;u)v;;:me 1y For 151k, 115}

Hence QVeL because

aﬂ“)vﬂl(” sL(lat NS K I e(1,2, . 8}
Thus theorem 2.1, can be applled. Then system (24) has a fundamen-
tal matrix Z(t), such that for tie,

2(t)= exp(I; A(s)ds) [1+0(1)]= explﬂot)exp(ji a(s)ds) [1+0(1))
o

L]

t
- exp(Aﬂt)'dlag(D;:(t)..<.D;;(t)llho(l)l=l:|e g D;‘;(t)lho(l)].

Then system (22) has a fundamental matrix VY(t) such that

QU(A )

1=1

Y(t)=e (I1+0(1)], for ts=. The proof 1s now finlshed.

Remarks. 1. Although this theorem is an extension of Theorem 3.2. be-
cause it also determines for the case of non simple elgenvalues the
behavior of the solutions of the system (22), it also has to satlsfy
the stronger condition q:;(l)e Ll(lz[o).i,Je(l.Z.‘.‘.s). However, 1t
can be applied exten- sively to several system. In particular, to the
linear differential equations of order n of the type

x et b (0% "4 @ ab (0))x=0, (25)

for
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-B @
b ()=t Jexp(ikt ), tzt >0,
where a and 8) are positive constants and k is a real number. These
functions belong to L:(tzto) and Its Integration improves their inte-
grability properties.
2. If the characteristic polynomlal of the matrix assoclated to the
homogeneous equation with constant coefficlents ay is glven by
n n n
1 2 s el
P(l)-(t-kl) (!-Xz) 4..(t-ls) with n4n+...4n_=n, we obtaln
Corollary 4.2.. Suppose
1) v, (0=t (L)eL (t2t ), ke(1,2,....n} and
o,
= ds).
2) q.lt) and ql(t)vk(l)iL‘(Lato). ke{1,2,...,n}, q*(t) Lvl(s) s)
Then equation (25) has a fundamental system of solutlons xo(t).

x,(t), ..., x _ (t), such that for tm behave as

h,t )\‘l 1At
e oty Ty L
Azt At n,-1 4\2t
e y te ’ ’ e
st At ng-t Azt
TR | ot e

spectively.

. Examples. In thls sectlion we present some examples which show the
sults obtalned previously.
le 1. Conslder.

x"+(14b(t))x=0, (26)
where 1) b(t)=t™P, 12 and  11) b(t)=t"sin(t?), O<ac1.

In the case 1) beL‘(tztoml and the equation (26) satisfles
Levinson's Theorem [5). On other hand, b(t)eLc(t=t°>0). but, since
B<2,

a7 sPasgly B L ceae ).
Thus the case 1) gives an example of a differential equation which
satisfies the hypotheses of Levinson's Theorem (5], but we cannot
apply Theorem 2.1.
In case 11), we have b(t)=sln(lz)ELc(t!tn>0). but b(l)(Ll(lzto>0).

2
Furthermore Q(t)= J’“H s %in(s?)ds= & 05Lt) () ) oyiets for tat >0,
v R 1 o

where (L|) represents an Integrable function. Moreover

o |
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Q(t)b(t)= +(L)) e L (t=t >0).

1 sin(zl )
20+
Then, in case 11), the hypotheses of Theorem 2.1. are satisfled
but not those of Levinson's Theorem [S5]. Thus, this example shows
that the mentioned Theorems are different versions of the same pro-
blem.
Example 2. Conslder the differential system

A 0 0 1

x'= + g(t) X, (27)

A >‘o 1 0

where g(t)=t_’3cos(t2);)\o and B are real number with >0.

0 t Peos(t2)
The matrix B(t)= satisfles the hypotheses
t Peos(t?) o

of Theorem 3.2.

=(B-1) ¢~ (B+1)

by 2 $) 2 :
In fact Vlz(t)— t cos(t9), sz(“_ cos(t )ch(th°>0) and

e L sin(t?) ffools . = in(t?) "
q,z‘”'f:",z“T*‘H’- “a,“"ft"zr (L) Hence

(t)'-

sin(t?)
T+(L').

€L ( t2t°>0).

blqp ((b)=s

=1 sin(t?)
——tn—*(L )

5“"2‘ ) +(L, el (t=t >0),

Moreover qz‘(t)v‘z(t)=qlz(t)v (t)=

Then system (27) possesses a fundamental matrix X(t) such that
il 0

tJ()\O)
X(t)=[I+o(1)]e ~
t 1

Example 3. Conslider the differential equation of fourth order

,(“'1(4.1,‘(;))x““l(emz(t))x‘“l(fnba(t))x'o(l»b‘(t))x=o. (28)

o«
where b (t)= t Jsln(t J), t= t> 0, and ay I!J are positlve constant
such that bJ(t)ELc(tzt")O). J=1, 2, 3, 4. Equatlon (28) is equiva-
lent to the differential system

(A
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=4 =6l =A% =] —bl —b2 _b: —b‘
1 0 0 OF 0! 0
M o e @ o % )
0 o 1 0 () (0) 0

The matrix A has the cononical Jordan form:

SIS OSNORNQ)
1= 0
(o)

0F 10} il

Thus AOH-I Is an elgenvalue with multipliclity n=4 and by Theorem 3.2
system (29) possesses a fundamental matrix X(t) such that
X(t)=[C+o(1)] exp(tJ(-1)) for t m, where C Is a constant and nonsin-

illar matrix. Then, equation (28) has a fundamental system of solu-

ns xl(l) i xz(t), xa(t). X‘(t) such Lhat:
=t
x (B) ~ e
! -t
xz(t) ~ lte
X, (b)) - 2ot
a=lt
xa(L) ~ tTe
e,
ample 4. Consider the equatlon
X"+t %sint x=0 (30)

e hypotheses of Theorem 3.3. are satlsfled because

=1 =1 _ cost
‘z(t)nt slnteLC[lztowl and t qz(L)~ -tTHL’)eLl(tzLow)_

Then solutions of equation (30) behave as stralght lines as t . Sin-
ce tbz(t) 3 Ll(tzto>0). then equatlon (30) does not satisfy the hypo-
theses of GHIZZETTI'S Theorem [3].
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